
ECSS-E-ST-70-41C
15 April 2016

Space engineering
Telemetry and telecommand packet
utilization

ECSS Secretariat
ESA-ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

ECSS-E-ST-70-41C
15 April 2016

 Foreword

 This Standard is one of the series of ECSS Standards intended to be applied together for the
management, engineering and product assurance in space projects and applications. ECSS is a
cooperative effort of the European Space Agency, national space agencies and European industry
associations for the purpose of developing and maintaining common standards. Requirements in this
Standard are defined in terms of what shall be accomplished, rather than in terms of how to organize
and perform the necessary work. This allows existing organizational structures and methods to be
applied where they are effective, and for the structures and methods to evolve as necessary without
rewriting the standards.

 This Standard has been prepared by the ECSS-E-ST-70-41C Working Group, reviewed by the ECSS
Executive Secretariat and approved by the ECSS Technical Authority.

 Disclaimer

 ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including,
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any
damages, including, but not limited to, direct, indirect, special, or consequential damages arising out
of, resulting from, or in any way connected to the use of this Standard, whether or not based upon
warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or
property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the
item, or any services that may be provided by ECSS.

Published by: ESA Requirements and Standards Division
 ESTEC, P.O. Box 299,
 2200 AG Noordwijk
 The Netherlands
Copyright: 2016© by the European Space Agency for the members of ECSS

2

ECSS-E-ST-70-41C
15 April 2016

Change log

ECSS-E-70-41A
30 January 2003

First issue

ECSS-E-70-41B never issued
ECSS-E-ST-70-41C
15 April 2016

Second issue
The main purpose of the update of ECSS-E-70-41A to ECSS-E-ST-
70-41C was the need:
• to remove the deficiencies of issue A and to inject lessons

learned,
• to improve the standard to meet the need for future missions,
• to acknowledge the existence of new ECSS and CCSDS

standards and to ensure consistency,
• to implement the ECSS drafting rules that apply to any ECSS

Standards (e.g. naming each requirement to facilitate tailoring,
traceability),

• maintaining backward compatibility when possible.
The main changes are:
• the introduction of the PUS foundation model that:

o has been used to produce the “standard service types”;
o shall be used to produce the “mission-specific service

types”, i.e.:
 adding new service types, subservice types, message

types, etc;
 adding capabilities to the ”standard service types”;

o shall be used to produce the “mission services”, i.e.:
 creating the required services by:

• “realising the service types”, and
• inheriting all mandatory subservices and

minimum capabilities;
 selecting, for each service, the additional capabilities,

the optional subservices, etc;
 creating the service specific definitions.

• a proper separation of system versus interface requirements.

3

ECSS-E-ST-70-41C
15 April 2016

Table of contents

Change log ... 3

Introduction .. 8

1 Scope ... 9

2 Normative references ... 11

3 Terms, definitions and abbreviated terms .. 12

3.1 Terms from other standards .. 12

3.2 Terms specific to the present standard ... 12

3.3 Abbreviated terms... 16

4 Context and background ... 18

4.1 Introduction ... 18

4.2 Modelling the PUS .. 21

5 The PUS foundation model .. 25

5.1 Introduction ... 25

5.2 Convention ... 26

5.3 The generic service type abstraction level .. 26

5.4 The generic service deployment abstraction level ... 38

6 Service type system requirements ... 55

6.1 ST[01] request verification .. 55

6.2 ST[02] device access .. 64

6.3 ST[03] housekeeping .. 78

6.4 ST[04] parameter statistics reporting .. 111

6.5 ST[05] event reporting .. 121

6.6 ST[06] memory management ... 127

6.7 ST[07] (reserved) .. 156

6.8 ST[08] function management .. 157

6.9 ST[09] time management .. 160

6.10 ST[10] (reserved) .. 167

4

ECSS-E-ST-70-41C
15 April 2016

6.11 ST[11] time-based scheduling .. 168

6.12 ST[12] on-board monitoring .. 198

6.13 ST[13] large packet transfer .. 229

6.14 ST[14] real-time forwarding control ... 237

6.15 ST[15] on-board storage and retrieval ... 265

6.16 ST[16] (reserved) .. 317

6.17 ST[17] test .. 318

6.18 ST[18] on-board control procedure ... 321

6.19 ST[19] event-action ... 342

6.20 ST[20] parameter management .. 352

6.21 ST[21] request sequencing ... 358

6.22 ST[22] position-based scheduling ... 369

6.23 ST[23] file management .. 403

7 Space to ground interface requirements .. 425

7.1 Introduction ... 425

7.2 Convention ... 427

7.3 Packet field type code ... 428

7.4 The CCSDS Space Packet ... 438

8 Service type interface requirements ... 445

8.1 ST[01] request verification .. 445

8.2 ST[02] device access .. 451

8.3 ST[03] housekeeping .. 456

8.4 ST[04] parameter statistics reporting .. 473

8.5 ST[05] event reporting .. 477

8.6 ST[06] memory management ... 481

8.7 ST[07] (reserved) .. 491

8.8 ST[08] function management .. 492

8.9 ST[09] time management .. 493

8.10 ST[10] (reserved) ... 495

8.11 ST[11] time-based scheduling .. 496

8.12 ST[12] on-board monitoring .. 508

8.13 ST[13] large packet transfer .. 526

8.14 ST[14] real-time forwarding control ... 529

8.15 ST[15] on-board storage and retrieval ... 538

8.16 ST[16] (reserved) ... 557

8.17 ST[17] test .. 558

8.18 ST[18] on-board control procedure ... 560

5

ECSS-E-ST-70-41C
15 April 2016

8.19 ST[19] event-action ... 568

8.20 ST[20] on-board parameter management ... 573

8.21 ST[21] request sequencing ... 577

8.22 ST[22] position-based scheduling ... 583

8.23 ST[23] file management .. 596

9 Command Pulse Distribution Unit .. 606

9.1 Scope ... 606

9.2 System requirements .. 606

9.3 Interface requirements .. 608

Annex A (informative) IEEE and MIL-STD real formats 610

A.1 IEEE standard format ... 610

A.1.1 General ... 610

A.1.2 Single-precision .. 611

A.1.3 Double-precision ... 611

A.2 United States Air Force military standard format ... 613

A.2.1 General ... 613

A.2.2 Simple-precision ... 613

A.2.3 Extended ... 614

Annex B (informative) CRC and ISO checksum .. 615

B.1 The cyclic redundancy code (CRC) .. 615

B.1.1 General ... 615

B.1.2 Symbols and conventions ... 616

B.1.3 Encoding procedure .. 616

B.1.4 Decoding procedure .. 616

B.1.5 Verification of compliance ... 617

B.1.6 Software implementation ... 617

B.2 The ISO checksum ... 622

B.2.1 General ... 622

B.2.2 Symbols and conventions ... 623

B.2.3 Encoding procedure .. 623

B.2.4 Decoding procedure .. 624

B.2.5 Verification of compliance ... 624

B.2.6 Software implementation ... 624

Annex C (informative) Summary of requests and reports for PUS standard
services .. 628

C.1 Convention ... 628

6

ECSS-E-ST-70-41C
15 April 2016

C.2 Requests and reports ... 628

C.2.1 ST[01] request verification ... 628

C.2.2 ST[02] device access .. 629

C.2.3 ST[03] housekeeping .. 630

C.2.4 ST[04] parameter statistics reporting ... 633

C.2.5 ST[05] event reporting ... 633

C.2.6 ST[06] memory management .. 634

C.2.7 ST[07] (reserved) ... 636

C.2.8 ST[08] function management .. 636

C.2.9 ST[09] time management .. 636

C.2.10 ST[10] (reserved) ... 637

C.2.11 ST[11] time-based scheduling ... 637

C.2.12 ST[12] on-board monitoring ... 639

C.2.13 ST[13] large packet transfer .. 641

C.2.14 ST[14] real-time forwarding control ... 641

C.2.15 ST[15] on-board storage and retrieval ... 643

C.2.16 ST[16] (reserved) .. 645

C.2.17 ST[17] test .. 646

C.2.18 ST[18] on-board operations procedure .. 646

C.2.19 ST[19] event-action ... 648

C.2.20 ST[20] Parameter management .. 649

C.2.21 ST[21] request sequencing ... 649

C.2.22 ST[22] position-based scheduling ... 651

C.2.23 ST[23] file management .. 653

Annex D (informative) System and interface specification index 655

Bibliography ... 656

7

ECSS-E-ST-70-41C
15 April 2016

Introduction

 The CCSDS Space Packet Protocol (CCSDS 133.0-B-1) and the ECSS-E-ST-50
series of standards address the end-to-end transport of telemetry and
telecommand data between user applications on the ground and application
processes on-board the spacecraft, and the intermediate transfer of these data
through the different elements of the ground and space segments.

 This packet utilization standard (PUS) complements those standards by
defining the application-level interface between ground and space, in order to
satisfy the requirements of electrical integration and testing and flight
operations.

8

ECSS-E-ST-70-41C
15 April 2016

1
Scope

 This Standard addresses the utilization of telecommand packets and telemetry
packets for the purposes of remote monitoring and control of spacecraft
subsystems and payloads.

 This Standard does not address mission-specific payload data packets, but the
rules contained herein can be extended to suit the requirements of any mission.

 This Standard does not address audio and video data as they are not contained
within either telecommand or telemetry packets.

 This Standard defines a set of services that satisfy all the fundamental
operational requirements for spacecraft monitoring and control during
spacecraft integration, testing and flight operations, refer to ECSS-E-ST-70-11. It
also specifies the structure and contents of the telecommand packets used to
transport the requests and the telemetry packets used to transport the reports.

 This Standard can be used by any mission, no matter what its domain of
application, orbit or ground station coverage characteristics. However, it is not
the intention that the PUS should be applied in its entirety to a given mission.
The services defined in this Standard cover a wide spectrum of operational
scenarios and, for a given mission, only a subset of these services is likely to be
appropriate.

 Choices are made early in the design phase of a new mission resulting in the
need to tailor the PUS to suit the requirements of that mission. These choices
include:

• the on-board system design and architecture, in terms of the number of
on-board application processes, their on-board implementation (e.g. the
allocation to on-board processors) and their roles (i.e. which functions or
subsystems or payloads they support);

• which PUS services are supported by each application process.

 Each mission usually documents the results of this design and selection process
in a "Space-to-Ground Interface Control Document".

 Some missions implement a centralized architecture with a small number of
application processes, whilst others have a highly-distributed architecture
within which a correspondingly larger number of application processes are
distributed across several on-board processors.

 The specification of services in this Standard is adapted to the expectation that
different missions require different levels of complexity and capability from a
given service. To this end, all services are optional and a given service can be
implemented at one of several distinct levels, corresponding to the inclusion of

9

ECSS-E-ST-70-41C
15 April 2016

one or more capability sets. The minimum capability set corresponds to the
simplest possible level that also remains sensible and coherent. At least this set
is included in every implementation of a given service.

 The standardized PUS services fulfil the following criteria:

• Commonality: each standard service corresponds to a group of
capabilities applicable to many missions.

• Coherence: the capabilities provided by each standard service are closely
related and their scope is unambiguously specified. Each standard
service covers all the activities for managing inter-related state
information and all activities that use that state information.

• Self-containment: each standard service has minimum and well-defined
interactions with other services or on-board functions.

• Implementation independence: the standard services neither assume nor
exclude a particular spacecraft architecture (hardware or software).

 This Standard mainly addresses the requirements that apply to the spacecraft
and its components. The ground segment counterpart requirements related to
the testing or the operations of the spacecraft and its components can be
derived from these requirements and are not specified in this Standard.
Tailoring the PUS for a mission is mainly a task for the operations team and the
spacecraft manufacturer. This Standard assumes that the mission ground
segment used to test or operate the spacecraft implements all standardized
capabilities and as such, does not further constrain the mission tailoring process
of these capabilities.

 The PUS should be viewed as a "Menu" from which the applicable services and
service-levels are selected for a given mission. This selection process is repeated
for each on-board application process, since each application process is
designed to provide a specific set of tailored services.

 This standard may be tailored for the specific characteristics and constraints of a
space project in conformance with ECSS-S-ST-00.

 This Standard does not include any protection against inadequate operations.
This is considered mission specific.

10

ECSS-E-ST-70-41C
15 April 2016

2
Normative references

 The following normative documents contain provisions which, through
reference in this text, constitute provisions of this ECSS Standard. For dated
references, subsequent amendments to, or revision of any of these publications
do not apply. However, parties to agreements based on this ECSS Standard are
encouraged to investigate the possibility of applying the more recent editions of
the normative documents indicated below. For undated references, the latest
edition of the publication referred to applies.

ECSS-S-ST-00-01 ECSS system – Glossary of terms

ECSS-E-ST-70 Space engineering – Ground systems and operations

ECSS-E-ST-70-01 Space engineering – Spacecraft on-board control
procedures

ECSS-E-ST-70-11 Space engineering – Space segment operability

ECSS-E-ST-70-31 Space engineering – Ground systems and operations –
Monitoring and control data definition

CCSDS 133.0-B-1,
September 2003

Space Packet Protocol, Blue Book

CCSDS 301.0-B-4,
November 2010

Time Code Formats, Blue Book

11

ECSS-E-ST-70-41C
15 April 2016

3
Terms, definitions and abbreviated terms

3.1 Terms from other standards
a. For the purpose of this Standard, the terms and definitions from ECSS-S-

ST-00-01 apply, in particular for the following terms:

1. space system

2. space segment

3. spacecraft

4. ground segment

3.2 Terms specific to the present standard
3.2.1 acceptance notification

 notification that is generated by the acceptance and reporting subservice
provider of the application process that hosts the subservice provider in charge
of executing the related request

3.2.2 acceptance verification report
 report generated by the acceptance and reporting subservice provider as a

consequence of a request acceptance verification
NOTE The acceptance and reporting subservice for a

request is hosted by the application process that
hosts the subservice responsible for executing that
request. Each acceptance verification report is
reporting either the successful acceptance of a
request or the failed acceptance. In case of
successful acceptance, the request is sent to the
subservice provider in charge of its execution. In
case of failed acceptance, the request is rejected
and as such, not sent to any subservice provider.

3.2.3 application process
 element of the space system that can host one or more subservice entities

NOTE An application process resides either on-board or
on ground. An on-board application process
usually hosts some subservice providers but can

12

ECSS-E-ST-70-41C
15 April 2016

also host some subservice users. A ground
application process usually hosts some subservice
users. If a ground application process is remotely
controlled by the ground monitoring and control
system, that application process behaves as an on-
board application process and can host some
subservice providers.

3.2.4 capability
 functionality of a service or a subservice

NOTE A capability is specified by a set of operational
requirements for a function of the overall space
system that can be remotely controlled by the
ground monitoring and control system or by other
on-board applications. This Standard mainly
addresses these remote controlled related
requirements and especially those applicable to the
subservice providers.

3.2.5 data report
 report generated by a subservice provider as part of the subservice functionality

NOTE A data report can be generated in response to a
request or to an instruction to elicit some specific
service data. A data report can also be generated
autonomously, when reports are enabled by a
request, or as part of a continuous reporting
functionality.

3.2.6 event report
 report related to an occurrence of an event

NOTE Event reports are generated by the subservice
providers.

3.2.7 execution notification
 notification that is generated by the subservice provider in charge of execution

of the related instruction
NOTE An execution notification reports on the successful

or failed execution of an instruction. This Standard
does not specify how the notifications are
implemented on-board, nor how the subservice
providers in charge of their generation interact
with the subservice providers in charge of
generating the corresponding execution
verification reports.

3.2.8 execution verification report
 report generated by the execution reporting subservice provider of an

application process as a consequence of the reception of one or more execution
notifications

13

ECSS-E-ST-70-41C
15 April 2016

NOTE The execution reporting subservice for a request is
hosted by the application process that hosts the
subservice responsible for executing that request.
Each execution verification report is reporting
either a successful or a failed execution stage (start,
progress or completion) of a request.

3.2.9 instruction
 elementary constituent of a request that is generated by a subservice user for

execution by a subservice provider

3.2.10 message
 request or report

3.2.11 notification
 elementary constituent of a report than is generated by a subservice provider

for interpretation by a subservice user

3.2.12 object path
 combination of a repository path and a file name or directory name

3.2.13 on-board file system
 system used to control data organised in files

3.2.14 on-board memory
 logical memory space

NOTE The on-board memories can potentially be
managed by different on-board processors. The
mapping between the on-board memories and the
physical memories is out of the scope of this
Standard.

3.2.15 on-board parameter
 lowest level of elementary data item on-board

NOTE A parameter has a unique interpretation.

3.2.16 report
 message made of one or more notifications generated by a subservice provider

for interpretation by a subservice user
NOTE This Standard identifies three types of reports:

• verification reports,
• data reports, and
• event reports.

3.2.17 repository path
 logical path to where a file or a directory is located

NOTE A repository path can either represent a physical
path such as a directory path within a file system
or a logical path such as a mounted device (e.g.

14

ECSS-E-ST-70-41C
15 April 2016

"/mm1"pointing to a mass memory device), a
directory within a mounted device (e.g.
"/mm1/dir1").

3.2.18 request
 message consisting of one or more instructions generated by a subservice user

for execution by a subservice provider

3.2.19 routing notification
 notification that is generated by a routing and reporting subservice provider as

a consequence of a request routing verification

3.2.20 routing verification report
 report generated by a routing and reporting subservice provider as a

consequence of a request routing verification
NOTE The routing verification reports are generated by

the application processes that are involved in the
routing of a request between a subservice user and
a subservice provider. The routing and reporting
subservice generates a failed routing verification
report to inform a subservice user of the
impossibility of pursuing the routing of the
request, e.g. because of corruption of that request
during the routing.

3.2.21 service
 functional element of the space system that provides a number of closely-

related functions that can be remotely operated
NOTE Each service is composed of one or more

subservices, where each subservice involves a
subservice provider and one or more subservice
users. A subservice provider is in charge of
performing some space system functions. A
subservice user is in charge of issuing requests for
the execution of those functions and of processing
the resulting feedback.

3.2.22 subservice
 elementary constituent of a service composed of exactly one subservice

provider and the related subservice users that are interacting through dedicated
sets of messages

3.2.23 subservice entity
 operational element of a subservice hosted by an application process that acts as

subservice user or subservice provider

3.2.24 subservice provider
 operational element of a subservice that is in charge of execution of the

subservice requests and generation of the subservice reports

15

ECSS-E-ST-70-41C
15 April 2016

3.2.25 subservice user
 operational element of a subservice that is in charge of initiating the subservice

requests and processing the subservice reports

3.2.26 transaction
 set of messages related to the execution of exactly one capability which are

exchanged between a subservice user and a subservice provider
NOTE The different types of transactions defined in this

Standard are:
• request related transaction,
• autonomous data reporting transaction, and
• event reporting transaction.

3.2.27 verification report
 routing, acceptance or execution verification report

3.3 Abbreviated terms
 For the purpose of this Standard, the abbreviated terms from ECSS-S-ST-00-01

and the following apply:

Abbreviation Meaning
ANSI American National Standards Institute
AOCS attitude and orbit control subsystem
APID application process identifier
ASCII American standard code for information interchange
CCSDS Consultative Committee for Space Data Systems
CDS CCSDS day segmented
CPDU command pulse distribution unit
CRC cyclic redundancy code
CUC CCSDS unsegmented code
ESA European Space Agency
FDIR fault, diagnostic, isolation and recovery
FMON functional monitoring
GPS global positioning system
ID identifier
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
LSB less significant bit
MAP multiplexer access point
MIL-STD United States military standard
MSB most significant bit
OBCP on-board control procedure
PCS packet check sequence

16

ECSS-E-ST-70-41C
15 April 2016

Abbreviation Meaning
PFC packet field format code
PMON parameter monitoring
PTC packet field type code
PUS packet utilization standard
RAM random access memory
ST service type
TAI international atomic time
TC telecommand
TM telemetry
UTC coordinated universal time

3.4 Nomenclature
The following nomenclature applies throughout this document:

a. The word “shall” is used in this Standard to express requirements. All
the requirements are expressed with the word “shall”.

b. The word “should” is used in this Standard to express recommendations.
All the recommendations are expressed with the word “should”.

NOTE It is expected that, during tailoring,
recommendations in this document are either
converted into requirements or tailored out.

c. The words “may” and “need not” are used in this Standard to express
positive and negative permissions, respectively. All the positive
permissions are expressed with the word “may”. All the negative
permissions are expressed with the words “need not”.

d. The word “can” is used in this Standard to express capabilities or
possibilities, and therefore, if not accompanied by one of the previous
words, it implies descriptive text.

NOTE In ECSS “may” and “can” have completely
different meanings: “may” is normative
(permission), and “can” is descriptive.

e. The present and past tenses are used in this Standard to express
statements of fact, and therefore they imply descriptive text.

17

ECSS-E-ST-70-41C
15 April 2016

4
Context and background

4.1 Introduction
 This Standard addresses the need to standardize the way the space system

functions are defined when involved in an interaction between space and
ground.

 This Standard introduces the concept of PUS services, consisting of PUS
subservices. The services and subservices formalise the closely related and self-
contained set of space system functions and all related entities and interaction
artifacts.

 Each PUS subservice is composed of PUS subservice entities, each one playing
either the role of a subservice provider or the role of a subservice user. Each
PUS subservice entity is hosted by an application process on-board or on-
ground.

 As depicted in Figure 4-1, it is usually understood that the on-board application
processes host the subservice providers and the ground application processes
the subservice users but this standard does not constrain those relationships.
For example, a ground equipment can host some subservice providers so that
the equipment can be remotely controlled by a mission control centre, a
payload can host some subservice users for controlling solid-state mass
memories (e.g. using file management subservices).

 No particular topography is assumed in this Standard for how application
processes and hosted PUS subservice entities are implemented or distributed,
neither is any topography precluded. Thus:

• for a given mission, there can be any number of on-board application
processes (with a minimum of one), each one hosting any number of PUS
subservice entities (with a constraint that a given application process can
only host a single subservice entity provider of a given type of
subservice);

• there are no restrictions on the mapping between application processes
and the usual functional subdivision of a spacecraft into subsystems and
payloads (at one extreme, with a simple spacecraft topology, there can be
a single application process within a centralized data management
system which hosts PUS services for all the other platform subsystems
and payloads; at the other extreme, intelligent subsystems and payloads
can each be served by their own independent application processes and
PUS services);

18

ECSS-E-ST-70-41C
15 April 2016

• an application process can be implemented in software, firmware or
hardware;

• an on-board computer can host one or more application processes or an
application process can be distributed across two or more on-board
computers.

Figure 4-1 The space to ground PUS service system context

 The information exchanged between a subservice user and subservice provider
is termed a "message". A message is transmitted semantically unchanged by the
transmission protocol that connects the subservice users and subservice
providers.

 A message sent by a subservice user to a subservice provider, to invoke the
execution of on-board activities, is termed a "request". Each request contains
one or more instructions, one for each activity to execute. A message sent by a
subservice provider to a subservice user is termed a "report". Each report
contains one or more notifications.

 Three distinct categories of report are distinguished:

a. the verification reports, which report on the routing, acceptance, start,
progress and completion of the request execution;

b. the data reports, which are generated:

1. on request, as one or multiple responses to the instructions of a
request to elicit some specific service data,

2. autonomously as one or multiple reports activated by a request or,
routinely, i.e. as part of a continuous reporting functionality;

c. the event reports, which carry information related to the occurrences of the
events detected by a service.

19

ECSS-E-ST-70-41C
15 April 2016

 The request carries information used by the subservice provider to identify the
subservice user that issued that request. This is especially interesting if several
subservice users can send requests to a given subservice provider. It provides
the means to the subservice provider to route the related verification reports
and on-request data reports back to the subservice user who invoked the
activity.

 The routing of the autonomous data reports and of the event reports is either
known implicitly (by design) or explicitly (e.g. by using an on-board routing
table).

 When messages (requests and reports) are exchanged between ground and
space, they are encapsulated into CCSDS space packets, refer to clause 7.4.

 Figure 4-2 provides an example of how PUS services can be deployed on-
ground and on-board a spacecraft and how commanding with this Standard is
understood.

Figure 4-2 A PUS utilization example
 The mechanisms which on-board application processes use to communicate

with each other and with other on-board entities are implementation-
dependent. Historically, spacecraft on-board interfaces have been specified and
implemented on a project-by-project basis and any reuse of interfaces has
usually been a by-product of reuse of existing spacecraft busses. While it is true
that there are a limited number of physical interfaces available for use on-board
a spacecraft, the services and access to these interfaces vary considerably
between implementations. This Standard does not specify how requests,
instructions, reports and notifications are implemented on-board or on-ground.
It also does not specify who is in charge of encoding and decoding the
telemetry and the telecommand packets.

20

ECSS-E-ST-70-41C
15 April 2016

4.2 Modelling the PUS

4.2.1 General
 The overall PUS concept addressed in this Standard adopts a multi-layer

modelling approach. The resulting model formalises the foundations of the PUS
entities, in terms of system and interface requirements, together with their
instantiation in space and on ground. Requirements can be applied as is or
tailored for mission specific needs.

 The multi-layer model, depicted in Figure 4-3 consists of:

• the PUS foundation model,

• the standard service type model,

• the mission-specific service type model, and

• the space system service model.

Figure 4-3 The PUS model
 Central to the modelling approach is the concept of a service type, which is a

container for all requirements related to an interaction between space, and
ground capability dedicated to the fulfilment a service objective.

 The system requirements, specified in clause 6, define the semantics of each
service type including:

• the service type concept and related architecture;

• the message type concept and related architecture;

• the overall service type topology, focusing on the message exchange
between the subservice users and the subservice providers.

 The interface requirements define the layout and the format (i.e. the syntax) of
the interaction protocol used between ground and space service entities. The
interface requirements in clauses 7 and 8, specify:

• how requests are transported within PUS telecommand packets
compliant with the CCSDS Space Packet Protocol;

• how reports are transported within PUS telemetry packets compliant
with the CCSDS Space Packet Protocol.

21

ECSS-E-ST-70-41C
15 April 2016

4.2.2 The PUS foundation model
 The PUS foundation model defines the PUS generic concepts, related terms and

definitions and the business rules that:

• have been used by the authors of this Standard for producing the
Standard service type model,

• apply to each mission that applies this Standard and define a level of
tailoring of the service type model, and

• apply to the architects of the mission-specific space system (i.e. both the
space segment and the ground segment) who develop and instantiate the
tailored service type model for the mission.

 The PUS foundation model addresses a generic and abstract definition of the
PUS service type model that applies to each service type whether it is
standardized or mission-specific.

 The PUS foundation model contains the generic rules that apply to each mission
that tailors this Standard:

• when creating mission-specific subservice types within a standardized
service type;

• when adding mission-specific service type capabilities and related
message types to standardized service types and subservice types;

• when creating mission-specific service types with associated subservice
types, service type capabilities and related message types.

 The PUS foundation model also contains the generic rules that apply to each
implementation of a service type.

 The PUS foundation model is specified in clause 5.

4.2.3 The service type model

4.2.3.1 Introduction
 The PUS service type model includes:

• the standardized service types as specified in this Standard, and

• mission-specific extensions in terms of:
− add-ons to the standard service types,
− mission-specific service types.

4.2.3.2 Standard service types
 This Standard contains the specification of a set of standard PUS service types.

The choice of which service types are used by a new mission depends on the
mission requirements. All service types are optional and a given service type
can be implemented at any of several distinct levels and its parameters and
functions can be tailored.

 The standard service types are listed in Table 4-1. They include:

• service types that provide basic functions such as collecting parameter
statistics.

22

ECSS-E-ST-70-41C
15 April 2016

• service types that hold requests and release them to another service as
appropriate. The time-based scheduling, the position-based scheduling
and the event-action service types are examples of service types that hold
and release requests following the occurrences of specified events.

• service types that provide standardized interfaces, for example to on-
board devices, to an OBCP (on-board control procedure) engine or to an
on-board file handling system.

 The requirements specification of each of the standard service types consists of
two parts:

• a system requirements specification contained in clause 6 that defines the
actions of the service, including its behaviour when it receives a request.
The system specification is concerned with the semantics of the requests
and reports.

• an interface requirements specification contained in clause 8 that defines
the syntax of the requests and reports for a service type. The fields in a
request or report are defined using the standard PUS field types specified
in clause 7.3.

Table 4-1: The standardized service types
service type

name ID
request verification 1

device access 2
housekeeping 3

parameter statistics reporting 4

event reporting 5
memory management 6

(reserved) 7

function management 8

time management 9
(reserved) 10

time-based scheduling 11

on-board monitoring 12
large packet transfer 13

real-time forwarding control 14
on-board storage and retrieval 15

(reserved) 16

test 17
on-board control procedure 18

event-action 19
parameter management 20

request sequencing 21
position-based scheduling 22

file management 23

Note: The reserved service type identifiers were used in previous
versions of this Standard. This Standard no longer promotes the use
of these service types but does not preclude that existing
implementations are reused for new missions.

23

ECSS-E-ST-70-41C
15 April 2016

4.2.3.3 Mission-specific service types
 When applying the PUS Standard, a mission instantiates this Standard by

tailoring it for their needs. That instantiation results in a mission-specific packet
utilization definition document that is rendered applicable to all partners
involved in that mission.

 The mission-specific packet utilization definition document contains the
mission-specific service type model that includes:

• all PUS standardized service types considered suitable for use by that
mission, each one tailored according to the mission needs,

• all mission-specific additional service types.

4.2.4 The space system service model
 The space system service model results from the deployment of the service type

model for a given mission, i.e. resulting from the space system architecture of
that mission.

 The space system service model contains the service topology in terms of:

• the instances of the service types and related hosting application
processes, and

• for each instance, its full specification resulting from the tailoring of the
related service type.

 Deploying the space system service model implies for each on-board
application process, selecting the services and related subservice providers to
be hosted by that application process. This Standard specifies the following
interdependencies between services:

• the request verification service is accessible to any other service within
the same application process;

• the event reporting service and the large packet transfer service are
accessible to any other service;

• the on-board monitoring service and the event-action service require the
presence of an event reporting service;

• if an on-board control procedure service supports the capability for
configuring the OBCP execution observability level, then that service
requires the presence of an event-reporting service, refer to clause
6.18.4.8.

24

ECSS-E-ST-70-41C
15 April 2016

5
The PUS foundation model

5.1 Introduction
 The PUS foundation model specifies a generic service and service type model in

the form of a set of generic concepts with the associated business rules. The PUS
foundation model provides rules that are applicable to any service type, i.e.
standardized or mission-specific and any of their instances (i.e. the services).

 As any service type definition relies on the PUS foundation model, the
architectural consistency of each service type is ensured.

 The PUS foundation model defines generic concepts and associated
requirements related to two levels of abstractions, i.e.:

• The generic service type abstraction level, which specifies the set of generic
object types and business rules that are required for ensuring the overall
consistency of the service type model. This abstraction level includes all
generic object types used to produce, by specialization, the standardized
and the mission specific service types.

• The generic service deployment abstraction level, which specifies the set of
generic object types and business rules that are required to capture the
space system service model. This abstraction level includes all generic
object types used to capture, by instantiation, the space system services
resulting from the space system overall architecture.

 The generic service type abstraction level specifies:

• the service type, the subservice type and the capability type;

• the subservice provider, the subservice user;

• the message type, i.e.:
− the request type and the instruction type,
− the report type and the notification type;

• the transaction type and its type-dependent definitions, i.e.:
− for a request related transaction:

◊ the request type,
◊ the associated execution notification type, and
◊ if some service data are generated in response to such a

request, the related data report type;
− for an autonomous data reporting transaction, the data report type;
− for an event reporting transaction, the event report type.

25

ECSS-E-ST-70-41C
15 April 2016

 The generic service deployment abstraction level specifies:

• the system context of the service, in terms of the involved system objects
of relevance to the service functionality, e.g. the space segment, the
ground segment, the application process, the on-board parameter, the on-
board memory;

• the service, the subservice and the capability exposed by the subservice;

• the message, i.e.:
− the request, the instruction slot and the instruction,
− the report, the notification slot and the notification;

• the transaction.

5.2 Convention
 This Standard uses two types of identification mechanisms:

• names for human communication, and

• identifiers for communicating with the spacecraft.

 Names and identifiers are always unique in a given context.

 The wider context that is considered by this Standard is the (single) spacecraft.
This means that, for this Standard, when a name or an identifier is declared as
unique within a given context, that context is implicitly understood as a context
within the spacecraft.

5.3 The generic service type abstraction level

5.3.1 General
a. Each service type shall be uniquely identified by exactly one service type

name.

b. Each service type shall be uniquely identified by exactly one service type
identifier that is an unsigned integer greater than or equal to 1, and less
than or equal to 255.

NOTE The service type identifiers are used in the
telemetry packet secondary header (refer to clause
7.4.3.1) and in the telecommand packet secondary
header (refer to clause 7.4.4.1), together with a
message subtype identifier to uniquely identify a
message type.

c. Each standard service type shall have a service type identifier less than or
equal to 127.

NOTE The standard service types are specified in the
different versions of this Standard. When mission
specific functionalities, identified by a mission
specific service type, are considered adequate for

26

ECSS-E-ST-70-41C
15 April 2016

being standardized, a new standard service type is
created. When a standard service type is no longer
considered adequate for remaining a standard,
that service type is removed from the Standard; its
service type identifier is not reused.

d. Each mission specific service type shall be associated with a service type
identifier greater than or equal to 128.

5.3.2 Subservice type
a. Each service type shall define at least one subservice type.

NOTE This Standard introduces the concept of
subservices that group and isolate the functions of
a service.

b. Each subservice type shall be defined by exactly one service type.

c. Each subservice type shall be uniquely identified by exactly one
subservice type name.

d. For each subservice type, whether the realization of that subservice type
is implicitly required for each realization of the service type or required
by tailoring shall be declared when specifying that subservice type.

NOTE 1 An example of a subservice type that is implicitly
required is the "parameter monitoring" subservice
type. Each realization of the "on-board monitoring"
service type is implicitly required to include a
realization of that subservice type, refer to
requirement 6.12.2.1.1a and clause 6.12.3.

NOTE 2 An example of a subservice type that is required
by tailoring is the "functional monitoring
subservice", refer to requirement 6.12.2.1.2a and
clause 6.12.4.

e. For each subservice type, whether multiple realizations of that subservice
type are allowed within a single service shall be declared when
specifying that subservice type.

NOTE An example of a subservice type where multiple
realizations are allowed within a single service is
the "packet selection" subservice type, refer to
requirement 6.15.2.1.2a and clause 6.15.4.

f. For each subservice type, the observables shall be declared when
specifying that subservice type.

NOTE These observables are on-board parameters that
are provided by the related subservice, refer for
example to the observables of the parameter
monitoring subservice in clause 6.12.3.13.

27

ECSS-E-ST-70-41C
15 April 2016

5.3.3 Message type

5.3.3.1 General
a. Each message type shall be uniquely identified by exactly one message

type name.

b. Each message type shall be uniquely identified by exactly one message
type identifier.

NOTE These identifiers are used in the telemetry packet
secondary header (refer to clause 7.4.3.1) and in
the telecommand packet secondary header (refer
to clause 7.4.4.1) to identify the type of messages
transported by these packets but also in specific
requests and reports, e.g. in the requests to add
report types to the application process forwarding
control table (refer to clause 6.14.3.4.1).

c. Each message type identifier shall be composed of:
1. the service type identifier of the service type that contains that

message type;
2. a message subtype identifier that uniquely identifies that message

type within that service type.

d. Each message subtype identifier shall be an unsigned integer greater than
or equal to 1, and less than or equal to 255.

e. Each standard message type identifier shall have a message subtype
identifier less than or equal to 127.

NOTE The standard message type identifiers are the
identifiers specified in this Standard.

f. Each mission specific message type that belongs to a standard service
type shall have a service subtype identifier greater than or equal to 128.

g. Each message type shall either be:
1. a request type, or
2. a report type.

NOTE 1 For item 1, refer to clause 5.3.5.2.
NOTE 2 For item 2, refer to clause 5.3.3.3.

5.3.3.2 Request type
a. Each request type shall define one or more instruction types.

NOTE 1 An example of a request type that defines exactly
one instruction type is the "modify parameter
monitoring definitions" request type specified in
clause 6.12.3.9.4. The single related instruction type
is the "modify a parameter monitoring definition"
instruction type specified in requirement
6.12.3.9.4c.

NOTE 2 An example of a request type that defines more
than one instruction type is the "report parameter

28

ECSS-E-ST-70-41C
15 April 2016

monitoring definitions" request type specified in
clause 6.12.3.10. The related instruction types are
specified in requirement 6.12.3.10b, i.e.:
• the "report a parameter monitoring definition"

instruction type,
• the "report all parameter monitoring

definitions" instruction type.
NOTE 3 The decision to link several instruction types to the

same request type instead of having a request type
for each instruction type is an operational issue.
For example, if an instruction type acts on one
instance of a system object and another instruction
type on all instances of that system object, if the
operational criticality of the "one" instruction
differs from the operational criticality of the "all"
instruction, this Standard recommends to define
two request types.

b. Each instruction type shall be defined for exactly one request type.

c. Each instruction type shall be uniquely identified by exactly one
instruction type name.

d. For each request type and for each instruction type of that request type,
whether that request type provides a single instruction slot or multiple
instruction slots for that instruction type shall be declared when
specifying that request type.

NOTE For some instruction types, it make sense to allow
multiple instructions in a request and, for others, it
does not. Although an instruction type offers the
possibility to have multiple instructions of that
type inside a single request, that multiple
instructions capability is a decision taken at
request type level.
An example of an instruction type that offers the
possibility to have multiple instructions inside a
single request is the "report a parameter
monitoring definition" instruction type specified in
requirement 6.12.3.10b for which the request to
"report parameter monitoring definitions" defined
in clause 6.12.3.10 provide the capability to have
multiple instructions inside a single request.
An example of an instruction type for which it
does not make sense to allow multiple instructions
in a request is the "report all parameter monitoring
definition" instruction type also specified in
requirement 6.12.3.10b.

29

ECSS-E-ST-70-41C
15 April 2016

e. For each request type that contains several instruction types, the allowed
combinations of instruction types that can be used in a request of that
request type shall be declared when specifying that request type.

NOTE An allowed combination of instruction types
means that the realizations of two or more of those
instruction types can be merged in a single request
of the corresponding request type, see for example
the add report types to the application process
storage-control configuration specified in clause
6.15.4.4.1.

f. For each instruction type, the instruction arguments used by that
instruction type, their definition and their ordering within the instruction
type shall be declared when specifying that instruction type.

g. For each request type that provides multiple instruction slots, if that
request type constrains the scope of the instructions that can be issued
within a request of that type, the argument or set of arguments of the
related instruction types that define that scope shall be grouped together
in the definition of the request type.

NOTE This requirement avoids constructing and issuing
a request with multiple times the same instruction
argument value or set of argument values. For
example, the request type to time-shift scheduled
activities identified by request identifier has a
time-offset argument that precedes the instruction
slots. That time offset applies to each instruction in
the request (as specified in clause 6.11.9.3).

h. For each request type, the definition of the request arguments provided
by that request type, their definition and their ordering within the
request type shall be declared when specifying that request type.

NOTE A request type argument can be an instruction
type argument (or set of instruction type
arguments) as specified in requirement 5.3.3.2g, or
a directive argument (or set of directive
arguments) specifying, for example,
• an on-board condition to allow executing the

instructions of the requests of that type,
• a mode to set (e.g. the configuration execution

flag of the request to apply parameter
functional reporting configurations, refer to
clause 6.3.5.3).

5.3.3.3 Report type
a. Each report type shall either be:

1. a data report type,
2. a verification report type, or
3. an event report type.

30

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 For item 1, an example of a data report type is the
housekeeping parameter report type specified in
clause 6.3.3.3.

NOTE 2 For item 2:
• the verification report types are those specified

in clause 6.1, i.e. the request verification service
type.

• the verification reports are used in the request
related transactions, refer to clause 5.3.5.2.

NOTE 3 For item 3, the event report types are those
specified in clause 6.5.4, see also clause 5.3.5.4.

b. Each report type shall define exactly one notification type.
NOTE If a report type is associated to a request related

transaction type (i.e. that report type is a response
type) and associated to an autonomous data
reporting transaction type (i.e. that report type is
also an autonomous data report type), the same
notification type is used for both transaction types.

c. Each notification type shall be defined for exactly one report type.

d. Each notification type shall be uniquely identified by exactly one
notification type name.

e. For each report type and for each notification type of that report type,
whether that report type provides a single notification slot or multiple
notification slots for that notification type shall be declared when
specifying that report type.

NOTE For some notification types, it makes sense to
allow multiple notifications in a report. For others,
it does not. Although a notification type offers the
possibility to have multiple notifications of that
type inside a single report, that multiple
notifications capability is a decision taken at report
type level.
An example of a notification type that offers the
possibility to have multiple notifications inside a
single report but for which it is explicitly required
to have only one notification per report is the
housekeeping parameter report structure report
specified in clause 6.3.3.6.

31

ECSS-E-ST-70-41C
15 April 2016

5.3.4 Capability type
a. Each subservice type shall define at least one capability type.

NOTE Each capability type defines one or more interrelated
functions of the subservice type. A capability type can
represent:
• a single function, e.g. for "the capability to

distribute on/off device commands" specified in
clause 6.2.4.2;

• a set of two or more exclusive-or related
functions, e.g. for the exclusive-or constraint to
use either the CUC format or the CSD format
(but not both) when reporting the on-board
time, refer to requirement 6.9.4.1a;

• a set of two or more inclusive-or related
functions, e.g. for the inclusive-or constraint to
provide at least one means to load OBCPs, refer
to requirement 6.18.4.4.1a;

• a set of interrelated functions, e.g. for the
capability to enable and disable the scrubbing
of a memory specified in clause 6.6.6.1.4 and
6.6.6.1.5 whereas the decision to provide the
capability to enable the scrubbing of a memory
implies to provide the capability to disable the
scrubbing of a memory (refer to requirement
6.6.6.1.5a).

b. For each capability type defined by a subservice type, the applicability
constraints of that capability type shall be declared when specifying that
subservice type.

NOTE The applicability constraint of each standardized
capability type is specified in clause 6 (see also
Annex C). For example:
• a "minimum" applicability constraint means

that each related subservice provides that
capability (see for example Table C-1);

• a "by declaration" applicability constraint
means that for each related subservice, whether
that capability is provided by that subservice is
a decision to take when specifying that
subservice (See for example requirement
6.3.3.4.1a);

• an "implied by another capability type"
applicability constraint means that if a
subservice provides that other capability then
that subservice also provides that implied
capability (see for example requirement
6.3.3.4.2a);

• a "by declaration and only if another capability
type is provided" applicability constraint means

32

ECSS-E-ST-70-41C
15 April 2016

that the decision to include that capability
depends on the decision taken for that
subservice to provide that other capability (see
for example requirement 6.2.5.3a and the
associated note).

Applicability constraints can also be defined for a
set of capability types. For example:
• an exclusive-or applicability constraint means

that a subservice can provide at most one of the
related capabilities (see for example
requirement 6.9.4.1a);

• an inclusive-or applicability constraint means
that a subservice provides at least one of the
related capabilities (see for example
requirement 6.2.3a).

5.3.5 Transaction type

5.3.5.1 General
a. Each transaction type shall be defined by exactly one capability type.

b. Each transaction type shall either be:
1. a request related transaction type,
2. an autonomous data reporting transaction type, or
3. an event reporting transaction type.

NOTE 1 For item 1, refer to clause 5.3.5.2.
NOTE 2 For item 2, refer to clause 5.3.5.3.
NOTE 3 For item 3, refer to clause 5.3.5.4.

5.3.5.2 Request related transaction type

5.3.5.2.1 General

a. Each request related transaction type shall involve exactly one request
type.

NOTE The verification report types introduced in clause
5.3.3.3 are involved in the request related
transaction types as a consequence of the execution
verification profile specified in clause 5.3.5.2.3.

b. Each request type shall be involved in exactly one request related
transaction type.

5.3.5.2.2 Response type

a. Each request type shall be linked to at most one data report type.
NOTE 1 An example of a request type that is linked to a

data report type is the "report parameter
monitoring definitions" request type. The linked
data report type, playing the role of the response

33

ECSS-E-ST-70-41C
15 April 2016

type, is the "parameter monitoring definition
report", refer to requirement 6.12.3.10a.

NOTE 2 As stated in requirement 5.3.3.3b, each data report
type defines exactly one notification type. The link
that exists between a request type and a report
type implies that each instruction type defined by
that request type is linked to the notification type
defined by that report type.

b. For each instruction type that is linked to a notification type, whether a
realization of that instruction type can cause the generation of multiple
notifications shall be declared when specifying that instruction type.

NOTE 1 An example of an instruction type whose
realization can cause the generation of multiple
notifications is the "report all parameter
monitoring definitions" instruction type, refer to
requirement 6.12.3.10h.

NOTE 2 An example of an instruction type whose
realization causes the generation of a single
notification is the "report a parameter monitoring
definition" instruction type, refer to requirement
6.12.3.10g.

5.3.5.2.3 Execution verification profile

a. For each request type, the pre-conditions to verify prior to starting the
execution of each request of that type shall be declared when specifying
that request type.

NOTE 1 An example of such a request-type-specific pre-
conditions is the existence of the parameter
functional reporting definition indicated by the
argument of the "add parameter report definitions
to a parameter functional reporting definition"
request type, refer to requirement 6.3.5.6.1c.1.

NOTE 2 This Standard does not list the checks to perform
to avoid the execution of a request that has no
effect if the absence of such check causes no
operational ambiguity. It is for the mission to
decide if and where to perform the checks, i.e. on-
board or on-ground

b. For each instruction type, the pre-conditions to verify prior to starting the
execution of each instruction of that type shall be declared when
specifying that instruction type.

NOTE An example of such instruction-specific pre-
conditions is the existence within the parameter
functional reporting definition of the parameter
report definition indicated by the instruction-
specific argument of the instruction to "add a
parameter report definition to a parameter
functional reporting definition", refer to
requirement 6.3.5.6.1f.1.

34

ECSS-E-ST-70-41C
15 April 2016

c. For each request type that provides a multiple instruction slots capability,
whether the subservice verifies the suitability of all instructions
contained within each request of that type before authorizing the start of
execution of that request shall be declared when specifying that request
type.

NOTE 1 This Standard applies the operational concept that
verifying on-board the suitability of all instructions
before authorizing the start of execution of a
request implies the failure of that start of execution
if not all instructions are suitable for execution.

NOTE 2 An example of a request type whose realizations
can only be executed if all their instructions are
suitable for execution is the request to "load raw
memory data areas", refer to requirement
6.6.3.3.2e.

NOTE 3 An example of a request type whose realizations
can be executed without ensuring that all their
instructions are suitable for execution is the
request to "enable parameter monitoring
definitions", refer to requirement 6.12.3.6.2d. The
instructions contained within such a request are by
nature independent.

d. For each instruction type, the conditions to verify during the execution of
each instruction of that type shall be declared when specifying that
instruction type.

e. For each instruction type, the post-conditions to verify at the end of the
execution of each instruction of that type shall be declared when
specifying that instruction type.

f. For each request type, the post-conditions to verify at the end of the
execution of each request of that type shall be declared when specifying
that request type.

g. For each request type, the execution verification profile used to report the
start, progress and completion of execution of each request of that type
shall be declared when specifying that request type.

NOTE The execution verification profile can include any
of the following:
• for each request-specific successful start of

execution condition to notify, a code value that
refers to that condition;

• for each request-specific failed start of
execution condition to notify, a failure notice
made of a code value that refers to that
condition together with any number of
associated parameters whose values are
reported to support the processing of that failed
execution notification;

35

ECSS-E-ST-70-41C
15 April 2016

• for each instruction-specific successful start of
execution condition to notify, a code value that
refers to that condition;

• for each instruction-specific failed start of
execution condition to notify, a failure notice
made of a code value that refers to that
condition together with any number of
associated parameters whose values are
reported to support the processing of that failed
execution notification;

• for each instruction-specific successful progress
of execution condition to notify, a code value
that refers to that condition;

• for each instruction-specific failed progress of
execution condition to notify, a failure notice
made of a code value that refers to that
condition together with any number of
associated parameters whose values are
reported to support the processing of that failed
execution notification;

• for each instruction-specific successful
completion of execution condition to notify, a
code value that refers to that condition;

• for each instruction-specific failed completion
of execution condition to notify, a failure notice
made of a code value that refers to that
condition together with any number of
associated parameters whose values are
reported to support the processing of that failed
execution notification;

• for each request-specific successful completion
of execution condition to notify, a code value
that refers to that condition;

• for each request-specific failed completion of
execution condition to notify, a failure notice
made of a code value that refers to that
condition together with any number of
associated parameters whose values are
reported to support the processing of that failed
execution notification.

h. Each progress of execution notification shall provide the means to
uniquely identify the instruction that progress of execution is notified.

NOTE This identification is used by the subservice user
that has initiated the execution of that instruction.

i. For each instruction type, the functionality that the subservice performs
when executing an instruction of that type shall be declared when
specifying that instruction type.

36

ECSS-E-ST-70-41C
15 April 2016

NOTE An example of such subservice functionality can
be found in 6.3.5.6.1i.

j. For each request type, the request-specific functionality that the
subservice performs when executing a request of that type shall be
declared when specifying that request type.

5.3.5.3 Autonomous data reporting transaction type
a. Each autonomous data reporting transaction type shall involve exactly

one data report type.
NOTE 1 Examples of autonomous data report types are:

• the housekeeping parameter report type (refer
to clause 6.3.3.3),

• the diagnostic parameter report type (refer to
clause 6.3.4.3),

• the check transition report type (refer to clause
6.12.3.7).

NOTE 2 It is noted that some data reports can be generated
autonomously but also in response to specific
requests. This is for example the case of the
housekeeping parameter reports that can be
generated periodically according to a collection
interval (refer to requirement 6.3.3.2c), but are also
generated as the response of a request to generate
a one shot report for housekeeping parameter
report structures (refer to clause 6.3.3.7).

b. Each data report type shall be involved in at most one autonomous data
reporting transaction type.

5.3.5.4 Event reporting transaction type
a. Each event reporting transaction type shall involve exactly one event

report type.
NOTE This Standard defines four types of event reports

according to the severity level of their associated
events:
• the informative event report type,
• the low severity event report type,
• the medium severity event report type, and
• the high severity event report type.
The message subtype identifier gives the severity
level of the event report types, refer to clause 6.5.4.
For example, all event reports for low severity
events have the same message type. i.e. the same
combination of service type identifier and message
subtype identifier. There is no means, at event
report type level, to identify the event that is
associated to the related event reports. For that

37

ECSS-E-ST-70-41C
15 April 2016

event association, this Standard defines the
concept of event definitions. Each event definition
is associated to a single event and a single event
report type. Each event definition is uniquely
identified by the combination of the application
process that generates the corresponding event
reports and an event definition identifier that is
unique within the context of that application
process (refer to clause 6.5.3).

b. Each event report type shall be involved in exactly one event reporting
transaction type.

5.3.6 Tailoring the generic service type
abstraction level

a. Tailoring the generic service type abstraction level shall consist of:
1. adding mission-specific service types;
2. adding mission-specific subservice types;
3. adding mission-specific capability types;
4. adding mission-specific message types.

NOTE Reducing the standardized functional capabilities
offered by the generic service type abstraction
level (i.e. clause 5.3) is not recommended since it
can negatively affect the reuse of existing elements
(hardware or software).

5.4 The generic service deployment abstraction level

5.4.1 Introduction
 The services are functional entities that involve both ground elements and on-

board elements.

 A service is composed of one or more subservices. Each subservice involves:

• one or more subservice users, each one hosted by an application process
that resides on-ground or on-board, and

• exactly one subservice provider that is usually hosted by an on-board
application process.

 The communication between the subservice entities (i.e. a subservice user and a
subservice provider) consists of exchanging messages between these entities.
When messages are exchanged between the ground segment and the space
segment, these messages are transported in CCSDS packets as specified in
clause 7.

38

ECSS-E-ST-70-41C
15 April 2016

5.4.2 Application process

5.4.2.1 General
a. Each application process shall either be:

1. an on-board application process, or
2. a ground application process.

b. Each application process that hosts at least one subservice provider shall
be identified by an application process identifier that is unique across the
system that hosts that subservice provider.

NOTE 1 This Standard acknowledges that the same
application process identifier can be used to
identify several application processes. This is for
example the case during the space system
development where different representations of a
given application process are used, e.g. a
simulated version of an application process used
for testing the ground segment but also during
operations, e.g. in case of cold redundancy.

NOTE 2 The system introduced in this requirement can be,
for example, the spacecraft that hosts the on-board
application process. The concept of system
identifier is also used in this Standard to uniquely
identify that system across the overall space
system. This Standard does not further elaborate
on this system concept and its identifier.

c. Each application process identifier shall be an unsigned integer that is
less than or equal to 2046.

NOTE 1 This application process identifier is used to
identify the on-board application process that is
the destination for a request and the source for a
report.

NOTE 2 The APID 2047 is reserved for idle packets. The
APID 0 is reserved for spacecraft time packets.
Other APID values are reserved, refer to the space
assigned numbers authority registry (see
bibliography).

d. Each application process that hosts at least one subservice user shall be
identified by an application process user identifier that is unique within
the context of the overall space system.

NOTE 1 The subservice users are in charge of issuing
requests and processing reports. As such, an
application process that can only receive reports
also has an application process user identifier.

NOTE 2 The application process user identifier is used:
• as "source identifier" for any request generated

by that application process (see also the source

39

ECSS-E-ST-70-41C
15 April 2016

ID field of the telecommand packet secondary
header specified in requirement 7.4.4.1b), and

• as "destination identifier" for any report whose
final destination is that application process (see
also the destination ID field of the telemetry
packet secondary header specified in
requirement 7.4.3.1b).

NOTE 3 This Standard acknowledges that the same
application process user identifier can be used to
identify several application processes, e.g. in case
of cold redundancy.

e. Each application process user identifier shall be an unsigned integer that
is greater than or equal to 0, and less than or equal to 65535.

f. For each report that it generates, each on-board application process shall
time tag that report using the on-board reference time.

g. For each application process, whether that application process time tags
the reports before collecting the values of the constituting parameters or
after shall be declared when specifying that application process.

NOTE When a report contains parameter values acquired
at different times (e.g. housekeeping reports with
multiple samples of the same parameter), the
acquisition time of each set of parameter values
can be deduced from the time tag of the report.

h. For each application process, whether that application process provides
the capability to report the status of the on-board time reference used
when time tagging reports shall be declared when specifying that
application process.

i. For each application process, whether that application process provides
the capability to count the type of generated messages per destination
and report the corresponding message type counter shall be declared
when specifying that application process.

j. Each application process that provides the capability to count the type of
generated messages per destination and report the corresponding
message type counter shall maintain, per destination, a counter for each
message type that it generates.

5.4.3 Interfaced system objects

5.4.3.1 Introduction
 Each service interacts with objects of the overall space system. These system

objects are either:

• defined within the scope of a service, or

• defined externally, e.g. an on-board memory that is defined at spacecraft
level and used by several services.

40

ECSS-E-ST-70-41C
15 April 2016

 The system objects that are defined within the scope of a service are maintained
by that service and their visibility is often limited to that service. They expose
properties that are used by the service to perform its functionality.

 The system objects that are externally defined have their own existence
independently of any service. They expose properties that are accessed by some
services for the purpose of e.g. performing the service functionality, monitoring
and controlling those system objects.

 The system objects introduced in this Standard are:

• the on-board parameters, refer to clause 5.4.3.2;

• the on-board memories, refer to clause 5.4.3.3;

• the virtual channels, refer to clause 5.4.3.4;

• the on-off devices, refer to clause 6.2.4;

• the registries, refer to clause 6.2.5;

• the CPDUs, refer to clause 6.2.6 and clause 9;

• the physical and the logical devices, refer to clause 6.2.7.1.1 and clause
6.2.7.2.1;

• the housekeeping parameter report structures, refer to clause 6.3.3.2;

• the diagnostic parameter report structures, refer to clause 6.3.4.2;

• the parameter functional reporting definitions, refer to clause 6.3.5.2;

• the event definitions, refer to clause 6.5.3;

• the functions, refer to clause 6.8.3.1;

• the time-based sub-schedules, refer to clause 6.11.5.1;

• the time-based scheduling groups, refer to clause 6.11.6.1;

• the parameter monitoring definitions, refer to clause 6.12.3.3;

• the functional monitoring definitions, refer to clause 6.12.4.2;

• the packet stores, refer to clause 6.15.3.1;

• the on-board control procedures, refer to clause 6.18.4.1;

• the request sequences, refer to clause 6.21.4;

• the position-based sub-schedules, refer to clause 6.22.7.1;

• the position-based scheduling groups, refer to clause 6.22.8.1;

• the on-board file systems, refer to clause 5.4.5.

5.4.3.2 On-board parameter
a. Each on-board parameter shall be identified by exactly one on-board

parameter identifier that is unique across the entire spacecraft.
NOTE 1 An on-board parameter represents e.g. a

measurement taken from an on-board sensor or a
software parameter held in memory.

NOTE 2 A service may need to acquire a reading of an on-
board parameter for the purposes of its routine

41

ECSS-E-ST-70-41C
15 April 2016

activity (for example, to monitor its value, to use
its value to determine the validity of another on-
board parameter, to use its value in a calculation
etc.).

NOTE 3 The "baseline" set of on-board parameters is
defined during the spacecraft design process.
However, the flexibility can also exist to define
new parameters in orbit or to change the definition
of an existing on-board parameter or to set the
value of an on-board parameter (refer to clause
6.20). This capability is of course restricted to
software parameters held in on-board memory and
the on-board software design can additionally
have built-in protections to ensure against the
overwriting of essential on-board parameters.

b. The set of on-board parameter minimum sampling intervals used to
access the on-board parameters shall be declared when specifying the
spacecraft architecture.

NOTE This Standard foresees that different spacecraft
subsystems may use different on-board parameter
minimum sampling intervals, e.g. the platform
uses a parameter minimum sampling interval of
125 ms but the payload uses an interval of 500 ms.

c. Each on-board parameter shall be associated to exactly one on-board
parameter minimum sampling interval.

NOTE 1 This on-board parameter minimum sampling
interval is used as the unit for expressing time
intervals used by the subservices that access the
on-board parameters, for example, the
housekeeping or monitoring services. refer also to
requirement 6.12.3.3f.

NOTE 2 This requirement does not imply that for each on-
board parameter, one can associate an on-board
parameter minimum sampling interval but that
such an interval is associated to a group of
parameters, e.g. all parameters of a platform, all
parameters of a payload.

d. All on-board parameters accessed by an application process shall be
associated to the same on-board parameter minimum sampling interval.

5.4.3.3 On-board memory

5.4.3.3.1 General

a. Each on-board memory shall be identified by exactly one on-board
memory identifier.

NOTE 1 The on-board memory concept introduced in this
Standard is for logical memories, i.e. any logical
memory space, potentially managed by different

42

ECSS-E-ST-70-41C
15 April 2016

on-board processors. The mapping with physical
memories is out of the scope of this Standard.

NOTE 2 Each physical memory is associated to a memory
smallest addressable unit that specifies the
minimum number of bytes that can be addressed.
Each logical memory, identified by the memory
identifier, is associated to a memory access
alignment constraint that specifies the minimum
number of bytes used by the services to address
the corresponding physical memory.

NOTE 3 This Standard does not preclude that the same
memory identifier is used by several on-board
memories provided that they cannot be accessed at
the same time, e.g. in the case of memory cold
redundancy.

NOTE 4 Access to a given memory can be by either
absolute addressing or relative addressing. For
relative addressing, a base address (either an
explicit address or a symbolic address, such as a
table name) and an offset from this base address
are specified.

b. At any time, each on-board memory identifier shall uniquely identify
exactly one on-board memory that is unique across the entire spacecraft.

c. For each on-board memory, the following characteristics of that memory
shall be declared when specifying that memory:
1. the memory access alignment constraint;
2. the memory size, in bytes;
3. the allowed operations;
4. the addressing scheme.

NOTE For item 4, refer to clause 5.4.3.3.2.

d. When declaring the characteristics of an on-board memory, the allowed
operations shall be one of the following:
1. "read only";
2. "read and write";
3. "write only".

e. For each on-board memory, whether scrubbing that memory is
supported shall be declared when specifying that memory.

f. For each on-board memory, whether write protecting that memory is
supported shall be declared when specifying that memory.

5.4.3.3.2 Addressing scheme

a. For each on-board memory, whether an absolute addressing scheme for
that memory is exposed in the space to ground interface shall be declared
when specifying that memory.

b. Absolute addressing implies that the memory addresses and related
offsets shall be expressed in bytes.

43

ECSS-E-ST-70-41C
15 April 2016

c. For each on-board memory, whether a base plus offset addressing
scheme for that memory is exposed in the space to ground interface shall
be declared when specifying that memory.

NOTE Base plus offset addressing means that the
memory addresses are byte offsets from a base
reference. A base reference gives (explicitly or
implicitly) the address within the memory which
is used as the byte-zero reference for the offset.
The base reference can itself be an absolute
address or a symbolic address e.g. the name of a
table, a parameter set or a file whose absolute
address is implicitly known on-board.

d. Base plus offset addressing implies that the base references when
expressed as an absolute address and related offsets shall be expressed in
bytes.

NOTE Base plus offset addressing implies that the byte
offsets are offsets from the first byte of the
referenced area within the object referenced by the
base independently of the actual physical storage
within the memory used to store the related data.

5.4.3.4 Virtual channel
a. The list of virtual channels defined for downlinking reports and their

characteristics shall be declared when specifying the space to ground
interface.

NOTE For the virtual channel, refer to ECSS-E-ST-50-03.
See also clause 7.1.2.2.

b. For each virtual channel defined for downlinking reports, the virtual
channel identifier used to refer to that virtual channel shall be declared
when specifying that virtual channel.

5.4.4 Checksum algorithm
a. For each checksum algorithm used on-board, the list of subservice

providers that use that checksum algorithm shall be declared when
specifying the spacecraft architecture.

NOTE 1 This requirement is justified by the system need to
ensure that all subservice providers that provide
means to checksum a specific data object use the
same checksum algorithm. For example, if a file
contains an OBCP that can be checksummed by the
OBCP service and that file is also managed by a
memory service, the same checksum algorithm is
used by both services.

NOTE 2 The checksum algorithm implies the type of
checksum i.e. ISO or CRC, and the size of the
checksum.

44

ECSS-E-ST-70-41C
15 April 2016

NOTE 3 The checksum algorithm to use to checksum all
telemetry packets and the checksum algorithm to
use for all telecommand packets are specified in
requirements 7.4.3.2e and 7.4.4.2d.

5.4.5 On-board file system
a. Each on-board file system shall be identified by exactly one on-board file

system identifier that is unique across the entire spacecraft.
NOTE For the on-board file system, refer also to clause

6.23.

b. Each object in an on-board file system shall be uniquely identified by an
object path that is the combination of a repository path and an object
name.

NOTE The term object refers to a file or to a directory.

c. For each on-board file system, whether that file system supports files
with unbounded size shall be declared when specifying that file system.

NOTE A file of unbounded size means that the file is only
limited by the actual available physical memory
size.

d. The set of file attributes supported by each on-board file system shall be
declared when specifying that file system.

NOTE For example, the file type, its creation date.

e. For each on-board file system, whether that file system provides the
capability to lock files shall be declared when specifying file system.

f. An on-board file system shall not be accessed by more than one file
management service.

5.4.6 Service
a. Each service shall be of exactly one service type.

b. For each subservice type whose realization is implicitly required, each
service of the related service type shall provide at least one subservice of
that subservice type.

NOTE An example of a subservice type whose realization
is implicitly required is the parameter monitoring
subservice type of the on-board monitoring service
type, refer to requirement 6.12.2.1.1a.

c. For each subservice type whose realization is required by tailoring and
for each service of the service type that defines that subservice type,
whether the realization of that subservice type is required for that service
shall be declared when specifying that service.

NOTE An example of a subservice type whose realization
is required by tailoring is the functional
monitoring subservice type of the on-board

45

ECSS-E-ST-70-41C
15 April 2016

monitoring service type, refer to requirement
6.12.2.1.2a.

d. For each subservice type that allows multiple realizations within a single
service, each realization of that subservice type shall be declared when
specifying that service.

NOTE An example of a subservice type that allows
multiple realizations within a single service is the
packet selection subservice type of the on-board
storage and retrieval service type, refer to
requirement 6.15.2.1.2a.

e. The service topology of the overall space system shall be declared when
specifying the space system architecture.

NOTE The service topology includes:
• the list of subservices provided by each service,
• the on-board service topology, i.e. for each

service, the subservice provider of each related
subservice and the on-board subservice users, if
any, of each subservice, and

• the ground service topology, i.e. for each
service, the subservice users of each related
subservice.

5.4.7 Subservice

5.4.7.1 General
a. Each subservice shall be of exactly one subservice type.

b. Each subservice shall belong to exactly one service.
NOTE The type of a subservice is one of the subservice

types defined for the related service type.

5.4.7.2 Subservice entity

5.4.7.2.1 General

a. Each subservice entity shall belong to exactly one subservice.

b. Each subservice entity shall be hosted by exactly one application process.

c. Each subservice entity shall be either a subservice user or a subservice
provider.

NOTE A subservice entity is identified by the subservice
that it belongs to and the application process that
hosts it.

5.4.7.2.2 Subservice provider

a. Each subservice shall provide exactly one subservice provider.
NOTE A subservice provider is an operational element of

a subservice that is in charge of execution of the

46

ECSS-E-ST-70-41C
15 April 2016

subservice requests and generation of the
subservice reports. The subservice providers are
usually hosted by the on-board application
processes.

5.4.7.2.3 Subservice user

a. Each subservice shall provide at least one subservice user.
NOTE A subservice user is an operational element of a

subservice that is in charge of initiating the
subservice requests and processing the subservice
reports. The subservice users are either hosted by
the ground application processes or the on-board
application processes.

5.4.8 Capability
a. Each subservice shall provide at least one subservice capability.

b. For each subservice and for each capability type defined by the
corresponding subservice type, the inclusion of the related capability in
that subservice shall comply with the applicability constraints of that
capability type.

NOTE For the applicability constraints of a capability
type, refer to requirement 5.3.4b.

5.4.9 Failed progress of execution
a. For each request type for which a failed progress of execution can be

reported, whether the corresponding failed progress of execution
notifications are reported within failed progress of execution verification
reports or as part of the completion of execution verification report for
the related requests shall be declared when specifying the request type
related subservice.

NOTE This requirement also applies to the standardized
request types specified in clause 6 that do not
specify the related failed progress of execution
notifications reporting policy.

5.4.10 Transaction
a. Each subservice shall provide the means to manage all transactions that it

initiates according to the mission operational requirements.
NOTE A transaction is either:

• a request related transaction,
• an autonomous data reporting transaction, or
• an event reporting transaction.

47

ECSS-E-ST-70-41C
15 April 2016

b. Each transaction shall be initiated and maintained by exactly one
subservice.

NOTE Each transaction involves one or more messages
exchanged between a subservice user and a
subservice provider.
A request related transaction involves:
• a request,
• depending on the acknowledgement specified

for that request (refer to clause 5.4.11.2.2) and
the execution verifications of that request (refer
to clause 5.4.11.2.3), zero or more verification
reports,

• depending on the successful execution of the
instructions contained within that request, if
that request type is linked to a response type,
one or more responses (refer to clause 5.3.5.2).

An autonomous data reporting transaction
involves an autonomous data report.
An event reporting transaction involves an event
report.

5.4.11 Message

5.4.11.1 General
a. Each message shall be of a single message type.

NOTE The message type is specified in clause 5.3.3. A
message is either a request or a report.

5.4.11.2 Request

5.4.11.2.1 General

a. Each request shall be generated by exactly one subservice user.
NOTE 1 By convention, a request is said to be generated by

the application process that hosts the subservice
user that generates that request.

NOTE 2 If the application process that generates the
request is a ground application process, by
convention, the request is also said to be generated
by
• the monitoring and control system that hosts

that application process,
• the ground segment.

b. Each request shall be addressed to exactly one subservice provider.

48

ECSS-E-ST-70-41C
15 April 2016

c. Each request shall be uniquely identified by a request identifier that is the
combination of:
1. a source identifier that corresponds to the application process user

identifier of the application process that hosts the subservice user
that generates that request;

2. a destination identifier that corresponds to the combination of the
application process identifier of the application process that hosts
the subservice provider that is responsible for executing that
request and the system identifier of the system that hosts that
application process;

3. a sequence count or request name that is produced by the
application process that hosts the subservice user.
NOTE 1 This Standard assumes that the request identifier is

unique for the mission duration but does not further
elaborate on how this uniqueness is achieved. In reality,
it can happen that the same identifier is used for several
requests, e.g. during tests or when the sequence count
counter wraps around, implying the need to include
timing information to ensure the uniqueness of request
identification for the overall mission duration.

NOTE 2 For item 1, refer to requirement 5.4.2.1d.
NOTE 3 For item 2, refer to requirement 5.4.2.1b.
NOTE 4 When a request is transported within a CCSDS

telecommand packet, refer to clause 7.4:
• the application process identifier of the

destination identifier is set in the application
process identifier field of the packet
identification field of the packet primary header
field;

• the sequence count or request name is set in the
packet sequence count or packet name field of
the packet sequence control field of the packet
primary header field;

• the source identifier is set in the source identifier
field of the packet secondary header field.

d. Each request shall be of exactly one request type.

e. Each request whose request type provides a single instruction slot shall
contain exactly one instruction that is of an instruction type defined for
that request type.

f. Each request whose request type provides multiple instruction slots shall
contain an ordered list of one or more instructions, each one being of an
instruction type defined for that request type.

NOTE For example, the request to "enable event-action
definitions" can include either a single instruction
to "enable all event-action definitions" or one or
more instructions to "enable an event-action
definition", refer to requirement 6.19.7.1b.

49

ECSS-E-ST-70-41C
15 April 2016

5.4.11.2.2 Acknowledgement

a. Each request shall contain:
1. a flag indicating whether the reporting of the successful acceptance

of that request by the destination application process is requested;
2. a flag indicating whether the reporting of the successful start of

execution of that request by the destination application process is
requested;

3. a flag indicating whether the reporting of the successful progresses
of execution of that request by the destination application process
is requested;

4. a flag indicating whether the reporting of the successful
completion of execution of that request by the destination
application process is requested.
NOTE 1 Related to item 1:

• each successful acceptance is only reported if
that flag indicates such reporting need, refer to
requirement 6.1.4.2d;

• each failed acceptance is reported by the
destination application process, refer to
requirement 6.1.4.3f.

NOTE 2 For item 2:
• each successful start of execution is only

reported if the item 2 flag indicates the
reporting need, refer also to requirements
5.4.11.2.3a.2 and 6.1.5.1.1b;

• each failed start of execution is notified by the
subservice provider in charge of executing that
request and reported by the destination
application process that hosts that subservice
provider, refer to requirements 5.4.11.2.3a.1 and
6.1.5.1.2b.

NOTE 3 For item 3:
• each successful progress of execution is only

reported if the item 3 flag indicates the
reporting need, refer also to requirements
5.4.11.2.3a.3(c) and 6.1.5.2.1b;

• each failed progress of execution is notified by
the subservice provider in charge of executing
that request, refer to requirement
5.4.11.2.3a.3(b);

• depending on the subservice provider's request
type related failed progress of execution
notifications reporting policy (refer to
requirement 5.4.9a), the failed progress of
execution notifications are reported by the
destination application process that hosts that
subservice provider within failed progress of
execution verification reports (refer to

50

ECSS-E-ST-70-41C
15 April 2016

requirement 6.1.5.2.2b) or as part of the
completion of execution verification report for
the related request (refer to requirement
6.1.5.3.2b).

NOTE 4 For item 4:
• each successful acceptance is only reported if

the item 4 flag indicates the reporting need,
refer also to requirements 5.4.11.2.3a.4(c) and
6.1.5.3.1b.;

• each failed completion of execution is notified
by the subservice provider in charge of
executing that request and reported by the
destination application process that hosts that
subservice provider, refer to requirements
6.1.5.3.2b and 6.1.5.3.2b.

5.4.11.2.3 Request execution verification

a. For each request that it receives, the subservice provider in charge of the
execution of that request shall, in sequence:
1. if the pre-conditions for the execution of that request are not

fulfilled:
(a) notify the execution reporting subservice of its parent

application process of the failed start of execution;
(b) stop processing that request;

2. if the pre-conditions for the execution of that request are fulfilled,
notify the execution reporting subservice of its parent application
process of the successful start of execution;

3. for each step, if any:
(a) verify the execution conditions of that step, if any;
(b) if the execution conditions of that step are not fulfilled,

notify the execution reporting subservice of its parent
application process of the failed progress of execution of that
step;

(c) if the step's execution conditions are fulfilled, notify the
execution reporting subservice of its parent application
process of the successful progress of execution of that step;

4. at the end of the execution of that request:
(a) verify the post-conditions of execution, if any;
(b) if any step execution has failed or if the post-conditions of

execution are not fulfilled, notify the execution reporting
subservice of its parent application process of the failed
completion of execution and stop processing that request;

(c) if the post-conditions of execution are fulfilled, notify the
execution reporting subservice of its parent application
process of the successful completion of execution;

NOTE A successful completion of execution notification
means only that the subservice provider has

51

ECSS-E-ST-70-41C
15 April 2016

checked all post-conditions defined in the
execution verification profile of that request. It
does not necessarily mean that the request
execution is successful. That meaning depends on
the execution verification profile.

5.4.11.3 Report

5.4.11.3.1 General

a. Each report shall be generated by exactly one subservice provider.
NOTE By convention, a report is said to be generated by

the application process that hosts the subservice
provider that generates the report.

b. Each report shall be addressed to exactly one subservice user.
NOTE The subservice user addressed by this requirement

is the final destination. This Standard does not
address e.g.:
• the possibility for a report to be forwarded via

different paths to its final destination,
• in case e.g. of event reports, the possibility to

dispatch the report on-board,
• the possibility for having more than one

ground application processing the report.

c. Each report shall be uniquely identified by a report identifier that is the
combination of:
1. a source identifier that is the application process identifier of the

application process that hosts the subservice provider that
generates that report;

2. a destination identifier that corresponds to the application process
user identifier of the application process that hosts the subservice
user that is responsible for processing that report;

3. a source sequence count that is produced by the application
process that hosts the subservice provider.
NOTE 1 This Standard assumes that the report identifier is

unique for the mission duration but does not
further elaborate on how this uniqueness is
achieved. In reality, it can happen that the same
identifier is used for several requests, e.g. during
tests or when the sequence count counter wraps
around, implying, for example, the need to include
timing information to ensure the uniqueness of
report identification for the overall mission
duration.

NOTE 2 When a report is transported within a CCSDS
telemetry packet, refer to clause 7.4:
• the source identifier is set in the application

process identifier field of the packet

52

ECSS-E-ST-70-41C
15 April 2016

identification field of the packet primary
header field;

• the sequence count is set in the packet sequence
count or packet name field of the packet
sequence control field of the packet primary
header field;

• the destination identifier is set in the
destination identifier field of the packet
secondary header field.

NOTE 3 For item 2, refer to requirement 5.4.2.1d.

d. Each report shall be of exactly one report type.

e. Each report whose report type provides a single notification slot shall
contain exactly one notification that is of a notification type defined for
that report type.

f. Each report whose report type provides multiple notification slots shall
contain an ordered list of one or more notifications, where:
1. all notifications in the list are of the same notification type, and
2. that notification type is one of those defined for that report type.

5.4.11.3.2 Response

a. The destination of any response shall be the source of the corresponding
request.

b. If a request implies the generation of a response that exceeds the length
that can be carried in a telemetry packet of the maximum packet size of
the CCSDS space packet protocol, that request shall be rejected.

NOTE 1 The maximum packet size of the CCSDS space
packet protocol is 65542 bytes.

NOTE 2 This Standard foresees that the file management
service is used to uplink or downlink data larger
than the maximum packet size of the CCSDS space
packet protocol. Other mechanisms to cover such
large data transfer are mission-specific.

5.4.11.3.3 Data report

a. For each data report that can be generated in an autonomous data
reporting transaction, the destination of the data report in that case shall
be declared when specifying the related subservice.

5.4.12 Building the space system architecture
a. Deploying the service topology of an overall space system should consist

of:
1. specifying new implementations of PUS services by instantiating

the service types and related components;
2. assessing the adequacy of reusing existing service

implementations:

53

ECSS-E-ST-70-41C
15 April 2016

(a) ensuring their compliance to the PUS standard services;
(b) verifying their compliance to the overall system constraints.

54

ECSS-E-ST-70-41C
15 April 2016

6
Service type system requirements

6.1 ST[01] request verification

6.1.1 Scope

6.1.1.1 General
 The request verification service type concerns:

• each application process that is involved in the routing of requests to the
application processes responsible for their execution, and

• for each request, the application process responsible for its execution, i.e.
the application process that hosts the service that executes the request.

 The request verification service type provides the capability for:

• checking that a request received on-board has not been corrupted during
the ground to space uplink;

• checking the availability of the application process that is the destination
for that request;

• checking the availability of the service that executes that request;

• reporting the success or failure of these checks;

• generating the execution request verification reports on behalf of the
service that executes that request.

 The request verification service type defines three standardized subservice
types, i.e.:

• the routing and reporting subservice type,

• the acceptance and reporting subservice type,

• the execution reporting subservice type.

6.1.1.2 Routing and reporting subservice
 The routing and reporting subservice type provides the capability to check that

the conditions required to pursue the routing of a request are fulfilled. This
includes checking the integrity of the request during its routing to the
application process that is responsible for executing it.

55

ECSS-E-ST-70-41C
15 April 2016

 This subservice type provides the means to report, to the ground, the failure of
request routing.

 This Standard assumes that the subservices of type "routing and reporting" (one
or more depending on the on-board architecture) are part of the function that
performs the on-board routing and as such, each one is hosted by an
application process entity that routes requests on-board to their final
destination. The request routing logic and related architecture is not further
elaborated in this Standard.

6.1.1.3 Acceptance and reporting subservice
 Each subservice of type "acceptance and reporting" is hosted by an application

process that hosts subservice providers responsible for executing requests.

 The acceptance and reporting subservice type provides the capability to check
the acceptance of a request prior to its distribution to the service addressed by
that request. This subservice type provides the means to report the successful or
failed acceptance of each received request.

6.1.1.4 Execution reporting subservice
 Each subservice of type "execution reporting" is similarly hosted by an

application process that hosts subservice providers responsible for executing
requests. It receives the request execution notifications issued by the subservice
providers and provides the means to generate the corresponding execution
verification reports on behalf of those subservice providers.

 Each request execution notification indicates a request execution stage, which
can be a start of execution, a progress of execution or a completion of execution.
The notification also indicates whether that execution stage succeeded or failed
and, in case of failure, the reason for such failure.

6.1.2 Service layout

6.1.2.1 Subservice
a. Each request verification service shall contain at least one of the

following:
1. one or more routing and reporting subservices,
2. one or more acceptance and reporting subservices,
3. one or more execution reporting subservices.

NOTE 1 This Standard does not impose that a single service
is used for all verification reports of a request. For
example, the routing verification reports generated
for a request can be issued by different request
verification subservices of different request
verification services (e.g. one associated to the
platform and one associated to a payload).

NOTE 2 The routing and reporting subservice deployment
results from the spacecraft architecture. The on-
board routing of a request can involve several

56

ECSS-E-ST-70-41C
15 April 2016

routing and reporting subservices, each one
performing specific routing verification checks.

NOTE 3 The acceptance verification reports can only be
issued by the acceptance and reporting subservice
hosted by the application process that executes the
request.

NOTE 4 The execution verification reports can only be
issued by the execution reporting subservice that is
hosted by the application process that executes the
request.

6.1.2.2 Application process

6.1.2.2.1 Destination of verification reports

a. For each verification report that it generates, the application process shall
address that report to the application process that hosts the subservice
user that has generated the corresponding request.

NOTE The destination of the report corresponds to the
source identifier of the corresponding request,
refer to requirement 5.4.11.2.1c.

6.1.2.2.2 Application process that routes requests

a. Each application process that is involved in routing requests shall host
exactly one routing and reporting subservice.

NOTE This Standard does not preclude that the requests
that are addressed to the application process that
hosts that routing and reporting subservice are
also checked by that subservice.

6.1.2.2.3 Application process that executes requests

a. Each application process that hosts one or more subservices that execute
requests shall host:
1. exactly one acceptance and reporting subservice;
2. at most one execution reporting subservice.

NOTE The decision to implement the execution reporting
subservice is not an application process decision
but a decision that is derived from the operational
needs of the services that execute the requests
received by the application process.

57

ECSS-E-ST-70-41C
15 April 2016

6.1.3 Routing and reporting subservice

6.1.3.1 Accessibility

6.1.3.1.1 Application process

a. The list of application processes that the routing and reporting subservice
addresses shall be declared when specifying the spacecraft architecture.

6.1.3.2 Routing verification of a request
a. The routing and reporting subservice shall provide the capability to

perform routing verification for the requests that it receives.

b. The list of routing verification checks that the routing and reporting
subservice performs shall be declared when specifying that subservice.

NOTE 1 Depending on the spacecraft architecture, the
routing of a request can involve several routing
and reporting subservices. The routing verification
checks can be distributed in accordance.

NOTE 2 The routing and reporting subservice can, for
example check:
• that the request has not been corrupted;
• the existence of the destination;
• the readiness of this destination to receive the

request, e.g. the device which embeds that
destination is on;

• the ability to continue the routing of the
request.

c. For each request that it receives, the routing and reporting subservice
shall:
1. perform the routing verification checks on that request;
2. determine, based on the output of those checks, whether the

routing verification of that request has succeeded or failed.

6.1.3.3 Reporting failed routing
a. The routing and reporting subservice shall provide the capability to

report the failed routing of requests.
NOTE The corresponding verification reports are of

message type "TM[1,10] failed routing verification
report".

b. Each failed routing verification report shall contain exactly one failed
routing notification.

c. Each failed routing notification shall contain:
1. the identifier of the request that failed the routing verification;
2. the failure notice made of:

(a) a failure code;

58

ECSS-E-ST-70-41C
15 April 2016

(b) auxiliary data, if any, used to explain the reason for the
failed routing.

NOTE For item 2, see requirements 6.1.3.3d and 6.1.3.3e.

d. The list of failure codes defined for failed routing notifications shall be
declared when specifying the routing and reporting subservice.

NOTE The failed routing notification failure codes are
common to all requests that are routed by the
subservice.

e. For each failure code defined for failed routing notifications, the
associated auxiliary data shall be declared when specifying the routing
and reporting subservice.

f. For each request that fails its routing verification, the routing and
reporting subservice shall:
1. generate a single failed routing notification and associated report

for that request;
2. discard that request.

6.1.3.4 Subservice observables
 This Standard does not define any observables for the routing and reporting

subservice.

6.1.4 Acceptance and reporting subservice

6.1.4.1 Acceptance verification of a request
a. The acceptance and reporting subservice shall provide the capability to

perform acceptance verification for a request that it receives.

b. The list of acceptance verification checks that the acceptance and
reporting subservice performs during the acceptance verification of a
request shall be declared when specifying that subservice.

NOTE The acceptance and reporting subservice can, for
example, check:
• that the request has not been corrupted;
• the availability of the service.

c. For each request that it receives, the acceptance and reporting subservice
shall:
1. perform the acceptance verification checks on that request;
2. determine, based on the output of those checks, whether the

acceptance verification of that request has succeeded or failed.

6.1.4.2 Reporting successful acceptance
a. The acceptance and reporting subservice shall provide the capability to

report the successful acceptance verification of requests.

59

ECSS-E-ST-70-41C
15 April 2016

NOTE The corresponding verification reports are of
message type "TM[1,1] successful acceptance
verification report".

b. Each successful acceptance verification report shall contain exactly one
successful acceptance notification.

c. Each successful acceptance notification shall contain:
1. the identifier of the request that successfully passed the acceptance

verification.

d. For each request that successfully passes its acceptance verification, the
acceptance and reporting subservice shall:
1. if the successful acceptance reporting is requested, generate a

single successful acceptance notification and associated report for
that request.
NOTE For the successful acceptance reporting, refer to

requirement 5.4.11.2.2a.1.

6.1.4.3 Reporting failed acceptance
a. The acceptance and reporting subservice shall provide the capability to

report the failed acceptance of requests.
NOTE The corresponding verification reports are of

message type "TM[1,2] failed acceptance
verification report".

b. Each failed acceptance verification report shall contain exactly one failed
acceptance notification.

c. Each failed acceptance notification shall contain:
1. the identifier of the request that failed the acceptance verification;
2. the failure notice made of:

(a) a failure code;
(b) auxiliary data, if any, used to explain the reason for the

failed acceptance.
NOTE For item 2, see requirements 6.1.4.3d and 6.1.4.3e.

d. The list of failure codes defined for failed acceptance notifications shall
be declared when specifying the acceptance and reporting subservice.

NOTE The failure codes used by the subservice to notify
failed acceptance are not request dependent.

e. For each failure code defined for failed acceptance notifications, the
associated auxiliary data shall be declared when specifying the
acceptance and reporting subservice.

f. For each request that fails its acceptance verification, the acceptance and
reporting subservice shall:
1. generate a single failed acceptance notification and associated

report for that request;
2. discard that request.

60

ECSS-E-ST-70-41C
15 April 2016

6.1.4.4 Subservice observables
 This Standard does not define any observables for the acceptance and reporting

subservice.

6.1.5 Execution reporting subservice

6.1.5.1 Reporting the start of execution of a request

6.1.5.1.1 Reporting successful start of execution

a. The execution reporting subservice shall provide the capability to
generate the successful start of execution verification reports.

NOTE The corresponding verification reports are of
message type "TM[1,3] successful start of execution
verification report".

b. For each successful start of execution notification that it receives, the
execution reporting subservice shall:
1. if the successful start of execution reporting is requested, generate

a single successful start of execution verification report containing
that notification.
NOTE 1 For the successful start of execution notification,

refer to requirement 5.3.5.2.3g.
NOTE 2 For the requested successful start of execution

reporting, refer to requirement 5.4.11.2.2a.2.

6.1.5.1.2 Reporting failed start of execution

a. The execution reporting subservice shall provide the capability to
generate the failed start of execution verification reports.

NOTE The corresponding verification reports are of
message type "TM[1,4] failed start of execution
verification report".

b. For each failed start of execution notification that it receives, the
execution reporting subservice shall:
1. generate a single failed start of execution verification report

containing that notification.
NOTE For the failed start of execution notification, refer

to requirement 5.3.5.2.3g.

6.1.5.2 Reporting the progress of execution of a request

6.1.5.2.1 Reporting successful progress of execution

a. The execution reporting subservice shall provide the capability to
generate the successful progress of execution verification reports.

NOTE The corresponding verification reports are of
message type "TM[1,5] successful progress of
execution verification report".

61

ECSS-E-ST-70-41C
15 April 2016

b. For each successful progress of execution notification that it receives, the
execution reporting subservice shall:
1. if the successful progress of execution reporting is requested,

generate a single successful progress of execution verification
report containing that notification.
NOTE 1 For the successful progress of execution

notification, refer to requirement 5.3.5.2.3g.
NOTE 2 For the requested successful progress of execution

reporting, refer to requirement 5.4.11.2.2a.3.

6.1.5.2.2 Reporting failed progress of execution

a. The execution reporting subservice shall provide the capability to
generate the failed progress of execution verification reports.

NOTE The corresponding verification reports are of
message type "TM[1,6] failed progress of execution
verification report".

b. For each failed progress of execution notification that it receives, the
execution reporting subservice shall:
1. if the application process that hosts the execution reporting

subservice is configured for the corresponding request type to
report the failed progress of execution notifications in failed
progress of execution verification reports, generate a single failed
progress of execution verification report containing that
notification.
NOTE 1 For the failed progress of execution notification,

refer to requirement 5.3.5.2.3g.
NOTE 2 For item 1 failed progress of execution

notifications reporting policy, refer to requirement
5.4.9a. See also requirement 6.1.5.3.2c for the
alternative handling of the failed progress of
execution notifications.

6.1.5.3 Reporting the completion of execution of a request

6.1.5.3.1 Reporting successful completion of execution

a. The execution reporting subservice shall provide the capability to
generate the successful completion of execution verification reports.

NOTE The corresponding verification reports are of
message type "TM[1,7] successful completion of
execution verification report".

b. For each successful completion of execution notification that it receives,
the execution reporting subservice shall:
1. if the successful completion of execution reporting is requested,

generate a single successful completion of execution verification
report containing that notification.
NOTE 1 For the successful start of execution notification,

refer to requirement 5.3.5.2.3g.

62

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For the requested successful completion of
execution reporting, refer to requirement
5.4.11.2.2a.4.

6.1.5.3.2 Reporting failed completion of execution

a. The execution reporting subservice shall provide the capability to
generate the failed completion of execution verification reports.

NOTE The corresponding verification reports are of
message type "TM[1,8] failed completion of
execution verification report".

b. For each failed completion of execution notification that it receives, the
execution reporting subservice shall:
1. generate a single failed completion of execution verification report

containing that notification.
NOTE For the failed completion of execution notification,

refer to requirement 5.3.5.2.3g.

c. For each failed completion of execution notification that is accompanied
of failed progress of executions notifications to be reported as part of the
completion of execution verification report, the execution reporting
subservice shall include those failed progress of execution notifications in
the failed completion of execution notification.

NOTE For the failed progress of execution notifications
reporting policy. refer to requirement 5.4.9a.

6.1.5.4 Subservice observables
 This Standard does not define any observables for the execution reporting

subservice.

63

ECSS-E-ST-70-41C
15 April 2016

6.2 ST[02] device access

6.2.1 Scope

6.2.1.1 General
 The device access service type provides the capability of distributing

commands to and acquiring data from the on-board devices. The corresponding
services rely on the low-level device communication mechanisms; hence, they
do not require any device-specific application level protocol.

 The device access service type defines a single standardized subservice type, i.e.
the device access subservice type.

6.2.1.2 Device access subservice
 An on-board device can be any on-board entity that can be configured by

means of commands or that is able to generate data.

 The device access subservice type provides capabilities to interact with:

• on-board devices such as actuators, sensors, transponders and equipment
that have no direct support for PUS services;

• equipment during the assembly, integration and test phases or in-flight
trouble-shooting, e.g. to validate the basic communication capabilities.

 On-board device commands are inserted within requests. On-board device
observables are reported within reports.

 On-board device commands are mainly intended for bypassing the nominal
functions implemented by the on-board software. To support this, a minimum
of device command verifications are performed on-board by the device access
service.

 The device access service type supports addressing devices physically or
logically. Physically accessing a device implies knowledge of the transmission
link and of the communication protocol. Logically accessing a device can be
done with a command identifier and its parameters. The on-board software
maps this logical information onto the physical link and protocol. A typical
example is the low-level commanding of a Mil-Std-1553B bus remote terminal:

• to command it as a ‘physical device’, the command word is specified,
containing the address, the transmission direction, the sub-address and the
data word count.

• On the other hand, to command the same remote terminal as a ‘logical
device’, the logical device identifier, the logical command and its
associated parameters are specified. It is the task of the service to map such
a command onto the right communication protocol and physical link.

 The device access subservice type provides capabilities for the following:

• On/off device commands;

• Register load commands and register contents acquisition;

64

ECSS-E-ST-70-41C
15 April 2016

• CPDU commands distributed by software;

• Physical device low-level commands for configuration and actuation;

• Physical device low-level commands for data acquisition;

• Logical device low-level commands for configuration and actuation;

• Logical device low-level commands for data acquisition.

6.2.2 Service layout

6.2.2.1 Subservice

6.2.2.1.1 Device access subservice

a. Each device access service shall contain at least one device access
subservice.

6.2.2.2 Application process
a. Each application process shall host at most one device access subservice

provider.

6.2.3 Capability
a. The device access subservice shall provide at least one of:

1. the capability for distributing on/off device commands specified in
clause 6.2.4;

2. the capability for distributing register commands specified in
clause 6.2.5;

3. the capability for distributing software CPDU commands specified
in clause 6.2.6;

4. the capability for physical devices commanding access specified in
clause 6.2.7.

6.2.4 On/off device

6.2.4.1 General
a. The list of on-off devices that are accessed by the device access subservice

shall be declared when specifying that subservice.

b. For each on/off device, the hardware addresses that the device access
subservice uses to command that device shall be declared when
specifying that subservice.

NOTE The addresses can, for example, include the
addresses to switch a device on or off, to cold or
warm reset, to open or close valves or to command
a switch.

65

ECSS-E-ST-70-41C
15 April 2016

6.2.4.2 Distribute on/off device commands
a. The device access subservice capability to distribute on/off device

commands shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[2,1] distribute on/off device commands".
NOTE 2 For that declaration, refer to requirement 6.2.3a.

b. Each request to distribute on/off device commands shall contain an
ordered list of one or more instructions to distribute an on/off device
command.

NOTE The delay to apply between two consecutive
instructions is dependent on the spacecraft
architecture.

c. Each instruction to distribute an on/off device command shall contain:
1. the device address.

NOTE For item 1, refer to requirement 6.2.4.1b.

d. The device access subservice shall reject any request to distribute on/off
device commands if:
1. that request contains an instruction that refers to an unknown

device address.

e. For each request to distribute on/off device commands that is rejected,
the device access subservice shall generate a failed start of execution
notification.

f. For each request to distribute on/off device commands that contains only
valid instructions, the device access subservice shall execute those
instructions in the order of their appearance in that request.

g. For each valid instruction to distribute an on/off device command that is
not rejected, the device access subservice shall:
1. distribute the related on/off command to the related device

address.

6.2.5 Register

6.2.5.1 General
a. The list of registers that are accessed by the device access subservice shall

be declared when specifying that subservice.

b. For each register, the hardware address that the device access subservice
uses to access that register shall be declared when specifying that
subservice.

NOTE The set of registers that are accessible for loading
can differ from the set of registers that are
accessible for dumping.

c. For each register, the set of register fields used to configure that register
shall be declared when specifying that register.

66

ECSS-E-ST-70-41C
15 April 2016

d. For each register, the checks that the device access subservice performs
when loading that register shall be declared when specifying that
subservice.

NOTE 1 The checks when loading a register are called
"register consistency checks".

NOTE 2 The declaration of the register consistency checks
can also be made e.g. per type of registers.

6.2.5.2 Distribute register load commands
a. The device access subservice capability to distribute register load

commands shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[2,2] distribute register load commands".
NOTE 2 For that declaration, refer to requirement 6.2.3a.

b. Each request to distribute register load commands shall contain an
ordered list of one or more instructions to distribute a register load
command.

c. Each instruction to distribute a register load command shall contain:
1. the register address;
2. the data for the register fields.

NOTE 1 For item 1, refer to requirement 6.2.4.1b.
NOTE 2 For item 2, refer to requirement 6.2.5.1c.

d. The device access subservice shall reject any request to distribute register
load commands if any of the following conditions occurs:
1. that request contains an instruction that refers to an unknown

register address;
2. that request contains an instruction that fails its register

consistency checks.

e. For each request to distribute register load commands that is rejected, the
device access subservice shall generate a failed start of execution
notification.

NOTE A partial load can result in an unknown or
inconsistent device status.

f. For each request to distribute register load commands that contains only
valid instructions, the device access subservice shall execute those
instructions in the order of their appearance in that request.

g. For each valid instruction to distribute a register load command, the
device access subservice shall:
1. distribute the command to the register.

67

ECSS-E-ST-70-41C
15 April 2016

6.2.5.3 Distribute register dump commands
a. The device access subservice capability to distribute register dump

commands shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[2,5] distribute register dump commands". The
responses are data reports of message type
"TM[2,6] register dump report".

NOTE 2 That capability requires the capability for that
subservice to distribute register load commands
(refer to clause 6.2.5.2).

b. Each request to distribute register dump commands shall contain one or
more instructions to distribute a register dump command.

NOTE The delay to apply between two consecutive
instructions is dependent on the spacecraft
architecture.

c. Each instruction to distribute a register dump command shall contain:
1. the register address.

NOTE For item 1, refer to requirement 6.2.5.1b.

d. The device access subservice shall reject any instruction to distribute a
register dump command if:
1. that instruction refers to an unknown register address.

e. For each instruction to distribute a register dump command that it
rejects, the device access subservice shall generate the failed start of
execution notification for that instruction.

f. The device access subservice shall process any valid instruction that is
contained within a request to distribute register dump commands
regardless of the presence of faulty instructions.

g. For each valid instruction to distribute a register dump command, the
device access subservice shall:
1. distribute that register dump command;
2. generate the corresponding register dump notification that

includes:
(a) the register address,
(b) the register data made of the value of each register field.
NOTE 1 For item 1, refer to requirement 6.2.5.1b.
NOTE 2 For item 2(b), refer to requirement 6.2.5.1c for that

register.

h. For each valid request to distribute register dump commands, the device
access subservice shall generate a single register dump report that
contains all related register dump notifications.

68

ECSS-E-ST-70-41C
15 April 2016

6.2.6 CPDU

6.2.6.1 General
a. The list of CPDUs managed by the device access subservice shall be

declared when specifying that subservice.
NOTE The CPDUs addressed by the device access

subservice are those specified in clause 9.

6.2.6.2 Distribute CPDU commands
a. The device access subservice capability to distribute CPDU commands

shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[2,4] distribute CPDU commands".
NOTE 2 For that declaration, refer to requirement 6.2.3a.

b. Each request to distribute CPDU commands shall contain an ordered list
of one or more instructions to distribute a CPDU command.

NOTE The delay to apply between two consecutive
instructions is dependent on the spacecraft
architecture.

c. Each instruction to distribute a CPDU command shall contain:
1. if the device access subservice manages several CPDU's, the

identifier of that CPDU;
2. an ordered list of one or more command pulse instructions.

NOTE 1 For item 1, refer to requirements 6.2.6.1a and
9.2.2b.

NOTE 2 For item 2, refer to requirement 9.2.3b.

d. The device access subservice shall reject any request to distribute CPDU
commands if:
1. that request contains an instruction that refers to an unknown

CPDU.

e. For each request to distribute CPDU commands that is rejected, the
device access subservice shall generate a failed start of execution
notification.

f. For each request to distribute CPDU commands that contains only valid
instructions, the device access subservice shall execute those instructions
in the order of their appearance in that request.

g. For each valid instruction to distribute a CPDU command, the device
access subservice shall:
1. reconstruct the CPDU request in the format expected by that

CPDU;
2. distribute that CPDU request.

NOTE This Standard does not prescribe any delay
constraint related to the generation of two
consecutive CPDU requests.

69

ECSS-E-ST-70-41C
15 April 2016

6.2.7 Physical and logical device access

6.2.7.1 Physical device commanding and data acquisition

6.2.7.1.1 Physical devices

a. For each device that can be physically addressed, the device identifier
and the communication links that the device access subservice uses to
address that device shall be declared when specifying that subservice.

b. For each physical device and for each associated communication link, the
protocols to use over that communication link for transmitting
commands or receiving data shall be declared when specifying that
physical device and that communication link.

NOTE For example, a physical device may be reached via
two communication links, e.g. a Mil-Std-1553B bus
and a SpaceWire link. For each of the associated
communication links, one or more protocols can be
defined, e.g. one for commanding, one for
receiving data.

6.2.7.1.2 Distribute physical device commands

a. The device access subservice capability to distribute physical device
commands shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[2,7] distribute physical device commands".

NOTE 2 Each command to a physical device is either for
device configuration or for device actuation.

NOTE 3 For that declaration, refer to requirement 6.2.3a.

b. Each request to distribute physical device commands shall contain an
ordered list of one or more instructions to distribute a physical device
command.

NOTE 1 The instructions referred to the same physical
device are dispatched to the device in the order
specified in the request and without implementing
any delay apart from that which is intrinsic in the
transmission protocol. In principle, these
instructions are dispatched at the maximum rate
allowed by the transmission protocol.

NOTE 2 No relationship can be assumed for the ordering of
dispatch among instructions specifying different
physical devices referred to in the same request.

c. Each instruction to distribute a physical device command shall contain:
1. the physical device identifier;
2. the protocol-specific data;
3. the command data.

NOTE 1 For example, if the physical device is a Mil-Std-
1553B bus remote terminal:

70

ECSS-E-ST-70-41C
15 April 2016

 the physical device identifier can represent the
bus remote terminal address. In this case, the
physical device identifier implicitly indicates
the bus to use;

 the protocol-specific data can represent the
transaction direction, the sub-address (or
mode code indicator), the data word count (or
mode code);

 the command data can represent the data
words of the bus message, i.e. a maximum of
32 "16-bits-words".

NOTE 2 For item 1, refer to requirement 6.2.7.1.1a.
NOTE 3 For items 2 and 3, the protocol specific data and

the command data are specific to the device
identified by the physical device identifier and
driven by requirement 6.2.7.1.1b for that device.

d. The device access subservice shall reject any request to distribute
physical device commands if any of the following conditions occurs:
1. that request contains an instruction that refers to an unknown

physical device;
2. that request contains an instruction that contains invalid protocol-

specific data.

e. For each request to distribute physical device commands that is rejected,
the device access subservice shall generate a failed start of execution
notification.

f. For each request to distribute physical device commands that contains
only valid instructions, the device access subservice shall execute those
instructions in the order of their appearance in that request.

g. For each valid instruction to distribute a physical device command, the
device access subservice shall:
1. transmit the command data to the physical device by using the

protocol-specific data and the applicable protocol;
2. check the result of the transmission;
3. if the command transmission check is not successful, generate a

failed execution notification that includes:
(a) the instruction index within the request;
(b) the transmission return code;
(c) if available, the auxiliary data associated to that

transmission return code that details the failure reason.

h. For each request to distribute physical device commands that results in at
least one unsuccessful command transmission check, the device access
subservice shall generate a single failed completion of execution
verification report that contains the first failed progress of execution
notification generated for that request.

71

ECSS-E-ST-70-41C
15 April 2016

6.2.7.1.3 Acquire data from physical devices

a. The device access subservice shall provide the capability to acquire data
from physical devices if the capability to distribute physical device
commands is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[2,8] acquire data from physical devices". The
responses are data reports of message type
"TM[2,9] physical device data report".

NOTE 2 For the capability to distribute physical device
commands, refer to clause 6.2.7.1.2.

b. Each request to acquire data from physical devices shall contain an
ordered list of one or more instructions to acquire data from a physical
device.

c. Each instruction to acquire data from a physical device shall contain:
1. the transaction identifier;
2. the physical device identifier;
3. the protocol-specific data that is used to identify the data to report.

NOTE 1 For item 1, in the physical device data report, the
transaction identifier is used to identify the request
and the instruction.

NOTE 2 For item 2, refer to requirement 6.2.7.1.1a.
NOTE 3 For item 3, the protocol specific data field is

specific to the device identified by the physical
device identifier and driven by requirement
6.2.7.1.1b for that device.

d. The device access subservice shall reject any request to acquire data from
physical devices if any of the following conditions occurs:
1. that request contains an instruction that refers to an unknown

physical device;
2. that request contains an instruction that contains invalid protocol-

specific data.

e. For each request to acquire data from physical devices that is rejected, the
device access subservice shall generate a failed start of execution
notification.

f. For each request to acquire data from physical devices that contains only
valid instructions, the device access subservice shall execute those
instructions in the order of their appearance in that request.

g. For each valid instruction to acquire data from a physical device, the
device access subservice shall:
1. transmit the acquisition command to the physical device by using

the protocol-specific data and the applicable protocol;
2. check the data acquisition return code that reports on the result of

the transmission;
3. if the data acquisition is successful, generate a single physical

device data notification that includes:

72

ECSS-E-ST-70-41C
15 April 2016

(a) the transaction identifier;
(b) the data acquisition return code;
(c) the auxiliary data associated to that data acquisition return

code, if any;
(d) the data block corresponding to the acquired data.

4. if the data acquisition fails, generate a failed execution notification
that includes:
(a) the transaction identifier;
(b) the transaction execution status, which consists of the data

acquisition, the return code and associated auxiliary data.
NOTE A physical device data report contains a single

physical device data notification.

h. For each physical device and for each communication link, the list of data
acquisition return codes and associated auxiliary data shall be declared
when specifying that physical device and that communication link.

NOTE Auxiliary data can be associated to each data
acquisition return code in the list, to provide detail
reporting on the reason for that return code.

i. For each request to acquire data from physical devices that results in at
least one data acquisition failure, the device access subservice shall
generate a single failed completion of execution verification report that
includes the first failed progress of execution notification generated for
that request.

6.2.7.2 Logical device commanding and data acquisition

6.2.7.2.1 Logical devices

a. For each device that can be logically addressed, the logical device
identifier, the set of supported commands and associated arguments that
the device access subservice uses to address that device and the set of
parameter identifiers used for data acquisition shall be declared when
specifying that subservice.

6.2.7.2.2 Distribute logical device commands

a. The device access subservice capability to distribute logical device
commands shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[2,10] distribute logical device commands".

NOTE 2 Each command to a logical device is either for
device configuration or for device actuation.

NOTE 3 That capability requires the capability for that
subservice to distribute physical device commands
(refer to clause 6.2.7.1.2).

b. Each request to distribute logical device commands shall contain an
ordered list of one or more instructions to distribute a logical device
command.

73

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 The instructions referred to the same logical device
are dispatched to the device in the order specified
in the request and without implementing any
delay apart from that which is intrinsic in the
transmission protocol. In principle, these
instructions are dispatched at the maximum rate
allowed by the transmission protocol.

NOTE 2 No relationship can be assumed among
instructions specifying different logical devices
referred to in the same request.

c. Each instruction to distribute a logical device command shall contain:
1. the logical device identifier;
2. the command identifier;
3. the command arguments.

NOTE 1 The instructions in a request to distribute logical
device commands do not contain any reference to
the physical link or to the transmission protocol of
a device. Logically commanding a device allows
for example to use the same request for interfacing
a device during the development of the on-board
software and during in-flight operations, i.e. the
same user request protocol but different means to
physically address the device.

NOTE 2 For item 1, refer to requirement 6.2.7.2.1a.
NOTE 3 For items 2 and 3, the command ID and the

command arguments are specific to the logical
device, refer to requirement 6.2.7.2.1a.

d. The device access subservice shall reject any request to distribute logical
device commands if any of the following conditions occurs:
1. that request contains an instruction that refers to an unknown

logical device;
2. that request contains an instruction that refers to an unknown

command.

e. For each request to distribute logical device commands that is rejected,
the device access subservice shall generate a failed start of execution
notification.

f. For each request to distribute logical device commands that contains only
valid instructions, the device access subservice shall execute those
instructions in the order of their appearance in that request.

g. For each valid instruction to distribute a logical device command, the
device access subservice shall:
1. map the logical device identifier onto the physical device

identifier, the communication link and the communication
protocol;

2. map the command identifier onto the protocol-specific data;

74

ECSS-E-ST-70-41C
15 April 2016

3. use the command arguments to format the command data for
transmission;

4. transmit the command data to the physical device by using the
protocol-specific data and the applicable protocol;

5. check the result of the transmission;
6. if the command transmission check is not successful, generate, for

that instruction, a failed execution notification that includes:
(a) the instruction index within the request;
(b) the transmission return code;
(c) the auxiliary data associated to that transmission return

code that details the failure reason, if any.

h. For each request to distribute logical device commands that results in at
least one unsuccessful command transmission check, the device access
subservice shall generate a single failed completion of execution
verification report that includes the first failed progress of execution
notification generated for that request.

6.2.7.2.3 Acquire data from logical devices

a. The device access subservice shall provide the capability to acquire data
from logical devices if the capability to distribute logical device
commands is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[2,11] acquire data from logical devices". The
responses are data reports of message type
"TM[2,12] logical device data report".

NOTE 2 For the capability to distribute logical device
commands, refer to clause 6.2.7.2.2.

b. Each request to acquire data from logical devices shall contain an ordered
list of one or more instructions to acquire data from a logical device.

c. Each instruction to acquire data from a logical device shall contain:
1. the transaction identifier;
2. the logical device identifier;
3. the parameter identifier of the data to report.

NOTE 1 In the logical device data report, the transaction
identifier is used to identify the request and the
instruction.

NOTE 2 The instructions in a request to acquire data from
logical devices do not contain any reference to the
physical link or to the transmission protocol of a
device.

NOTE 3 For items 2 and 3, refer to requirement 6.2.7.2.1a.

d. The device access subservice shall reject any request to acquire data from
logical devices if any of the following conditions occurs:
1. that request contains an instruction that refers to an unknown

logical device;

75

ECSS-E-ST-70-41C
15 April 2016

2. that request contains an instruction that refers to an unknown
parameter.

e. For each request to acquire data from logical devices that is rejected, the
device access subservice shall generate a failed start of execution
notification.

f. For each request to acquire data from logical devices that contains only
valid instructions, the device access subservice shall execute those
instructions in the order of their appearance in that request.

g. For each valid instruction to acquire data from a logical device, the
device access subservice shall:
1. map the logical device identifier onto the physical device

identifier, the communication link and the communication
protocol;

2. map the parameter identifier onto the protocol-specific data;
3. transmit the acquisition command to the physical device by using

the protocol-specific data and the applicable protocol;
4. check the data acquisition return code that reports on the result of

the transmission;
5. if the data acquisition is successful, generate a single logical device

data notification that includes:
(a) the transaction identifier;
(b) the data acquisition return code;
(c) if available, the auxiliary data associated to that data

acquisition return code;
(d) the acquired parameter value.

6. if the data acquisition is successful, generate a logical device data
report that includes that logical device data notification;

7. if the data acquisition fails, generate, for that instruction, a failed
execution notification that includes:
(a) the transaction identifier;
(b) the transaction execution status, which consists of the data

acquisition return code and, if any, the associated auxiliary
data.

NOTE Each logical device data report contains exactly
one logical device data notification.

h. For each logical device, the list of data acquisition return codes and
associated auxiliary data shall be declared when specifying that logical
device.

NOTE Auxiliary data can be associated to each data
acquisition return code in the list, to provide detail
reporting on the reason for that return code.

i. For each request to acquire data from logical devices that results in at
least one data acquisition failure, the device access subservice shall
generate a single failed completion of execution verification report that
includes the first failed progress of execution notification generated for
that request.

76

ECSS-E-ST-70-41C
15 April 2016

6.2.8 Subservice observables
 This Standard does not define any observables for the device access subservice.

77

ECSS-E-ST-70-41C
15 April 2016

6.3 ST[03] housekeeping

6.3.1 Scope

6.3.1.1 General
 The housekeeping service type provides means to control and adapt the

spacecraft reporting plan according to the mission phases.

 The housekeeping service type provides the visibility of any on-board
parameters assembled in housekeeping parameter report structures or
diagnostic parameter report structures as required for the mission. The
parameter report structures used by the housekeeping service can be
predefined on-board or created when needed.

 The housekeeping service type defines three standardized subservice types, i.e.:

• the housekeeping reporting subservice type,

• the diagnostic reporting subservice type,

• the parameter functional reporting configuration subservice type.

6.3.1.2 Housekeeping reporting and diagnostic reporting
subservices

 The housekeeping and the diagnostic reporting subservice types provide
similar functions respectively:

• dedicated to nominal operations, for the housekeeping reporting, and

• dedicated to contingency operations for diagnostic reporting.

 The parameter reports, of housekeeping and of diagnostic nature, can be
generated periodically or on request.

 The periodic generation of each type of parameter report can be enabled or
disabled. For example, the periodic generation of the reports for a housekeeping
parameter report type can be disabled to reduce the on-board processing load.
A diagnostic parameter report type can be enabled when a particular anomaly
occurs and be disabled at other times.

 A collection interval is attached to each type of parameter report. The collection
interval represents the time interval at which the parameters are collected to
generate the corresponding reports.

 A sampling interval is associated to each on-board parameter. The sampling
interval is used by the application process responsible for acquiring or
calculating the values of the corresponding parameter.

 Each parameter report is defined as a combination of simply commutated
parameters and/or super commutated parameters.

 A simply commutated parameter definition implies that only one sampled
value of that parameter is present within each related parameter report
corresponding to one value of the parameter collected during the collection
interval.

78

ECSS-E-ST-70-41C
15 April 2016

 A super commutated parameter definition implies that more than one sampled
values of that parameter is present, each sample value corresponding to a value
of the parameter collected during the collection interval at a sub-period equal to
the collection interval divided by the number of super commutated sampled
values.

 Within a parameter report definition, each related parameter appears only once,
either as a simply commutated parameter or as a super commutated parameter.

6.3.1.3 Parameter functional reporting configuration
subservice

 The parameter functional reporting configuration subservice type provides the
capability to control the generation of the parameter reports generated by the
housekeeping and the diagnostic reporting subservices e.g. to ease the
management of housekeeping configuration on mode transitions.

 The parameter functional reporting configuration subservice operates on sets of
parameter reports, of housekeeping or diagnostic nature, e.g. enabling or
disabling the generation of such sets. Functional configurations can be applied
exclusively, in which case the periodic generation of each report type of the
service is disabled before applying the functional configurations.

6.3.2 Service layout

6.3.2.1 Subservice

6.3.2.1.1 Housekeeping reporting subservice

a. Each housekeeping service shall contain at least one housekeeping
reporting subservice.

6.3.2.1.2 Diagnostic reporting subservice

a. Each housekeeping service shall contain zero or more diagnostic
reporting subservices.

6.3.2.1.3 Parameter functional reporting configuration subservice

a. Each housekeeping service shall contain at most one parameter
functional reporting configuration subservice.

6.3.2.2 Application process

6.3.2.2.1 Housekeeping reporting subservice

a. Each application process shall host at most one housekeeping reporting
subservice provider.

6.3.2.2.2 Diagnostic reporting subservice

a. Each application process shall host at most one diagnostic reporting
subservice provider.

79

ECSS-E-ST-70-41C
15 April 2016

6.3.2.2.3 Parameter functional reporting configuration subservice

a. Each application process shall host at most one parameter functional
reporting configuration subservice provider.

6.3.3 Housekeeping reporting subservice

6.3.3.1 Parameter accessibility
a. The housekeeping reporting subservice shall be able to collect and report

the sampled values of each on-board parameter that is accessible to the
application process that hosts that subservice.

6.3.3.2 Housekeeping parameter report structure
a. The on-board resources allocated to the housekeeping reporting

subservice to host the housekeeping parameter report structures shall be
declared when specifying that subservice.

NOTE The allocated resources constrain the number of
housekeeping parameter report structures and
their content, in number of parameters.

b. The on-board resources allocated to the contemporaneous evaluation of
housekeeping parameter report structures used by the housekeeping
reporting subservice shall be declared when specifying that subservice.

NOTE The number of housekeeping parameter report
structures that can be contemporaneously
evaluated by the subservice depends on these
resources and the overall number of sampled
values required for each corresponding report.

c. Each housekeeping parameter report structure shall consist of:
1. a housekeeping parameter report structure identifier;
2. the collection interval used to generate the corresponding reports;
3. an ordered list of zero or more simply commutated parameters;
4. an ordered list of zero or more super commutated parameter sets,

each set consisting of:
(a) the number of sampled values to report for each parameter

of that set, and
(b) the ordered list of one or more parameters contained within

that set;
5. if the housekeeping reporting subservice provides the capability

for managing the periodic generation of housekeeping parameter
reports, a status indicating whether the periodic generation action
of the corresponding housekeeping parameter reports is enabled
or disabled.
NOTE 1 The housekeeping parameter report structures are

uniquely identified by the combination of the
application process that hosts the housekeeping

80

ECSS-E-ST-70-41C
15 April 2016

reporting subservice provider and a housekeeping
parameter report structure identifier.

NOTE 2 The collection interval is expressed as units of the
minimum sampling interval, refer to requirement
5.4.3.2c.

NOTE 3 For item 4(a), the number of sampled values to
report for each parameter of the set is named
"super commutated sample repetition number".

NOTE 4 For item 5:
• for the capability for managing the periodic

generation of housekeeping parameter reports,
refer to clause 6.3.3.4;

• this status is named "housekeeping parameter
report periodic generation action status". If the
housekeeping subservice does not provide the
capability for managing the periodic generation
of housekeeping parameter reports, the
periodic generation of housekeeping parameter
reports is always enabled.

6.3.3.3 Housekeeping parameter report
a. The housekeeping reporting subservice shall provide the capability for

generating housekeeping parameter reports.
NOTE The corresponding reports are data reports of

message type "TM[3,25] housekeeping parameter
report".

b. Each housekeeping parameter report shall contain exactly one
housekeeping parameter notification.

c. Each housekeeping parameter notification shall contain:
1. the housekeeping parameter report structure identifier;
2. in the specified order for simply commutated parameters, a single

sampled value for each simply commutated parameter;
3. in the specified order for super commutated parameter sets, for

each super commutated parameter set:
(a) the "super commutated sample repetition number" sets of

sampled values.
NOTE 1 For the housekeeping parameter report structure,

refer to clause 6.3.3.2.
NOTE 2 For item 3(a), each set of sampled values is

composed of a single sampled value for each
parameter of the super commutated parameter set.
The sampled values are ordered according to the
ordering of the parameters within the
corresponding super commutated parameter set.
For example, for the super commutated parameter
set that contains 2 parameters A and B, if the
required number of sampled values is 2, each

81

ECSS-E-ST-70-41C
15 April 2016

report will contain "value 1 of A", "value 1 of B",
"value 2 of A", "value 2 of B" in that order.

d. For each housekeeping parameter report structure for which periodic
generation is enabled, the housekeeping reporting subservice shall
generate a corresponding housekeeping parameter report periodically,
according to the collection interval specified for that definition.

NOTE For the collection interval, refer to requirement
6.3.3.2c.

e. For each housekeeping parameter report structure for which periodic
generation is enabled, the housekeeping reporting subservice shall collect
one sampled value for each simply commutated parameter during the
collection interval specified for the corresponding housekeeping
parameter report structure.

f. For each housekeeping parameter report structure for which periodic
generation is enabled, the housekeeping reporting subservice shall collect
all sampled values for each super commutated parameter during the
collection interval specified for the corresponding housekeeping
parameter report structure, in accordance with a sub-period equal to the
collection interval divided by the corresponding "super commutated
sample repetition number".

NOTE If the sub-period is shorter than the period at
which the parameter value is updated by the on-
board software, some sampled values will be
identical.

6.3.3.4 Managing the periodic generation of housekeeping
parameter reports

6.3.3.4.1 Enable the periodic generation of housekeeping parameter
reports

a. The housekeeping reporting subservice capability to enable the periodic
generation of housekeeping parameter reports shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,5] enable the periodic generation of
housekeeping parameter reports".

NOTE 2 Enabling and disabling the periodic generation of
housekeeping parameter reports is required if the
housekeeping service includes a parameter
functional reporting configuration subservice, refer
to clause 6.3.5.

NOTE 3 For the capability to disable the periodic
generation of housekeeping parameter reports,
refer to clause 6.3.3.4.2.

b. Each request to enable the periodic generation of housekeeping
parameter reports shall contain one or more instructions to enable the
periodic generation of a housekeeping parameter report.

82

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to enable the periodic generation of a housekeeping
parameter report shall contain:
1. the housekeeping parameter report structure identifier to enable.

d. The housekeeping reporting subservice shall reject any instruction to
enable the periodic generation of a housekeeping parameter report if:
1. that instruction refers to a housekeeping parameter report

structure that is unknown.

e. For each instruction to enable the periodic generation of a housekeeping
parameter report that it rejects, the housekeeping reporting subservice
shall generate the failed start of execution notification for that instruction.

f. The housekeeping reporting subservice shall process any valid
instruction that is contained within a request to enable the periodic
generation of housekeeping parameter reports regardless of the presence
of faulty instructions.

g. For each valid instruction to enable the periodic generation of a
housekeeping parameter report, the housekeeping reporting subservice
shall:
1. set the periodic generation action status of that housekeeping

parameter report structure to "enabled".

6.3.3.4.2 Disable the periodic generation of housekeeping parameter
reports

a. The housekeeping reporting subservice shall provide the capability to
disable the periodic generation of housekeeping parameter reports if the
capability to enable the periodic generation of housekeeping parameter
reports is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,6] disable the periodic generation of
housekeeping parameter reports".

NOTE 2 For the capability to enable the periodic generation
of housekeeping parameter report, refer to clause
6.3.3.4.1.

b. Each request to disable the periodic generation of housekeeping
parameter reports shall contain one or more instructions to disable the
periodic generation of a housekeeping parameter report.

c. Each instruction to disable the periodic generation of a housekeeping
parameter report shall contain:
1. the housekeeping parameter report structure identifier to disable.

d. The housekeeping reporting subservice shall reject any instruction to
disable the periodic generation of a housekeeping parameter report if:
1. that instruction refers to a housekeeping parameter report

structure that is unknown.

e. For each instruction to disable the periodic generation of a housekeeping
parameter report that it rejects, the housekeeping reporting subservice
shall generate the failed start of execution notification for that instruction.

83

ECSS-E-ST-70-41C
15 April 2016

f. The housekeeping reporting subservice shall process any valid
instruction that is contained within a request to disable the periodic
generation of housekeeping parameter reports regardless of the presence
of faulty instructions.

g. For each valid instruction to disable the periodic generation of a
housekeeping parameter report, the housekeeping reporting subservice
shall:
1. set the periodic generation action status of that housekeeping

parameter report structure to "disabled".

6.3.3.5 Creating and deleting housekeeping parameter
report structures

6.3.3.5.1 Create a housekeeping parameter report structure

a. The housekeeping reporting subservice capability to create a
housekeeping parameter report structure shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,1] create a housekeeping parameter report
structure".

NOTE 2 For the capability to delete housekeeping
parameter report structures, refer to clause
6.3.3.5.2.

b. Each request to create a housekeeping parameter report structure shall
contain exactly one instruction to create a housekeeping parameter report
structure.

c. Each instruction to create a housekeeping parameter report structure
shall contain:
1. the housekeeping parameter report structure identifier to create;
2. the collection interval;
3. the list of simply commutated parameters in the required order;
4. the list of super commutated parameter sets in the required order.

NOTE 1 The ordering of the simply and super commutated
parameter sets corresponds to the order of the
corresponding sampled values in the
housekeeping parameter reports.

NOTE 2 See clause 6.3.3.2.

d. The housekeeping reporting subservice shall reject any request to create a
housekeeping parameter report structure if any of the following
conditions occurs:
1. that request contains an instruction that refers to a housekeeping

parameter report structure that is already in use;
2. the same parameter is identified more than once in that request;
3. the resources allocated to the hosting of housekeeping parameter

report structures are exceeded.

84

ECSS-E-ST-70-41C
15 April 2016

e. For each request to create a housekeeping parameter report structure that
is rejected, the housekeeping reporting subservice shall generate a failed
start of execution notification.

f. For each valid instruction to create a housekeeping parameter report
structure, the housekeeping reporting subservice shall:
1. create that definition;
2. set its periodic generation action status to "disabled".

6.3.3.5.2 Delete housekeeping parameter report structures

a. The housekeeping reporting subservice shall provide the capability to
delete housekeeping parameter report structures if the capability to
create a housekeeping report definition is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,3] delete housekeeping parameter report
structures".

NOTE 2 This Standard assumes that all housekeeping
parameter report structures (predefined or created
by request) can be deleted.

NOTE 3 For the capability to create a housekeeping
parameter report structure, refer to clause 6.3.3.5.1.

b. Each request to delete housekeeping parameter report structures shall
contain one or more instructions to delete a housekeeping parameter
report structure.

c. Each instruction to delete a housekeeping parameter report structure
shall contain:
1. the housekeeping parameter report structure identifier to delete.

d. The housekeeping reporting subservice shall reject any instruction to
delete a housekeeping parameter report structure if any of the following
conditions occurs:
1. that instruction refers to a housekeeping parameter report

structure that is unknown;
2. that instruction refers to a housekeeping parameter report

structure whose periodic generation action status is "enabled".

e. For each instruction to delete a housekeeping parameter report structure
that it rejects, the housekeeping reporting subservice shall generate the
failed start of execution notification for that instruction.

f. The housekeeping reporting subservice shall process any valid
instruction that is contained within a request to delete housekeeping
parameter report structures regardless of the presence of faulty
instructions.

g. For each valid instruction to delete a housekeeping parameter report
structure, the housekeeping reporting subservice shall:
1. delete the housekeeping parameter report structure referred to by

that instruction.

85

ECSS-E-ST-70-41C
15 April 2016

6.3.3.6 Report housekeeping parameter report structures
a. The housekeeping reporting subservice capability to report housekeeping

parameter report structures shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,9] report housekeeping parameter report
structures". The responses, one for each
instruction, are data reports of message type
"TM[3,10] housekeeping parameter report
structure report".

NOTE 2 That capability requires the capability for that
subservice to create a housekeeping parameter
report type (refer to clause 6.3.3.5.1).

NOTE 3 All housekeeping parameter report structures are
available for reporting, i.e. including those that are
predefined on-board.

b. Each request to report housekeeping parameter report structures shall
contain one or more instructions to report a housekeeping parameter
report structure.

c. Each instruction to report a housekeeping parameter report structure
shall contain:
1. the housekeeping parameter report structure identifier to report.

d. The housekeeping reporting subservice shall reject any instruction to
report a housekeeping parameter report structure if:
1. that instruction refers to a housekeeping parameter report

structure that is unknown.

e. For each instruction to report a housekeeping parameter report structure
that it rejects, the housekeeping reporting subservice shall generate the
failed start of execution notification for that instruction.

f. The housekeeping reporting subservice shall process any valid
instruction that is contained within a request to report housekeeping
parameter report structures regardless of the presence of faulty
instructions.

g. For each valid instruction to report a housekeeping parameter report
structure, the housekeeping reporting subservice shall generate a single
housekeeping parameter report structure report that contains exactly one
housekeeping parameter report structure notification that includes:
1. the housekeeping parameter report structure identifier;
2. If the housekeeping reporting subservice provides the capability

for managing the periodic generation of housekeeping parameter
reports, the periodic generation action status;

3. the collection interval;
4. the ordered list of simply commutated parameters;
5. the ordered list of super commutated parameter sets.

86

ECSS-E-ST-70-41C
15 April 2016

NOTE For item 2 capability for managing the periodic
generation of housekeeping parameter reports,
refer to clause 6.3.3.4.

6.3.3.7 Generate a one shot report for housekeeping
parameter report structures

a. The housekeeping reporting subservice capability to generate a one shot
report for housekeeping parameter report structures shall be declared
when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[3,27] generate a one shot report for
housekeeping parameter report structures". The
responses, one for each instruction, are data
reports of message type "TM[3,25] housekeeping
parameter report".

b. Each request to generate a one shot report for housekeeping parameter
report structures shall contain one or more instructions to generate a one
shot report for a housekeeping parameter report structure.

c. Each instruction to generate a one shot report for a housekeeping
parameter report structure shall contain:
1. the housekeeping parameter report structure identifier of the

report to generate.

d. The housekeeping reporting subservice shall reject any instruction to
generate a one shot report for a housekeeping parameter report structure
if:
1. that instruction refers to a housekeeping parameter report

structure that is unknown.

e. For each instruction to generate a one shot report for a housekeeping
parameter report structure that it rejects, the housekeeping reporting
subservice shall generate the failed start of execution notification for that
instruction.

f. The housekeeping reporting subservice shall process any valid
instruction that is contained within a request to generate a one shot
report for housekeeping parameter report structures regardless of the
presence of faulty instructions.

g. For each valid instruction to generate a one shot report for a
housekeeping parameter report structure, the housekeeping reporting
subservice shall generate a single housekeeping parameter report.

NOTE 1 The housekeeping parameter report is defined in
clause 6.3.3.3.

NOTE 2 This Standard does not prescribe the behaviour of
the housekeeping reporting subservice when the
housekeeping parameter report includes super
commutated parameters. The content of the super
commutated part of the housekeeping parameter
reports is implementation dependent.

87

ECSS-E-ST-70-41C
15 April 2016

6.3.3.8 Append parameters to a housekeeping parameter
report structure

a. The housekeeping reporting subservice capability to append parameters
to a housekeeping parameter report structure shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,29] append parameters to a housekeeping
parameter report structure".

NOTE 2 That capability requires the capability for that
subservice to create a housekeeping parameter
report type (refer to clause 6.3.3.5.1).

NOTE 3 This Standard assumes that all housekeeping
parameter report structures (predefined or created
by request) can be modified by that request.

b. Each request to append parameters to a housekeeping parameter report
structure shall contain exactly one instruction to append parameters to a
housekeeping parameter report structure.

c. Each instruction to append parameters to a housekeeping parameter
report structure shall contain:
1. the housekeeping parameter report structure identifier to modify;
2. if the housekeeping parameter report structure only includes

simply commutated parameters, at least one of:
(a) the ordered list of simply commutated parameters to add;
(b) the ordered list of super commutated parameter sets to add;

3. if the housekeeping parameter report structure includes super
commutated parameters:
(a) the ordered list of super commutated parameter sets to add.

d. The housekeeping reporting subservice shall reject any request to append
parameters to a housekeeping parameter report structure if any of the
following conditions occurs:
1. the periodic generation action status of the housekeeping

parameter report is "enabled";
2. that request contains an instruction that refers to a housekeeping

parameter report structure that is unknown;
3. that request contains an instruction that refers to a parameter that

is unknown;
4. that request contains an instruction that refers to simply

commutated parameters to add to a definition that contains super
commutated parameters;

5. that request contains an instruction that refers to a parameter that
is already present in the definition;

6. the resources allocated to the hosting of housekeeping parameter
report structures are exceeded.

e. For each request to append parameters to a housekeeping parameter
report structure that is rejected, the housekeeping reporting subservice
shall generate a failed start of execution notification.

88

ECSS-E-ST-70-41C
15 April 2016

f. For each valid instruction to append parameters to a housekeeping
parameter report structure, the housekeeping reporting subservice shall:
1. add, at the end of the housekeeping parameter report structure, the

list of simply commutated parameters, if any, followed by the list
of super commutated parameter sets, if any.

6.3.3.9 Modify the collection interval of housekeeping
parameter report structures

a. The housekeeping reporting subservice capability to modify the
collection interval of housekeeping parameter report structures shall be
declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,31] modify the collection interval of
housekeeping parameter report structures".

NOTE 2 This Standard assumes that all housekeeping
parameter report structures (predefined or created
by request) can be modified by that request.

b. Each request to modify the collection interval of housekeeping parameter
report structures shall contain one or more instructions to modify the
collection interval of a housekeeping parameter report structure.

c. Each instruction to modify the collection interval of a housekeeping
parameter report structure shall contain:
1. the housekeeping parameter report structure identifier to modify;
2. the new collection interval.

NOTE The collection interval is expressed as units of the
minimum sampling interval, refer to requirement
5.4.3.2c.

d. The housekeeping reporting subservice shall reject any instruction to
modify the collection interval of a housekeeping parameter report
structure if:
1. that instruction refers to a housekeeping parameter report

structure that is unknown.

e. For each instruction to modify the collection interval of a housekeeping
parameter report structure that it rejects, the housekeeping reporting
subservice shall generate the failed start of execution notification for that
instruction.

f. The housekeeping reporting subservice shall process any valid
instruction that is contained within a request to modify the collection
interval of housekeeping parameter report structures regardless of the
presence of faulty instructions.

g. For each valid instruction to modify the collection interval of a
housekeeping parameter report structure, the housekeeping reporting
subservice shall:
1. set the collection interval of that housekeeping parameter report

structure to the new collection interval specified in that instruction.

89

ECSS-E-ST-70-41C
15 April 2016

6.3.3.10 Report the periodic generation properties of
housekeeping parameter report structures

a. The housekeeping reporting subservice capability to report the periodic
generation properties of housekeeping parameter report structures shall
be declared when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[3,33] report the periodic generation properties
of housekeeping parameter report structures". The
responses are data reports of message type
"TM[3,35] housekeeping parameter report periodic
generation properties report".

b. Each request to report the periodic generation properties of
housekeeping parameter report structures shall contain one or more
instructions to report the periodic generation properties of a
housekeeping parameter report structure.

c. Each instruction to report the periodic generation properties of a
housekeeping parameter report structure shall contain:
1. the housekeeping parameter report structure identifier to report.

d. The housekeeping reporting subservice shall reject any instruction to
report the periodic generation properties of a housekeeping parameter
report structure if:
1. that instruction refers to a housekeeping parameter report

structure that is unknown.

e. For each instruction to report the periodic generation properties of a
housekeeping parameter report structure that it rejects, the housekeeping
reporting subservice shall generate the failed start of execution
notification for that instruction.

f. The housekeeping reporting subservice shall process any valid
instruction that is contained within a request to report the periodic
generation properties of housekeeping parameter report structures
regardless of the presence of faulty instructions.

g. For each valid instruction to report the periodic generation properties of
a housekeeping parameter report structure, the housekeeping reporting
subservice shall generate a single housekeeping parameter report
periodic generation properties notification that includes:
1. the housekeeping parameter report structure identifier;
2. the related periodic generation action status;
3. the related collection interval.

h. For each valid request to report the periodic generation properties of
housekeeping parameter report structures, the housekeeping reporting
subservice shall generate a single housekeeping parameter report
periodic generation properties report that contains all related
housekeeping parameter report periodic generation properties
notifications.

90

ECSS-E-ST-70-41C
15 April 2016

6.3.3.11 Subservice observables
 This Standard does not define any observables for the housekeeping reporting

subservice.

6.3.4 Diagnostic reporting subservice

6.3.4.1 Parameter accessibility
a. The diagnostic reporting subservice shall be able to collect and report the

sampled values of each on-board parameter that is accessible to the
application process that hosts that subservice.

6.3.4.2 Diagnostic parameter report structure
a. The on-board resources allocated to the diagnostic reporting subservice

to host the diagnostic parameter report structures shall be declared when
specifying that subservice.

NOTE The number of diagnostic parameter report
structures that can be hosted by the subservice
depends on these resources and the size (in
parameter number) of the diagnostic parameter
report structures.

b. The on-board resources allocated to the contemporaneously evaluation of
diagnostic parameter report structures used by the diagnostic reporting
subservice shall be declared when specifying that subservice.

NOTE The number of diagnostic parameter report
structures that can be contemporaneously
evaluated by the subservice depends on these
resources and the overall number of sampled
values required for each corresponding report.

c. Each diagnostic parameter report structure shall consist of:
1. a diagnostic parameter report structure identifier;
2. the collection interval used to generate the corresponding reports;
3. an ordered list of zero or more simply commutated parameters;
4. an ordered list of zero or more super commutated parameter sets,

each set consisting of:
(a) the number of sampled values to report for each parameter

of that set, and
(b) the ordered list of one or more parameters contained within

that set;
5. a status indicating whether the periodic generation action of the

corresponding diagnostic parameter reports is enabled or disabled.
NOTE 1 The diagnostic parameter report structures are

uniquely identified by the combination of the
application process that hosts the diagnostic
reporting subservice provider and a diagnostic
parameter report structure identifier.

91

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 The collection interval is expressed as units of the
minimum sampling interval, refer to requirement
5.4.3.2c.

NOTE 3 For item 4(a), the number of sampled values to
report for each parameter of the set is named
"super commutated sample repetition number".

NOTE 4 For item 5, this status is named "housekeeping
parameter report periodic generation action
status".

6.3.4.3 Diagnostic parameter report
a. The diagnostic reporting subservice shall provide the capability for

generating diagnostic parameter reports.
NOTE The corresponding reports are data reports of

message type "TM[3,26] diagnostic parameter
report".

b. Each diagnostic parameter report shall contain exactly one diagnostic
parameter notification.

c. Each diagnostic parameter notification shall contain:
1. the diagnostic parameter report structure identifier;
2. in the specified order for simply commutated parameters, a single

sampled value for each simply commutated parameter;
3. in the specified order for super commutated parameter sets, for

each super commutated parameter set:
(a) the "super commutated sample repetition number" set of

sampled values.
NOTE 1 For the diagnostic parameter report structure, refer

to clause 6.3.3.2.
NOTE 2 For item 3(a), each set of sampled values is

composed of a single sampled value for each
parameter of the super commutated parameter set.
The sampled values are ordered according to the
ordering of the parameters within the
corresponding super commutated parameter set.
For example, for the super commutated parameter
set that contains 2 parameters i.e. A and B, if the
required number of sampled values is 2, each
report will contain "value 1 of A", "value 1 of B",
"value 2 of A", "value 2 of B" in that order.

d. For each diagnostic parameter report structure for which periodic
generation is enabled, the diagnostic reporting subservice shall generate
a corresponding diagnostic parameter report periodically, according to
the collection interval specified for that definition.

NOTE For the collection interval, refer to requirement
6.3.4.2c.

92

ECSS-E-ST-70-41C
15 April 2016

e. For each diagnostic parameter report structure for which periodic
generation is enabled, the diagnostic reporting subservice shall collect
one sampled value for each simply commutated parameter during the
collection interval specified for the corresponding diagnostic parameter
report structure.

f. For each diagnostic parameter report structure for which periodic
generation is enabled, the diagnostic reporting subservice shall collect all
sampled values for each super commutated parameter during the
collection interval specified for the corresponding diagnostic parameter
report structure, in accordance with a sub-period equal to the collection
interval divided by the corresponding "super commutated sample
repetition number".

NOTE If the collection interval is shorter than the period
at which the parameter value is updated by the on-
board software, some sampled values will be
identical.

6.3.4.4 Enable the periodic generation of diagnostic
parameter reports

a. The diagnostic reporting subservice shall provide the capability to enable
the periodic generation of diagnostic parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[3,7] enable the periodic generation of
diagnostic parameter reports".

NOTE 2 For the capability to disable the periodic
generation of diagnostic parameter reports, refer to
clause 6.3.4.5.

b. Each request to enable the periodic generation of diagnostic parameter
reports shall contain one or more instructions to enable the periodic
generation of a diagnostic parameter report.

c. Each instruction to enable the periodic generation of a diagnostic
parameter report shall contain:
1. the diagnostic parameter report structure identifier to enable.

d. The diagnostic reporting subservice shall reject any instruction to enable
the periodic generation of a diagnostic parameter report if:
1. that instruction refers to a diagnostic parameter report structure

that is unknown.

e. For each instruction to enable the periodic generation of a diagnostic
parameter report that it rejects, the diagnostic reporting subservice shall
generate the failed start of execution notification for that instruction.

f. The diagnostic reporting subservice shall process any valid instruction
that is contained within a request to enable the periodic generation of
diagnostic parameter reports regardless of the presence of faulty
instructions.

93

ECSS-E-ST-70-41C
15 April 2016

g. For each valid instruction to enable the periodic generation of a
diagnostic parameter report, the diagnostic reporting subservice shall:
1. set the periodic generation action status of that diagnostic

parameter report structure to "enabled".

6.3.4.5 Disable the periodic generation of diagnostic
parameter reports

a. The diagnostic reporting subservice shall provide the capability to
disable the periodic generation of diagnostic parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[3,8] disable the periodic generation of
diagnostic parameter reports".

NOTE 2 For the capability to enable the periodic generation
of diagnostic parameter reports, refer to clause
6.3.4.4.

b. Each request to disable the periodic generation of diagnostic parameter
reports shall contain one or more instructions to disable the periodic
generation of a diagnostic parameter report.

c. Each instruction to disable the periodic generation of a diagnostic
parameter report shall contain:
1. the diagnostic parameter report structure identifier to disable.

d. The diagnostic reporting subservice shall reject any instruction to disable
the periodic generation of a diagnostic parameter report if:
1. that instruction refers to a diagnostic parameter report structure

that is unknown.

e. For each instruction to disable the periodic generation of a diagnostic
parameter report that it rejects, the diagnostic reporting subservice shall
generate the failed start of execution notification for that instruction.

f. The diagnostic reporting subservice shall process any valid instruction
that is contained within a request to disable the periodic generation of
diagnostic parameter reports regardless of the presence of faulty
instructions.

g. For each valid instruction to disable the periodic generation of a
diagnostic parameter report, the diagnostic reporting subservice shall:
1. set the periodic generation action status of that diagnostic

parameter report structure to "disabled".

6.3.4.6 Create a diagnostic parameter report structure
a. The diagnostic reporting subservice shall provide the capability to create

a diagnostic parameter report structure.
NOTE 1 The corresponding requests are of message type

"TC[3,2] create a diagnostic parameter report
structure".

NOTE 2 For the capability to delete diagnostic parameter
report structures, refer to clause 6.3.4.7.

94

ECSS-E-ST-70-41C
15 April 2016

b. Each request to create a diagnostic parameter report structure shall
contain exactly one instruction to create a diagnostic parameter report
structure.

c. Each instruction to create a diagnostic parameter report structure shall
contain:
1. the diagnostic parameter report structure identifier to create;
2. the collection interval;
3. the list of simply commutated parameters in the required order;
4. the list of super commutated parameter sets in the required order.

NOTE 1 The ordering of the simply and super commutated
parameter sets corresponds to the order of the
corresponding sampled values in the diagnostic
parameter reports.

NOTE 2 See clause 6.3.4.2.

d. The diagnostic reporting subservice shall reject any request to create a
diagnostic parameter report structure if any of the following conditions
occurs:
1. that request contains an instruction that refers to a diagnostic

parameter report structure identifier that is already in use;
2. the same parameter is identified more than once in that request;
3. the resources allocated to the hosting of diagnostic parameter

report structures are exceeded.

e. For each request to create a diagnostic parameter report structure that is
rejected, the diagnostic reporting subservice shall generate a failed start
of execution notification.

f. For each valid instruction to create a diagnostic parameter report
structure, the diagnostic reporting subservice shall:
1. create a diagnostic parameter report structure, for the report

defined in that instruction;
2. set the periodic generation action status of the new diagnostic

parameter report structure to "disabled".

6.3.4.7 Delete diagnostic parameter report structures
a. The diagnostic reporting subservice shall provide the capability to delete

diagnostic parameter report structures.
NOTE 1 The corresponding requests are of message type

"TC[3,4] delete diagnostic parameter report
structures".

NOTE 2 This Standard assumes that all diagnostic
parameter report structures (predefined or created
by request) can be deleted.

NOTE 3 For the capability to create a diagnostic parameter
report structure, refer to clause 6.3.4.6.

95

ECSS-E-ST-70-41C
15 April 2016

b. Each request to delete diagnostic parameter report structures shall
contain one or more instructions to delete a diagnostic parameter report
structure.

c. Each instruction to delete a diagnostic parameter report structure shall
contain:
1. the diagnostic parameter report structure identifier to delete.

d. The diagnostic reporting subservice shall reject any instruction to delete a
diagnostic parameter report structure if any of the following conditions
occurs:
1. that instruction refers to a diagnostic parameter report structure

that is unknown;
2. that instruction refers to a diagnostic parameter report structure

whose periodic generation action status is "enabled".

e. For each instruction to delete a diagnostic parameter report structure that
it rejects, the diagnostic reporting subservice shall generate the failed
start of execution notification for that instruction.

f. The diagnostic reporting subservice shall process any valid instruction
that is contained within a request to delete diagnostic parameter report
structures regardless of the presence of faulty instructions.

g. For each valid instruction to delete a diagnostic parameter report
structure, the diagnostic reporting subservice shall:
1. delete the diagnostic parameter report structure referred to by that

instruction.

6.3.4.8 Report diagnostic parameter report structures
a. The diagnostic reporting subservice capability to report diagnostic

parameter report structures shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,11] report diagnostic parameter report
structures". The responses, one for each
instruction, are data reports of message type
"TM[3,12] diagnostic parameter report structure
report".

NOTE 2 That capability requires the capability for that
subservice to create a diagnostic parameter report
type (refer to clause 6.3.4.6).

NOTE 3 All diagnostic parameter report structures are
available for reporting, i.e. including those that are
predefined on-board.

b. Each request to report diagnostic parameter report structures shall
contain one or more instructions to report a diagnostic parameter report
structure.

c. Each instruction to report a diagnostic parameter report structure shall
contain:
1. the diagnostic parameter report structure identifier to report.

96

ECSS-E-ST-70-41C
15 April 2016

d. The diagnostic reporting subservice shall reject any instruction to report a
diagnostic parameter report structure if:
1. that instruction refers to a diagnostic parameter report structure

that is unknown.

e. For each instruction to report a diagnostic parameter report structure that
it rejects, the diagnostic reporting subservice shall generate the failed
start of execution notification for that instruction.

f. The diagnostic reporting subservice shall process any valid instruction
that is contained within a request to report diagnostic parameter report
structures regardless of the presence of faulty instructions.

g. For each valid instruction to report a diagnostic parameter report
structure, the diagnostic reporting subservice shall generate a single
diagnostic parameter report structure report that contains exactly one
diagnostic parameter report structure notification that includes:

1. the diagnostic parameter report structure identifier;

2. the periodic generation action status;
3. the collection interval;
4. the ordered list of simply commutated parameters;
5. the ordered list of super commutated parameter sets.

6.3.4.9 Generate a one shot report for diagnostic parameter
report structures

a. The diagnostic reporting subservice capability to generate a one shot
report for diagnostic parameter report structures shall be declared when
specifying that subservice.

NOTE The corresponding requests are of message type
"TC[3,28] generate a one shot report for diagnostic
parameter report structures". The responses, one
for each instruction, are data reports of message
type "TM[3,26] diagnostic parameter report".

b. Each request to generate a one shot report for diagnostic parameter
report structures shall contain one or more instructions to generate a one
shot report for a diagnostic parameter report structure.

c. Each instruction to generate a one shot report for a diagnostic parameter
report structure shall contain:
1. the diagnostic parameter report structure identifier of the report to

generate.

d. The diagnostic reporting subservice shall reject any instruction to
generate a one shot report for a diagnostic parameter report structure if:
1. that instruction refers to a diagnostic parameter report structure

that is unknown.

e. For each instruction to generate a one shot report for a diagnostic
parameter report structure that it rejects, the diagnostic reporting
subservice shall generate the failed start of execution notification for that
instruction.

97

ECSS-E-ST-70-41C
15 April 2016

f. The diagnostic reporting subservice shall process any valid instruction
that is contained within a request to generate a one shot report for
diagnostic parameter report structures regardless of the presence of
faulty instructions.

g. For each valid instruction to generate a one shot report for a diagnostic
parameter report structure, the diagnostic reporting subservice shall
generate a single diagnostic parameter report, independently of the
related diagnostic parameter report periodic generation action status.

NOTE The diagnostic parameter report is defined in
requirement 6.3.4.2c.

6.3.4.10 Append parameters to a diagnostic parameter
report structure

a. The diagnostic reporting subservice capability to append parameters to a
diagnostic parameter report structure shall be declared when specifying
that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,30] append parameters to a diagnostic
parameter report structure".

NOTE 2 That capability requires the capability for that
subservice to create a diagnostic parameter report
type (refer to clause 6.3.4.6).

NOTE 3 This Standard assumes that all diagnostic
parameter report structures (predefined or created
by request) can be modified by that request.

b. Each request to append parameters to a diagnostic parameter report
structure shall contain exactly one instruction to append parameters to a
diagnostic parameter report structure.

c. Each instruction to append parameters to a diagnostic parameter report
structure shall contain:
1. the diagnostic parameter report structure identifier to modify;
2. if the diagnostic parameter report structure only includes simply

commutated parameters, at least one of:
(a) the ordered list of simply commutated parameters to add;
(b) the ordered list of super commutated parameter sets to add;

3. if the diagnostic parameter report structure includes super
commutated parameters:
(a) the ordered list of super commutated parameter sets to add.

d. The diagnostic reporting subservice shall reject any request to append
parameters to a diagnostic parameter report structure if any of the
following conditions occurs:
1. the periodic generation action status of the diagnostic parameter

report is enabled;
2. that request contains an instruction that refers to a diagnostic

parameter report structure that is unknown;

98

ECSS-E-ST-70-41C
15 April 2016

3. that request contains an instruction that refers to a parameter that
is unknown;

4. that request contains an instruction that refers to simply
commutated parameters to add to a definition that contains super
commutated parameters;

5. that request contains an instruction that refers to a parameter that
is already present in the definition;

6. the resources allocated to the hosting of diagnostic parameter
report structures are exceeded.

e. For each request to append parameters to a diagnostic parameter report
structure that is rejected, the diagnostic reporting subservice shall
generate a failed start of execution notification.

f. For each valid instruction to append parameters to a diagnostic
parameter report structure, the diagnostic reporting subservice shall:
1. add, at the end of the diagnostic parameter report structure, the list

of simply commutated parameters, if any, followed by the list of
super commutated parameter sets, if any.

6.3.4.11 Modify the collection interval of diagnostic
parameter report structures

a. The diagnostic reporting subservice capability to modify the collection
interval of diagnostic parameter report structures shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,32] modify the collection interval of
diagnostic parameter report structures".

NOTE 2 This Standard assumes that all diagnostic
parameter report structures (predefined or created
by request) can be modified by that request.

b. Each request to modify the collection interval of diagnostic parameter
report structures shall contain one or more instructions to modify the
collection interval of a diagnostic parameter report structure.

c. Each instruction to modify the collection interval of a diagnostic
parameter report structure shall contain:
1. the diagnostic parameter report structure identifier to modify;
2. the new collection interval.

d. The diagnostic reporting subservice shall reject any instruction to modify
the collection interval of a diagnostic parameter report structure if:
1. that instruction refers to a diagnostic parameter report structure

that is unknown.

e. For each instruction to modify the collection interval of a diagnostic
parameter report structure that it rejects, the diagnostic reporting
subservice shall generate the failed start of execution notification for that
instruction.

99

ECSS-E-ST-70-41C
15 April 2016

f. The diagnostic reporting subservice shall process any valid instruction
that is contained within a request to modify the collection interval of
diagnostic parameter report structures regardless of the presence of
faulty instructions.

g. For each valid instruction to modify the collection interval of a diagnostic
parameter report structure, the diagnostic reporting subservice shall:
1. set the collection interval of that diagnostic parameter report

structure to the new collection interval specified in that instruction.

6.3.4.12 Report the periodic generation properties of
diagnostic parameter report structures

a. The diagnostic reporting subservice capability to report the periodic
generation properties of diagnostic parameter report structures shall be
declared when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[3,34] report the periodic generation properties
of diagnostic parameter report structures". The
responses are data reports of message type
"TM[3,36] diagnostic parameter report periodic
generation properties report".

b. Each request to report the periodic generation properties of diagnostic
parameter report structures shall contain one or more instructions to
report the periodic generation properties of a diagnostic parameter report
structure.

c. Each instruction to report the periodic generation properties of a
diagnostic parameter report structure shall contain:
1. the diagnostic parameter report structure identifier to report.

d. The diagnostic reporting subservice shall reject any instruction to report
the periodic generation properties of a diagnostic parameter report
structure if:
1. that instruction refers to a diagnostic parameter report structure

that is unknown.

e. For each instruction to report the periodic generation properties of a
diagnostic parameter report structure that it rejects, the diagnostic
reporting subservice shall generate the failed start of execution
notification for that instruction.

f. The diagnostic reporting subservice shall process any valid instruction
that is contained within a request to report the periodic generation
properties of diagnostic parameter report structures regardless of the
presence of faulty instructions.

g. For each valid instruction to report the periodic generation properties of
a diagnostic parameter report structure, the diagnostic reporting
subservice shall generate a single diagnostic parameter report periodic
generation properties notification that includes:
1. the diagnostic parameter report structure identifier;
2. the related periodic generation action status;

100

ECSS-E-ST-70-41C
15 April 2016

3. the related collection interval.

h. For each valid request to report the periodic generation properties of
diagnostic parameter report structures, the diagnostic reporting
subservice shall generate a single diagnostic parameter report periodic
generation properties report that contains all related diagnostic
parameter report periodic generation properties notifications.

6.3.4.13 Subservice observables
 This Standard does not define any observables for the diagnostic reporting

subservice.

6.3.5 Parameter functional reporting
configuration subservice

6.3.5.1 Accessibility
a. The parameter functional reporting configuration subservice shall be able

to control the generation of each housekeeping parameter report
generated by the housekeeping reporting subservices of the parent
housekeeping service.

b. The parameter functional reporting configuration subservice shall be able
to control the generation of each diagnostic parameter report generated
by the diagnostic reporting subservices of the parent housekeeping
service.

6.3.5.2 Parameter functional reporting definition
a. Each parameter functional reporting definition shall consist of:

1. the identifier of that parameter functional reporting definition;
2. a list of one or more parameter reporting entries.

b. Each parameter reporting entry of a parameter functional reporting
definition shall consist of:
1. the identification of a parameter report definition consisting of:

(a) if the housekeeping service is distributed on several on-
board application processes, the application process
identifier of that parameter report definition;

(b) an indication of the nature of the parameter report definition
as housekeeping or diagnostic;

(c) the identifier of the parameter report definition;
2. the periodic generation action status to apply to the parameter

report definition when that parameter functional reporting is
applied;

3. the collection interval to apply to the parameter report definition
when that parameter functional reporting is applied.
NOTE 1 The housekeeping reporting subservices and

diagnostic reporting subservices that can be
addressed by the parameter functional reporting

101

ECSS-E-ST-70-41C
15 April 2016

configuration subservice are those subservices of
the housekeeping service that includes that
parameter functional reporting configuration
subservice.

NOTE 2 For item 1(c), refer to requirements 6.3.3.2c.1 and
6.3.4.2c.1.

6.3.5.3 Apply parameter functional reporting
configurations

a. The parameter functional reporting configuration subservice shall
provide the capability to apply parameter functional reporting
configurations.

NOTE The corresponding requests are of message type
"TC[3,37] apply parameter functional reporting
configurations".

b. Each request to apply parameter functional reporting configurations shall
contain:
1. the configuration execution flag indicating whether the execution

of that request is exclusive or non-exclusive;
2. one or more instructions to apply a parameter functional reporting

configuration.
NOTE A configuration execution flag set to exclusive

implies that the periodic generation of all
housekeeping parameter reports and of all
diagnostic parameter reports that are defined
within the housekeeping service is disabled prior
to application of the parameter functional
reporting configuration.

c. The parameter functional reporting configuration subservice shall reject
any request to apply parameter functional reporting configurations if:
1. that request refers to an invalid configuration execution flag.

d. For each request to apply parameter functional reporting configurations
that is rejected, the parameter functional reporting configuration
subservice shall generate a failed start of execution notification.

e. Each instruction to apply a parameter functional reporting configuration
shall contain:
1. the parameter functional reporting definition identifier.

f. The parameter functional reporting configuration subservice shall reject
any instruction to apply a parameter functional reporting configuration
if:
1. that instruction refers to a parameter functional reporting

definition that is unknown.

g. For each instruction to apply a parameter functional reporting
configuration that it rejects, the parameter functional reporting
configuration subservice shall generate the failed start of execution
notification for that instruction.

102

ECSS-E-ST-70-41C
15 April 2016

h. For each request to apply parameter functional reporting configurations
that contains at least one valid instruction, the parameter functional
reporting configuration subservice shall:
1. if the configuration execution flag of that request is exclusive, set

the periodic generation action status of each enabled parameter
report of the housekeeping service to "disabled".
NOTE This implies that all enabled housekeeping

parameter reports of the housekeeping reporting
subservices hosted by the parent housekeeping
service and all enabled diagnostic parameter
reports of the diagnostic reporting subservices
hosted by that housekeeping service are disabled.
This disabling is executed before applying the
configurations in the parameter functional
reporting definitions identified in the instructions
of the request.

i. The parameter functional reporting configuration subservice shall
process any valid instruction that is contained within a request to apply
parameter functional reporting configurations regardless of the presence
of faulty instructions.

j. For each valid instruction to apply a parameter functional reporting
configuration, the parameter functional reporting configuration
subservice shall:
1. for each parameter report definition referenced by the parameter

functional reporting definition identified in that instruction,
instruct the corresponding housekeeping or diagnostic reporting
subservice:
(a) if the parameter report definition exists, to modify the

collection interval of that parameter report definition, and
(b) according to the periodic generation enabling or disabling

action specified for that parameter report definition, to
enable or to disable the periodic generation of the related
parameter reports.

k. For each valid instruction to apply a parameter functional reporting
configuration for which one or more parameter report definitions do not
exist, the parameter functional reporting subservice shall generate a
failed execution notification for that instruction.

6.3.5.4 Managing parameter functional reporting
definitions

6.3.5.4.1 Create a parameter functional reporting definition

a. The parameter functional reporting configuration subservice capability to
create a parameter functional reporting definition shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,38] create a parameter functional reporting
definition".

103

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For the capability to delete parameter functional
reporting definitions, refer to clause 6.3.5.4.2.

b. Each request to create a parameter functional reporting definition shall
contain exactly one instruction to create a parameter functional reporting
definition.

c. Each instruction to create a parameter functional reporting definition
shall contain:
1. the identifier of the parameter functional reporting definition to

create;
2. a list of one or more parameter reporting entries consisting of:

(a) if the housekeeping service is distributed on several on-
board application processes, the application process
identifier of that parameter report definition;

(b) an indication of the nature of the parameter report
definition;

(c) the identifier of the parameter report definition;
(d) the periodic generation action status;
(e) the collection interval.
NOTE For item 2(a), refer to requirement 6.3.5.2b.

d. The parameter functional reporting configuration subservice shall reject
any request to create a parameter functional reporting definition if:
1. that request contains an instruction that refers to an unknown

application process;
2. that request contains an instruction that refers to an unknown

parameter report definition;
3. that request contains an instruction that refers to a parameter

functional reporting definition that already exists;
4. that request contains more than one instruction for the same

parameter report definition.

e. For each request to create a parameter functional reporting definition that
is rejected, the parameter functional reporting configuration subservice
shall generate a failed start of execution notification.

f. For each valid instruction to create a parameter functional reporting
definition, the parameter functional reporting configuration subservice
shall:
1. create a new parameter functional reporting definition.

6.3.5.4.2 Delete parameter functional reporting definitions

a. The parameter functional reporting configuration subservice shall
provide the capability to delete parameter functional reporting
definitions if the capability to create a parameter functional reporting
definition is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,39] delete parameter functional reporting
definitions".

104

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For the capability to create a parameter functional
reporting definition, refer to clause 6.3.5.4.1.

b. Each request to delete parameter functional reporting definitions shall
contain one or more instructions to delete a parameter functional
reporting definition.

c. Each instruction to delete a parameter functional reporting definition
shall contain:
1. the identifier of the parameter functional reporting definition to

delete.

d. The parameter functional reporting configuration subservice shall reject
any instruction to delete a parameter functional reporting definition if:
1. that instruction refers to a parameter functional reporting

definition that is unknown.

e. For each instruction to delete a parameter functional reporting definition
that it rejects, the parameter functional reporting configuration
subservice shall generate the failed start of execution notification for that
instruction.

f. The parameter functional reporting configuration subservice shall
process any valid instruction that is contained within a request to delete
parameter functional reporting definitions regardless of the presence of
faulty instructions.

g. For each valid instruction to delete a parameter functional reporting
definition, the parameter functional reporting configuration subservice
shall:
1. delete that definition.

6.3.5.5 Report parameter functional reporting definitions
a. The parameter functional reporting configuration subservice capability to

report parameter functional reporting definitions shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,40] report parameter functional reporting
definitions". The responses, one for each
instruction, are data reports of message type
"TM[3,41] parameter functional reporting
definition report".

NOTE 2 That capability requires the capability for that
subservice to create a parameter functional
reporting definition (refer to clause 6.3.5.4.1).

b. Each request to report parameter functional reporting definitions shall
contain one or more instructions to report a parameter functional
reporting definition.

c. Each instruction to report a parameter functional reporting definition
shall contain:
1. the identifier of the parameter functional reporting definition to

report.

105

ECSS-E-ST-70-41C
15 April 2016

d. The parameter functional reporting configuration subservice shall reject
any instruction to report a parameter functional reporting definition if:
1. that instruction refers to a parameter functional reporting

definition that is unknown.

e. For each instruction to report a parameter functional reporting definition
that it rejects, the parameter functional reporting configuration
subservice shall generate the failed start of execution notification for that
instruction.

f. The parameter functional reporting configuration subservice shall
process any valid instruction that is contained within a request to report
parameter functional reporting definitions regardless of the presence of
faulty instructions.

g. For each valid instruction to report a parameter functional reporting
definition, the parameter functional reporting configuration subservice
shall generate a single parameter functional reporting definition report
that contains:
1. the identifier of the parameter functional reporting definition;
2. for each related parameter reporting entry, exactly one parameter

functional reporting definition notification, that includes:
(a) if the housekeeping service is distributed on several on-

board application processes, the application process
identifier;

(b) an indication of the nature of the parameter report definition
as housekeeping or diagnostic;

(c) the identifier of the parameter report definition;
(d) the periodic generation action status;
(e) the collection interval.

6.3.5.6 Modifying the parameter functional reporting
definitions

6.3.5.6.1 Add parameter report definitions to a parameter functional
reporting definition

a. The parameter functional reporting configuration subservice capability to
add parameter report definitions to a parameter functional reporting
definition shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,42] add parameter report definitions to a
parameter functional reporting definition".

NOTE 2 That capability requires the capability for that
subservice to create a parameter functional
reporting definition (refer to clause 6.3.5.4.1).

NOTE 3 For the capability to remove parameter report
definitions from a parameter functional reporting
definition, refer to clause 6.3.5.6.2.

106

ECSS-E-ST-70-41C
15 April 2016

b. Each request to add parameter report definitions to a parameter
functional reporting definition shall contain:
1. the identifier of the parameter functional reporting definition;
2. one or more instructions to add a parameter report definition to a

parameter functional reporting definition.

c. The parameter functional reporting configuration subservice shall reject
any request to add parameter report definitions to a parameter functional
reporting definition if any of the following conditions occurs:
1. that request refers to a parameter functional reporting definition

that is unknown;
2. that request contains more than one instruction for the same

parameter report definition.

d. For each request to add parameter report definitions to a parameter
functional reporting definition that is rejected, the parameter functional
reporting configuration subservice shall generate a failed start of
execution notification.

e. Each instruction to add a parameter report definition to a parameter
functional reporting definition shall contain:
1. the parameter report entry to add that consists of:

(a) if the housekeeping service is distributed on several on-
board application processes, the application process
identifier;

(b) an indication of the nature of the parameter report
definition;

(c) the identifier of the parameter report definition;
(d) the periodic generation action status;
(e) the collection interval.
NOTE For item 1(a), refer to requirement 6.3.5.2b.

f. The parameter functional reporting configuration subservice shall reject
any instruction to add a parameter report definition to a parameter
functional reporting definition if:
1. that instruction refers to a parameter report definition that is

already in that parameter functional reporting definition.

g. For each instruction to add a parameter report definition to a parameter
functional reporting definition that it rejects, the parameter functional
reporting configuration subservice shall generate the failed start of
execution notification for that instruction.

h. The parameter functional reporting configuration subservice shall
process any valid instruction that is contained within a request to add
parameter report definitions to a parameter functional reporting
definition regardless of the presence of faulty instructions.

i. For each valid instruction to add a parameter report definition to a
parameter functional reporting definition, the parameter functional
reporting configuration subservice shall:
1. add the related definition.

107

ECSS-E-ST-70-41C
15 April 2016

6.3.5.6.2 Remove parameter report definitions from a parameter
functional reporting definition

a. The parameter functional reporting configuration subservice shall
provide the capability to remove parameter report definitions from a
parameter functional reporting definition if the capability to add
parameter report definitions to a parameter functional reporting
definition is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[3,43] remove parameter report definitions
from a parameter functional reporting definition".

NOTE 2 For the capability to add parameter report
definitions to a parameter functional reporting
definition, refer to clause 6.3.5.6.1.

b. Each request to remove parameter report definitions from a parameter
functional reporting definition shall contain:
1. the parameter functional reporting definition identifier;
2. one or more instructions to remove a parameter report definition

from a parameter functional reporting definition.

c. The parameter functional reporting configuration subservice shall reject
any request to remove parameter report definitions from a parameter
functional reporting definition if:
1. that request refers to a parameter functional reporting definition

that is unknown.

d. For each request to remove parameter report definitions from a
parameter functional reporting definition that is rejected, the parameter
functional reporting configuration subservice shall generate a failed start
of execution notification.

e. Each instruction to remove a parameter report definition from a
parameter functional reporting definition shall contain:
1. the identification of the parameter reporting definition to remove,

consisting of:
(a) if the housekeeping service is distributed on several on-

board application processes, the application process
identifier;

(b) an indication of the nature of the parameter report definition
as housekeeping or diagnostic;

(c) the identifier of the parameter report definition.
NOTE For item 1(a), refer to requirement 6.3.5.2b.

f. The parameter functional reporting configuration subservice shall reject
any instruction to remove a parameter report definition from a parameter
functional reporting definition if:
1. that instruction refers to a parameter report definition that is not in

that parameter functional reporting definition.

g. For each instruction to remove a parameter report definition from a
parameter functional reporting definition that it rejects, the parameter

108

ECSS-E-ST-70-41C
15 April 2016

functional reporting configuration subservice shall generate the failed
start of execution notification for that instruction.

h. The parameter functional reporting configuration subservice shall
process any valid instruction that is contained within a request to remove
parameter report definitions from a parameter functional reporting
definition regardless of the presence of faulty instructions.

i. For each valid instruction to remove a parameter report definition from a
parameter functional reporting definition, the parameter functional
reporting configuration subservice shall:
1. remove that definition.

6.3.5.6.3 Modify the periodic generation properties of parameter report
definitions of a parameter functional reporting definition

a. The parameter functional reporting configuration subservice capability to
modify the periodic generation properties of parameter report definitions
of a parameter functional reporting definition shall be declared when
specifying that subservice.

NOTE The corresponding requests are of message type
"TC[3,44] modify the periodic generation
properties of parameter report definitions of a
parameter functional reporting definition".

b. Each request to modify the periodic generation properties of parameter
report definitions of a parameter functional reporting definition shall
contain:
1. the identifier of the parameter functional reporting definition to

modify;
2. one or more instructions to modify the periodic generation

properties of a parameter report definition of a parameter
functional reporting definition.

c. The parameter functional reporting configuration subservice shall reject
any request to modify the periodic generation properties of parameter
report definitions of a parameter functional reporting definition if:
1. that request refers to a parameter functional reporting definition

that is unknown.

d. For each request to modify the periodic generation properties of
parameter report definitions of a parameter functional reporting
definition that is rejected, the parameter functional reporting
configuration subservice shall generate a failed start of execution
notification.

e. Each instruction to modify the periodic generation properties of a
parameter report definition of a parameter functional reporting definition
shall contain:
1. if the housekeeping service is distributed on several on-board

application processes, the application process identifier of that
parameter report definition;

2. an indication of the nature of the parameter report definition as
housekeeping or diagnostic;

109

ECSS-E-ST-70-41C
15 April 2016

3. the identifier of the parameter report definition;
4. the periodic generation action status;
5. the collection interval.

NOTE For item 1(a), refer to requirement 6.3.5.2b.

f. The parameter functional reporting configuration subservice shall reject
any instruction to modify the periodic generation properties of a
parameter report definition of a parameter functional reporting definition
if:
1. that instruction refers to a parameter report definition that is not in

that parameter functional reporting definition

g. For each instruction to modify the periodic generation properties of a
parameter report definition of a parameter functional reporting definition
that it rejects, the parameter functional reporting configuration
subservice shall generate the failed start of execution notification for that
instruction.

h. The parameter functional reporting configuration subservice shall
process any valid instruction that is contained within a request to modify
the periodic generation properties of parameter report definitions of a
parameter functional reporting definition regardless of the presence of
faulty instructions.

i. For each valid instruction to modify the periodic generation properties of
a parameter report definition of a parameter functional reporting
definition, the parameter functional reporting configuration subservice
shall:
1. modify the related parameter report entry by:

(a) changing the periodic generation action status to the
supplied value;

(b) changing the collection interval to the supplied value.

6.3.5.7 Subservice observables
 This Standard does not define any observables for the parameter functional

reporting configuration subservice.

110

ECSS-E-ST-70-41C
15 April 2016

6.4 ST[04] parameter statistics reporting

6.4.1 Scope

6.4.1.1 General
 The parameter statistics reporting service type provides the capability to

evaluate statistics on-board for a list of on-board parameters. The maximum,
minimum, mean and standard deviation values of each of these on-board
parameters during a time interval is reported to the ground system.

 This can, for example, be used to reduce the quantity of engineering data that is
systematically reported to the ground system.

 This service type is especially appropriate for missions with limited ground
coverage (e.g. low Earth orbiter), where a statistics report can be used to
provide a summary of the behaviour of parameters during the previous period
of "no contact".

 The parameter statistics reporting service type defines a single standardized
subservice type, i.e. the parameter statistics reporting subservice type.

6.4.1.2 Parameter statistics reporting subservice
 The parameter statistics reporting subservice type includes optional capability

to modify the list of evaluated parameters and their associated time intervals.

6.4.2 Service layout

6.4.2.1 Subservice

6.4.2.1.1 Parameter statistics reporting subservice

a. Each parameter statistics reporting service shall contain at least one
parameter statistics reporting subservice.

6.4.2.2 Application process
a. Each application process shall host at most one parameter statistics

reporting subservice provider.

6.4.3 Parameter statistics definition

6.4.3.1 General
a. The maximum number of parameter statistics definitions that the

parameter statistics reporting subservice can contemporaneously
evaluate at any time shall be declared when specifying that subservice.

111

ECSS-E-ST-70-41C
15 April 2016

b. Each parameter statistics definition shall contain:
1. the identification of the parameter for which statistics are

evaluated;
2. the related sampling interval.

c. For each parameter, at most one parameter statistics definition shall be
used at any time by the parameter statistics reporting subservice for that
parameter.

6.4.3.2 Statistic types
a. The parameter statistics reporting subservice shall support the evaluation

of the following statistic types:
1. the maximum value evaluation statistic type;
2. the minimum value evaluation statistic type;
3. the mean value evaluation statistic type.

b. Whether the parameter statistics reporting subservice supports the
standard deviation evaluation statistic type shall be declared when
specifying that subservice.

c. For each parameter for which statistics are evaluated, the parameter
statistics reporting subservice shall evaluate, at any time, all supported
types of statistics.

6.4.3.3 Sampling interval
a. For each parameter that statistics are evaluated, the default sampling

interval that the parameter statistics reporting subservice uses for that
parameter shall be declared when specifying that subservice.

6.4.4 Reset the parameter statistics
a. The parameter statistics reporting subservice shall provide the capability

to reset the parameter statistics evaluation on request.
NOTE 1 The corresponding requests are of message type

"TC[4,3] reset the parameter statistics".
NOTE 2 In this case, the resetting of the parameter statistics

is independent of the generation of a parameter
statistics report.

b. Each request to reset the parameter statistics shall contain exactly one
instruction to reset the parameter statistics.

NOTE The instructions to reset the parameter statistics
contain no argument.

c. For each valid instruction to reset the parameter statistics, the parameter
statistics reporting subservice shall:
1. stop the evaluation of parameter statistics;
2. clear any results accumulated;
3. restart the evaluation process.

112

ECSS-E-ST-70-41C
15 April 2016

NOTE The resetting of the parameter statistics can also
result from the request to report the parameter
statistics (refer to clause 6.4.5.1).

6.4.5 On-request parameter statistics reporting

6.4.5.1 Capability
a. The parameter statistics reporting subservice shall provide exactly one of

the following capabilities:
1. the capability to explicitly state in each request to report the

parameter statistics, whether or not to reset the parameter statistics
after the generation of the parameter statistics report;

2. the capability to automatically reset the parameter statistics after
responding to each request to report the parameter statistics.

b. Whether the parameter statistics reporting subservice provides the
capability to explicitly state in each request to report the parameter
statistics, whether or not to reset the parameter statistics after the
generation of the parameter statistics report shall be declared when
specifying that subservice.

c. Whether the parameter statistics reporting subservice provides the
capability to automatically reset the parameter statistics after responding
to each request to report the parameter statistics shall be declared when
specifying that subservice.

6.4.5.2 Report the parameter statistics
a. The parameter statistics reporting subservice shall provide the capability

for on-request reporting of the results of the parameter statistics
evaluation.

NOTE 1 The corresponding requests are of message type
"TC[4,1] report the parameter statistics". The
responses are data reports of message type
"TM[4,2] parameter statistics report" (refer to
clause 6.4.5.3).

NOTE 2 Parameter statistics reports are also generated by
the periodic parameter statistics reporting
specified in clause 6.4.6.

b. Each request to report the parameter statistics shall contain:
1. if the subservice provides the capability to explicitly state in each

request to report the parameter statistics, whether or not to reset
the parameter statistics after the generation of the parameter
statistics report, the resetting indication.

2. exactly one instruction to report the parameter statistics.
NOTE 1 For the capability in item 1, refer to requirement

6.4.5.1b.
NOTE 2 The instructions to report the parameter statistics

contain no argument.

113

ECSS-E-ST-70-41C
15 April 2016

c. For each valid instruction to report the parameter statistics, the
parameter statistics reporting subservice shall generate a single
parameter statistics report.

NOTE For the parameter statistics report, refer to clause
6.4.5.3.

d. For each valid request to report the parameter statistics, after executing
the instruction to report the parameter statistics, the parameter statistics
reporting subservice shall reset the parameter statistics if:
1. that request explicitly indicates that reset, or
2. that subservice is configured to automatically reset the evaluation

of the parameter statistics after responding to each request to
report the parameter statistics.
NOTE 1 For item 1, refer to requirement 6.4.5.1b.
NOTE 2 For item 2, refer to requirement 6.4.5.1c.

6.4.5.3 Parameter statistics report
a. The parameter statistics reporting subservice shall provide the capability

to generate parameter statistics reports.
NOTE 1 The corresponding reports are data reports of

message type "TM[4,2] parameter statistics report".
NOTE 2 Parameter statistics reports are generated in

response to the requests to report parameter
statistics specified in clause 6.4.5.2. They are also
generated by the periodic parameter statistics
reporting specified in clause 6.4.6.

b. When generating a parameter statistics report the parameter statistics
reporting subservice shall generate a single parameter statistic
notification for each parameter for which the subservice has sampled at
least one value since the statistics were last reset.

c. Each parameter statistic notification shall contain:
1. the identifier of the sampled parameter;
2. the number of samples used to produce the statistics;
3. the maximum value that has been sampled during the time

interval and the time at which this maximum sampled value was
first attained;

4. the minimum value that has been sampled during the time interval
and the time at which this minimum sampled value was first
attained;

5. the mean of the sampled values during the time interval;
6. if the parameter statistics reporting subservice supports the

evaluation of the standard deviation, the standard deviation of the
sampled values during the time interval.
NOTE For the item 6 evaluation of the standard deviation

support, refer to requirement 6.4.3.2b.

114

ECSS-E-ST-70-41C
15 April 2016

d. Each parameter statistics report shall contain:
1. the start time and the end time of the time interval over which the

evaluation of the parameter statistics was performed;
2. all related parameter statistic notifications.

6.4.6 Periodic parameter statistics reporting

6.4.6.1 General
a. Whether the parameter statistics reporting subservice supports for the

periodic reporting of the results of the parameter statistics evaluation
shall be declared when specifying that subservice.

b. The periodic reporting interval that corresponds to the time interval after
which the parameter statistics reporting subservice reports and resets the
statistics shall either:
1. be implicitly known by that subservice, or
2. be specified in each request to enable the periodic parameter

reporting.

c. If the parameter statistics subservice implicitly knows the periodic
reporting interval, that interval shall be declared when specifying that
subservice.

d. Whether the parameter statistics subservice provides the capability to
explicitly state in each request to enable the periodic parameter reporting
the periodic reporting interval shall be declared when specifying that
subservice.

e. The parameter statistics reporting subservice shall maintain a status
indicating whether the periodic parameter statistics reporting is enabled
or disabled.

NOTE This status is named "periodic parameter statistics
reporting status".

6.4.6.2 Enable the periodic parameter statistics reporting
a. The parameter statistics reporting subservice shall provide the capability

to enable the periodic parameter statistics reporting if that subservice
supports reporting periodically the results of the parameter statistics
evaluation.

NOTE 1 The corresponding requests are of message type
"TC[4,4] enable the periodic parameter reporting".

NOTE 2 For the support to report periodically the results of
the parameter statistics evaluation, refer to
requirement 6.4.6.1a.

NOTE 3 For the capability to disable the periodic parameter
statistics reporting, refer to clause 6.4.6.3.

b. Each request to enable the periodic parameter statistics reporting shall
contain exactly one instruction to enable the periodic parameter statistics
reporting.

115

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to enable the periodic parameter statistics reporting
shall contain:
1. if the subservice is configured for the capability in requirement

6.4.6.1d, the periodic reporting interval.

d. The parameter statistics reporting subservice shall reject any request to
enable the periodic parameter statistics reporting if:
1. that request contains an instruction that specifies a reporting

interval that is smaller than the sampling interval of any parameter
for which statistics are evaluated.

e. For each request to enable the periodic parameter statistics reporting that
is rejected, the parameter statistics reporting subservice shall generate a
failed start of execution notification.

f. For each valid instruction to enable the periodic parameter statistics
reporting, the parameter statistics reporting subservice shall:
1. set the periodic parameter statistics reporting status to "enabled";
2. if the instruction specifies a reporting interval, set the periodic

reporting interval to the specified interval.

g. During the entire enabled periodic reporting duration, the parameter
statistics reporting subservice shall generate exactly one parameter
statistics report at the end of each reporting interval period.

NOTE For the parameter statistics report, refer to clause
6.4.5.3.

h. The parameter statistics reporting subservice shall systematically reset
the parameter statistics evaluation whenever a periodic parameter
statistics report is generated.

6.4.6.3 Disable the periodic parameter statistics reporting
a. The parameter statistics reporting subservice shall provide the capability

to disable the periodic parameter statistics reporting if that subservice
supports reporting periodically the results of the parameter statistics
evaluation.

NOTE 1 The corresponding requests are of message type
"TC[4,5] disable the periodic parameter statistics
reporting".

NOTE 2 For the support to report periodically the results of
the parameter statistics evaluation, refer to
requirement 6.4.6.1a.

NOTE 3 For the capability to enable the periodic parameter
statistics reporting, refer to clause 6.4.6.2.

b. Each request to disable the periodic parameter statistics reporting shall
contain exactly one instruction to disable the periodic parameter statistics
reporting.

NOTE The instructions to disable the periodic parameter
statistics reporting contain no argument.

116

ECSS-E-ST-70-41C
15 April 2016

c. For each valid instruction to disable the periodic parameter statistics
reporting, the parameter statistics reporting subservice shall:
1. set the periodic parameter statistics reporting status to "disabled".

6.4.7 Maintaining the list of evaluated parameters

6.4.7.1 Add or update parameter statistics definitions
a. The parameter statistics reporting subservice capability to add or update

parameter statistics definitions shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[4,6] add or update parameter statistics
definitions".

NOTE 2 For the capability to delete parameter statistics
definitions, refer to clause 6.4.7.2.

b. Whether the setting of the sampling interval in the instructions to add or
update a parameter statistics definition is supported shall be declared
when specifying the parameter statistics reporting subservice.

NOTE Parameters can be sampled at quite different
frequencies, depending on the particular
characteristics of the parameter. For example, a
rapidly varying parameter such as gyro output
may be sampled at a high frequency whilst a
slowly varying analogue parameter such as a
temperature may be sampled at a very low
frequency.

c. Each request to add or update parameter statistics definitions shall
contain one or more instructions to add or update a parameter statistics
definition.

d. Each instruction to add or update a parameter statistics definition shall
contain:
1. the parameter identifier;
2. if sampling intervals are supported as specified in requirement

6.4.7.1b, the sampling interval.

e. The parameter statistics reporting subservice shall reject any instruction
to add or update a parameter statistics definition if any of the following
conditions occurs:
1. that instruction refers to a parameter that is unknown;
2. the sampling interval is greater than the reporting interval;
3. that instruction implies adding a parameter statistics definition but

the maximum number of definitions that the subservice supports is
already reached.
NOTE For item 3, refer to requirement 6.4.3.1a.

117

ECSS-E-ST-70-41C
15 April 2016

f. For each instruction to add or update a parameter statistics definition
that it rejects, the parameter statistics reporting subservice shall generate
the failed start of execution notification for that instruction.

g. The parameter statistics reporting subservice shall process any valid
instruction that is contained within a request to add or update parameter
statistics definitions regardless of the presence of faulty instructions.

h. For each valid instruction to add or update a parameter statistics
definition, the parameter statistics reporting subservice shall:
1. if no parameter statistics definition exists for that parameter:

(a) add the parameter statistics definition to the list of evaluated
parameters;

(b) start the evaluation of the statistics for that parameter;
2. if a parameter statistics definition exists for that parameter:

(a) update the sampling interval of that parameter statistics
definition;

(b) restart the evaluation of the statistics for that parameter.
NOTE 1 The evaluation of the statistics starts immediately,

i.e. independently of the reporting interval. Within
the next report (and only that report), a parameter
whose parameter statistics definition was added
during the previous reporting interval is reported
over a shorter interval than parameters that were
already in the list.

NOTE 2 If a request contains two instructions to add or
update a parameter statistics definition for the
same parameter, the second instruction overrides
the effect of the first instruction,

6.4.7.2 Delete parameter statistics definitions
a. The parameter statistics reporting subservice shall provide the capability

to delete parameter statistics definitions if the capability to add or update
parameter statistics definitions is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[4,7] delete parameter statistics definitions".

NOTE 2 For the capability to add or updates parameter
statistics definitions, refer to clause 6.4.7.1.

b. Each request to delete parameter statistics definitions shall contain
exactly one of:
1. one or more instructions to delete a parameter statistics definition;
2. an instruction to delete all parameter statistics definitions.

NOTE The instructions to delete all parameter statistics
definitions contain no argument.

c. Each instruction to delete a parameter statistics definition shall contain:
1. the parameter identifier.

118

ECSS-E-ST-70-41C
15 April 2016

d. The parameter statistics reporting subservice shall reject any instruction
to delete a parameter statistics definition if:
1. that instruction refers to a parameter that is not in the list of

evaluated parameters.

e. For each instruction to delete a parameter statistics definition that it
rejects, the parameter statistics reporting subservice shall generate the
failed start of execution notification for that instruction.

f. The parameter statistics reporting subservice shall process any valid
instruction that is contained within a request to delete parameter
statistics definitions regardless of the presence of faulty instructions.

g. For each valid instruction to delete a parameter statistics definition, the
parameter statistics reporting subservice shall:
1. remove that parameter statistics definition from the list of

evaluated parameters.

h. For each valid instruction to delete all parameter statistics definitions, the
parameter statistics reporting subservice shall:
1. remove all parameter statistics definitions from the list of

evaluated parameters, if any.

i. For each valid request to delete parameter statistics definitions, the
parameter statistics reporting subservice shall set the periodic parameter
statistics reporting status to "disabled" if the list of evaluated parameters
is empty after execution of all instructions.

6.4.7.3 Report the parameter statistics definitions
a. The parameter statistics reporting subservice capability to report the

parameter statistics definitions shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[4,8] report the parameter statistics
definitions". The responses are data reports of
message type "TM[4,9] parameter statistics
definition report".

NOTE 2 That capability requires the capability for that
subservice to add or updates parameter statistics
definitions, refer to clause 6.4.7.1.

b. Each request to report the parameter statistics definitions shall contain
exactly one instruction to report the parameter statistics definitions.

NOTE The instructions to report the parameter statistics
definitions contain no argument.

c. For each valid instruction to report the parameter statistics definitions,
the parameter statistics reporting subservice shall generate a single
parameter statistics definition notification that includes:
1. if the parameter statistics reporting subservice permits changing

the periodic reporting interval, the current periodic reporting
interval;

119

ECSS-E-ST-70-41C
15 April 2016

2. for each parameter statistics definition in the list of evaluated
parameters:
(a) the parameter identifier;
(b) if sampling intervals are supported as specified in

requirement 6.4.7.1b, the sampling interval.
NOTE For item 1 permission to change the periodic

reporting interval, refer to requirement 6.4.6.1d.

d. For each valid request to report the parameter statistics definitions, the
parameter statistics reporting subservice shall generate a single
parameter statistics definition report that includes the related parameter
statistics definition notification.

6.4.8 Subservice observables
 This Standard does not define any observables for the parameter statistics

reporting subservice.

120

ECSS-E-ST-70-41C
15 April 2016

6.5 ST[05] event reporting

6.5.1 Scope

6.5.1.1 General
 The event reporting service type provides the capability to report information

of operational significance that is not explicitly provided within the provider-
initiated reports of another service.

 The service covers the requirements for reporting of the occurrences of events
such as:

• on-board failures and anomalies, including anomalies detected by a
failure detection, isolation and recovery (FDIR) function;

• initiation, progress and completion of activities initiated either from
ground or autonomously on-board;

• hardware device built-in test results;

• normal payload events.

 The event reporting service type defines a single standardized subservice type,
i.e. the event reporting subservice type.

6.5.1.2 Event reporting subservice
 Each event that occurrences can be caught by the event reporting subservice

and reported is associated to an event report type. Each event report type
specifies the severity level of the event to report (informative, low severity,
medium severity or high severity). To facilitate ground system detection and
routing the severity level is indicated by the message type of the generated
report.

 Each event is also associated to an event definition. An event definition is
identified by an event definition identifier that is unique within the application
process that generates the corresponding event reports. Auxiliary data can be
associated to each event definition to report the context and the cause of the
event occurrence.

 The event reporting subservice type includes optional capability to selectively
enable and disable the generation of its event reports.

6.5.2 Service layout

6.5.2.1 Subservice

6.5.2.1.1 Event reporting subservice

a. Each event reporting service shall contain at least one event reporting
subservice.

121

ECSS-E-ST-70-41C
15 April 2016

6.5.2.2 Application process
a. Each application process shall host at most one event reporting

subservice provider.

6.5.3 Event definitions
a. The list of events that can be detected by the event reporting subservice

shall be declared when specifying that subservice.

b. For each event that can be detected by the event reporting subservice, the
event definition used to report on the occurrences of that event, the
related event severity level, the event definition identifier and, if any,
auxiliary data shall be declared when specifying that subservice.

NOTE The event severity levels are:
• informative;
• low severity;
• medium severity;
• high severity.

c. Each event definition shall be uniquely identified by the combination of
the identifier of the application process that hosts the event reporting
subservice provider that is in charge to report on the occurrences of the
associated event and an event definition identifier.

NOTE The term "event definition system identifier" is
used in this standard to represent that combination
of application process identifier and event
definition identifier.

6.5.4 Event reporting
a. The event reporting subservice shall provide the capability to generate

event reports.
NOTE The corresponding event reports are of message

type:
• "TM[5,1] informative event report";
• "TM[5,2] low severity anomaly report";
• "TM[5,3] medium severity anomaly report";
• "TM[5,4] high severity anomaly report".

b. The destination of the event reports generated by the event reporting
subservice shall be declared when specifying that subservice.

NOTE All the event reports generated by an event
reporting subservice have the same destination.

c. If the event reporting subservice supports the capability for controlling
the generation of event reports specified in clause 6.5.5, that subservice
shall generate an event notification whenever it detects the occurrence of
an event associated to an event definition for which event report
generation is enabled.

122

ECSS-E-ST-70-41C
15 April 2016

d. If the event reporting subservice does not support the capability for
controlling the generation of event reports specified in clause 6.5.5, that
subservice shall generate an event notification whenever it detects the
occurrence of an event.

e. Each event notification shall contain:
1. the event definition identifier of the associated event definition;
2. the auxiliary data associated to that event definition, if any.

NOTE For item 2, refer to requirement 6.5.3b.

f. For each event notification that it generates, the event reporting
subservice shall generate an event report of the related event severity
level, which contains that notification.

NOTE The message subtype identifier of the event report
message type indicates the event severity level,
refer to requirement 6.5.4a.

6.5.5 Controlling the generation of event reports

6.5.5.1 Event report generation status
a. For each event that can be detected by the event reporting subservice, the

subservice shall maintain a status indicating whether the event report
generation for that event is enabled or disabled.

NOTE This status is named "event report generation
status".

b. For each event that can be detected by the event reporting subservice, the
initial enabled or disabled event report generation status shall be
declared when specifying that subservice.

6.5.5.2 Enable the report generation of event definitions
a. The event reporting subservice capability to enable the report generation

of event definitions shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[5,5] enable the report generation of event
definitions".

NOTE 2 The event reports generated on-board are for use
by the ground but can also be used by on-board
functions such as those implemented within event
action services or OBCP engines.

NOTE 3 For the capability to disable the report generation
of event definitions, refer to clause 6.5.5.3.

b. Each request to enable the report generation of event definitions shall
contain one or more instructions to enable the report generation of an
event definition.

c. Each instruction to enable the report generation of an event definition
shall contain:

123

ECSS-E-ST-70-41C
15 April 2016

1. the event definition identifier of the event definition to enable.
NOTE For the event definition identifier, refer to

requirement 6.5.3b.

d. The event reporting subservice shall reject any instruction to enable the
report generation of an event definition if:
1. that instruction refers to an unknown event definition.

e. For each instruction to enable the report generation of an event definition
that it rejects, the event reporting subservice shall generate the failed start
of execution notification for that instruction.

f. The event reporting subservice shall process any valid instruction that is
contained within a request to enable the report generation of event
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to enable the report generation of an event
definition, the event reporting subservice shall:
1. set the event report generation status of the event definition to

"enabled".

6.5.5.3 Disable the report generation of event definitions
a. The event reporting subservice shall provide the capability to disable the

report generation of event definitions if the capability to enable the report
generation of event definitions is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[5,6] disable the report generation of event
definitions".

NOTE 2 For example, event reporting can be disabled to
reduce the on-board processing load.

NOTE 3 Disabling the report generation of an event
definition implies that the event reporting
subservice does not inform the ground about the
raising occurrences of the related event. The on-
board services that are configured to react to the
corresponding event reports are also not triggered.
Disabling the report generation of an event
definition does not mean that the raising
occurrences of the related event cannot be directly
(meaning without the needs for event reports)
caught by e.g. the on-board software.

NOTE 4 For the capability to enable the report generation
of event definitions, refer to clause 6.5.5.2.

b. Each request to disable the report generation of event definitions shall
contain one or more instructions to disable the report generation of an
event definition.

c. Each instruction to disable the report generation of an event definition
shall contain:
1. the event definition identifier of the event definition to disable.

124

ECSS-E-ST-70-41C
15 April 2016

d. The event reporting subservice shall reject any instruction to disable the
report generation of an event definition if:
1. that instruction refers to an unknown event definition.

e. For each instruction to disable the report generation of an event
definition that it rejects, the event reporting subservice shall generate the
failed start of execution notification for that instruction.

f. The event reporting subservice shall process any valid instruction that is
contained within a request to disable the report generation of event
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to disable the report generation of an event
definition, the event reporting subservice shall:
1. set the event report generation status of the event definition to

"disabled".

6.5.5.4 Report the list of disabled event definitions
a. The event reporting subservice capability to report the list of disabled

event definitions shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[5,7] report the list of disabled event
definitions". The responses are data reports of
message type "TM[5,8] disabled event definitions
list report".

NOTE 2 That capability requires the capability for that
subservice to enable the report generation of event
definitions (refer to clause 6.5.5.2).

b. Each request to report the list of disabled event definitions shall contain
exactly one instruction to report the list of disabled event definitions.

NOTE The instructions to report the list of disabled event
definitions contain no argument.

c. For each valid instruction to report the list of disabled event definitions,
the event reporting subservice shall:
1. generate, for each event definition whose event report generation

status is "disabled", a single disabled event definition notification
that includes:
(a) the related event definition identifier.

d. For each valid request to report the list of disabled event definitions, the
event reporting subservice shall generate a single disabled event
definitions list report that includes all related disabled event definition
notifications.

125

ECSS-E-ST-70-41C
15 April 2016

6.5.6 Subservice observables
a. The following observables shall be defined for the event reporting

subservice:
1. per severity level:

(a) the accumulated number of detected event occurrences,
(b) the number of event definitions whose event report

generation status is "disabled",
(c) the accumulated number of generated event reports,
(d) the event definition identifier of the last generated event

report,
(e) the generation time of the last event report.

126

ECSS-E-ST-70-41C
15 April 2016

6.6 ST[06] memory management

6.6.1 Scope

6.6.1.1 General
 The term "memory" (see also clause 5.4.3.3) is used to logically refer to any

physical or virtual memory area which exists on-board the spacecraft, e.g.
RAM, mass memory unit.

 The memory management service provides the capability for loading, dumping
and checking the contents of these memories without precluding that the same
memory is used by more than one memory management service or that
overlapping memories are used on-board.

 The memory management service type defines four standardized subservice
types, i.e.:

• the raw data memory management subservice type;

• the structured data memory management subservice type;

• the common memory management subservice type;

• the memory configuration subservice type.

6.6.1.2 Raw data memory management subservice
 The raw data memory management subservice type provides capabilities to

manage memories that contain raw data.

 Raw data means that:

• the type of memory content is not implicitly known, and

• addressing data within that memory implies pointing to a memory offset
from the start of that memory, i.e. a start address.

6.6.1.3 Structured data memory management subservice
 The structured data memory management subservice type provides capabilities

to manage memories that contain structured data.

 Structured data means that:

• the type of memory content is implicitly known, and

• addressing an object of that memory implies using a base that refers to
the starting area of that object, i.e. the object location and an offset from
that object location.

 The type of memory content can itself be:

• generic, e.g. the memory contains files or

• specific, e.g. the memory contains on-board control procedures.

127

ECSS-E-ST-70-41C
15 April 2016

6.6.1.4 Common memory management subservice
 The common memory management subservice type provides capabilities to

manage functions that are common to the raw data memory management and
the structured data memory management subservice types. In this Standard,
this is the case for the "abort all memory dumps" capability that interacts with
both data memory management related subservices to abort all dump requests
that are under execution.

6.6.1.5 Memory configuration subservice
 The memory configuration subservice type provides capabilities for managing

the memory as a whole, i.e. independently of its content and a specific
addressing scheme. For example, the subservice type includes the capability for
enabling and disabling the scrubbing of memories and for write protecting
memories.

6.6.2 Service layout

6.6.2.1 Subservice

6.6.2.1.1 General

a. Each memory management service shall contain at least one of:
1. the raw data memory management subservice;
2. the structured data memory management subservice.

6.6.2.1.2 Raw data memory management subservice

a. Each memory management service shall contain at most one raw data
memory management subservice.

6.6.2.1.3 Structured data memory management subservice

a. Each memory management service shall contain at most one structured
data memory management subservice.

6.6.2.1.4 Common memory management subservice

a. Each memory management service shall contain at most one common
memory management subservice.

6.6.2.1.5 Memory configuration subservice

a. Each memory management service shall contain at most one memory
configuration subservice.

6.6.2.2 Application process
a. Each memory management subservice provider shall be hosted by

exactly one application process.
NOTE This implies that all subservice providers of the

memory management service are hosted by a
single application process.

128

ECSS-E-ST-70-41C
15 April 2016

b. Each application process shall host at most one memory management
subservice provider.

6.6.3 Raw data memory management subservice

6.6.3.1 Checksumming
a. Whether the raw data memory management subservice provides

checksumming shall be declared when specifying that subservice.
NOTE For the checksum algorithm, refer to clause 5.4.4.

6.6.3.2 Memory accessibility
a. The list of memories managed by the raw data memory management

subservice shall be declared when specifying that subservice.
NOTE Refer also to clause 5.4.3.3.

b. Each memory managed by the raw data memory management subservice
shall use the absolute addressing scheme.

c. If the raw data memory management subservice manages more than one
memory, the subservice shall use memory identifiers.

d. For each writeable memory that it manages, whether the raw data
memory management subservice has write access to that memory shall
be declared when specifying that subservice.

6.6.3.3 Load raw memory

6.6.3.3.1 Load raw memory data areas

a. The raw data memory management subservice shall provide the
capability to load raw memory data areas.

NOTE The corresponding requests are of message type
"TC[6,2] load raw memory data areas".

b. Each request to load raw memory data areas shall contain:
1. if the raw data memory management subservice manages more

than one memory, the identifier of the memory;
2. an ordered list of one or more instructions to load a raw memory

data area.
NOTE 1 For item 1, refer to requirement 6.6.3.2a. If the raw

data memory management subservice manages
only one memory, the instructions apply to that
memory.

NOTE 2 All the instructions in the request apply to the
same memory.

c. The execution verification profile of each request to load raw memory
data areas shall include the reporting of the completion of execution.

NOTE For the execution verification profile, refer to
requirement 5.3.5.2.3g.

129

ECSS-E-ST-70-41C
15 April 2016

d. Each instruction to load a raw memory data area shall contain:
1. the start address of where to load the data, expressed as a byte

pointer aligned on the memory access alignment constraint;
2. the data to load;
3. if the raw data memory management subservice provides

checksumming, the checksum value for the verification of the data
after it has been loaded to the memory.
NOTE For item 3, refer to requirement 6.6.3.1a.

e. The raw data memory management subservice shall reject any request to
load raw memory data areas if any of the following conditions occurs:
1. that request refers to an invalid memory identifier;
2. the subservice does not have write access to the memory referred

to in that request;
3. that request refers to a memory that is write protected;
4. that request contains an instruction that refers to:

(a) a start address that exceeds the maximum memory size;
(b) a start address which is not aligned with respect to the

memory access alignment constraint;
(c) a load length which is not a multiple of the memory access

alignment constraint;
5. loading the data contained in one of the related instructions

exceeds the maximum memory size.
NOTE The checking of instructions that follow a faulty

instruction is optional. For some failures, e.g., the
variable octet-string size of the data does not
comply with the actual data, any processing of the
remaining instructions is no longer possible.

f. For each request to load raw memory data areas that is rejected, the raw
data memory management subservice shall generate a failed start of
execution notification.

g. For each request to load raw memory data areas that contains only valid
instructions, the raw data memory management subservice shall execute
those instructions in the order of their appearance in that request.

h. For each valid instruction to load a raw memory data area, the raw data
memory management subservice shall:
1. write the data to memory.

i. If an error occurs during the writing to memory of the data related to an
instruction to load a raw memory data area, the raw data memory
management subservice shall:
1. immediately abort the execution of the related request;
2. generate a failed execution notification for that instruction.

NOTE For example, an error can occur when the memory
becomes write-protected by hardware during the
course of the load operation.

130

ECSS-E-ST-70-41C
15 April 2016

j. If the subservice provides checksumming, then once the data related to
an instruction to load a raw memory data area has been written to the
memory, the raw data memory management subservice shall:
1. calculate the checksum of the loaded data;
2. compare it to the checksum value in that instruction;
3. if that checksum comparison fails:

(a) immediately abort the execution of the related request;
(b) generate a failed execution notification for that instruction.

k. For each request to load raw memory data areas that is aborted, the raw
data memory management subservice shall generate a failed completion
of execution verification report that contains the failed execution
notification.

6.6.3.3.2 Load a raw memory atomic data area in a non-interruptible
transaction

a. The raw data memory management subservice capability to load a raw
memory atomic data area in a non-interruptible transaction shall be
declared when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[6,11] load a raw memory atomic data area in a
non-interruptible transaction".

b. Each request to load a raw memory atomic data area in a non-
interruptible transaction shall contain exactly one instruction to load a
raw memory atomic data area in a non-interruptible transaction.

c. The execution verification profile of each request to load a raw memory
atomic data area in a non-interruptible transaction shall include the
reporting of the completion of execution.

NOTE For the execution verification profile, refer to
requirement 5.3.5.2.3g.

d. Each instruction to load a raw memory atomic data area in a non-
interruptible transaction shall contain:
1. if the raw data memory management subservice manages more

than one memory, the identifier of the memory;
2. the address of where to load the data, expressed as a byte pointer

aligned on the memory access alignment constraint;
3. the bit mask, with length equal to the memory access alignment

constraint;
4. the data to load, with length equal to the memory access alignment

constraint.
NOTE 1 For item 1, refer to requirement 6.6.3.2a.
NOTE 2 For items 3 and 4:

• The bit mask is applied to the addressed
memory area to identify the bits of that
memory area impacted by the load request. The
data to load is then applied to those bits.

131

ECSS-E-ST-70-41C
15 April 2016

• The value in the bit mask and the value in the
data to load are each less than or equal to the
maximum value that can be expressed using
the access alignment constraint of that memory.

e. The raw data memory management subservice shall reject any request to
load a raw memory atomic data area in a non-interruptible transaction if
any of the following conditions occurs:
1. the subservice does not have both read and write access to the

memory referred to in that request;
2. that request contains an instruction that refers to a memory

identifier that is unknown;
3. that request contains an instruction that refers to a memory that is

write protected;
4. that request contains an instruction that refers to a start address

that exceeds the maximum memory size;
5. that request contains an instruction that refers to a start address

which is not aligned with the memory access alignment constraint;
6. the deduced size of the bit mask and the data to load does not

match the overall size of the request.

f. For each request to load a raw memory atomic data area in a non-
interruptible transaction that is rejected, the raw data memory
management subservice shall generate a failed start of execution
notification.

g. For each valid instruction to load a raw memory atomic data area in a
non-interruptible transaction, the raw data memory management
subservice shall:
1. extract the current value of the memory area addressed by the

instruction;
2. compute the new value of the atomic data by updating the bits that

are selected by the mask to the value specified in the data to load;
3. set the memory area to that new value.

NOTE For item 1, the memory area addressed by the
instruction is the memory area that is at the start
address and has a size equal to the access
alignment constraint of that memory.

h. If an error occurs during the writing to memory of the data related to an
instruction load a raw memory atomic data area in a non-interruptible
transaction, the raw data memory management subservice shall:
1. generate a failed execution notification for that instruction.

i. For each request to load a raw memory atomic data area in a non-
interruptible transaction that is aborted, the raw data memory
management subservice shall generate a failed completion of execution
verification report that contains the failed execution notification.

132

ECSS-E-ST-70-41C
15 April 2016

6.6.3.4 Dump raw memory data
a. The raw data memory management subservice shall provide the

capability to dump raw memory data.
NOTE The corresponding requests are of message type

"TC[6,5] dump raw memory data". The responses
are data reports of message type "TM[6,6] dumped
raw memory data report".

b. Each request to dump raw memory data shall contain:
1. if the raw data memory management subservice manages more

than one memory, the identifier of the memory;
2. one or more instructions to dump a raw memory data.

NOTE For item 1, refer to requirement 6.6.3.2a. If the raw
data memory management subservice manages
only one memory, the instructions apply to that
memory.

c. The raw data memory management subservice shall reject any request to
dump raw memory data if any of the following conditions occurs:
1. that request refers to an invalid memory identifier;
2. the subservice does not have read access to the memory referred to

in that request;
3. that request implies a response to transmit a telemetry packet that

exceeds the maximum packet size of the CCSDS space packet
protocol.
NOTE For item 3, refer to requirement 5.4.11.3.2b.

d. For each request to dump raw memory data that is rejected, the raw data
memory management subservice shall generate a failed start of execution
notification.

e. Each instruction to dump a raw memory data shall contain:
1. the start address of the memory area to dump, expressed as a byte

pointer aligned on the memory access alignment constraint;
2. the octet length of the memory area to dump.

f. The raw data memory management subservice shall reject any
instruction to dump a raw memory data if any of the following
conditions occurs:
1. that instruction refers to a start address that exceeds the maximum

memory size;
2. that instruction refers to a start address which is not aligned with

the memory access alignment constraint;
3. that instruction refers to a length that combined with the start

address exceeds the maximum memory size;
4. that instruction refers to a length that is not a multiple of the

memory access alignment constraint.

g. For each instruction to dump a raw memory data that it rejects, the raw
data memory management subservice shall generate the failed start of
execution notification for that instruction.

133

ECSS-E-ST-70-41C
15 April 2016

h. The raw data memory management subservice shall process any valid
instruction that is contained within a request to dump raw memory data
regardless of the presence of faulty instructions.

i. For each valid instruction to dump a raw memory data, the raw data
memory management subservice shall:
1. extract the memory data specified by that instruction from the

memory;
2. if the subservice provides checksumming, calculate the checksum

of the extracted memory data;
3. generate a single dumped raw memory data notification that

includes:
(a) the start address of the memory area, expressed as a byte

pointer aligned on the memory access alignment constraint;
(b) the dumped data;
(c) if the subservice provides checksumming, the calculated

checksum of that dumped area.
NOTE For item 3(c), refer to requirement 6.6.3.1a.

j. For each valid request to dump raw memory data, the raw data memory
management subservice shall generate a single dumped raw memory
data report that contains:
1. if the raw data memory management subservice manages more

than one memory, the identifier of the memory;
2. all related dumped raw memory data notifications.

NOTE For item 1, refer to requirement 6.6.3.2a.

6.6.3.5 Check raw memory data
a. The raw data memory management subservice capability to check raw

memory data shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[6,9] check raw memory data". The responses
are data reports of message type "TM[6,10]
checked raw memory data report".

NOTE 2 Checking memory and reporting the calculated
checksum for ground checksum comparison,
avoids downlinking on-board memory areas that
are suspected to be faulty.

b. Each request to check raw memory data shall contain:
1. if the raw data memory management subservice manages more

than one memory, the identifier of the memory;
2. one or more instructions to check a raw memory data.

NOTE For item 1, refer to requirement 6.6.3.2a. If the raw
data memory management subservice manages
only one memory, the instructions apply to that
memory.

134

ECSS-E-ST-70-41C
15 April 2016

c. The raw data memory management subservice shall reject any request to
check raw memory data if any of the following conditions occurs:
1. that request refers to a memory identifier that is unknown;
2. the subservice does not have read access to the memory referred to

in that request.

d. For each request to check raw memory data that is rejected, the raw data
memory management subservice shall generate a failed start of execution
notification.

e. Each instruction to check a raw memory data shall contain:
1. the start address of the memory area to check, expressed as a byte

pointer aligned on the memory access alignment constraint;
2. the octet length of the memory area to check.

f. The raw data memory management subservice shall reject any instruction
to check a raw memory data if any of the following conditions occurs:
1. that instruction refers to a start address that exceeds the maximum

memory size;
2. that instruction refers to a start address which is not aligned with

the memory access alignment constraint;
3. that instruction refers to a length which is not a multiple of the

memory access alignment constraint;
4. that instruction refers to a length that combined with the start

address exceeds the maximum memory size.

g. For each instruction to check a raw memory data that it rejects, the raw
data memory management subservice shall generate the failed start of
execution notification for that instruction.

h. The raw data memory management subservice shall process any valid
instruction that is contained within a request to check raw memory data
regardless of the presence of faulty instructions.

i. For each valid instruction to check a raw memory data, the raw data
memory management subservice shall:
1. calculate the checksum of the memory area specified by that

instruction;
2. generate a single checked raw memory data notification that

includes:
(a) the start address of the memory area, expressed as a byte

pointer aligned on the memory access alignment constraint;
(b) the octet length of the checked memory area;
(c) the calculated checksum of that memory area.

j. For each valid request to check raw memory data, the raw data memory
management subservice shall generate a single checked raw memory
data report that contains:
1. if the raw data memory management subservice manages more

than one memory, the identifier of the memory;
2. all related checked raw memory data notifications.

NOTE For item 1, refer to requirement 6.6.3.2a.

135

ECSS-E-ST-70-41C
15 April 2016

6.6.3.6 Load raw memory data areas by reference
a. The raw data memory management subservice capability to load raw

memory data areas by reference shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[6,19] load raw memory data areas by
reference".

b. Each request to load raw memory data areas by reference shall contain:
1. if the raw data memory management subservice manages more

than one memory, the identifier of the memory;
2. the file path of the file containing the data to load;
3. an ordered list of one or more instructions to load a raw memory

data area by reference.
NOTE 1 For item 1, refer to requirement 6.6.3.2a. If the raw

data memory management subservice manages
only one memory, the instructions apply to that
memory.

NOTE 2 All the instructions in the request apply to the
same memory and to the same file.

c. The execution verification profile of each request to load raw memory
data areas by reference shall include the reporting of the completion of
execution.

NOTE For the execution verification profile, refer to
requirement 5.3.5.2.3g.

d. Each instruction to load a raw memory data area by reference shall
contain:
1. the start address of where to load the data, expressed as a byte

pointer aligned on the memory access alignment constraint;
2. the offset in bytes of the data in the source file;
3. the length in bytes of the data to load;
4. if the raw data memory management subservice provides

checksumming, the checksum value for the verification of the data
after it has been loaded to the memory.
NOTE For item 4, refer to requirement 6.6.3.1a.

e. The raw data memory management subservice shall reject any request to
load raw memory data areas by reference if any of the following
conditions occurs:
1. that request refers to an invalid memory identifier;
2. the subservice does not have write access to the memory referred

to in that request;
3. that request refers to a memory that is write protected;
4. that request refers to a file that does not exist;
5. that request refers to a file that is not recognized as a file

containing memory data;

136

ECSS-E-ST-70-41C
15 April 2016

6. that request contains an instruction that refers to:
(a) a start address that exceeds the maximum memory size;
(b) a start address which is not aligned with respect to the

memory access alignment constraint;
(c) a load length which is not a multiple of the memory access

alignment constraint;
(d) an offset that exceeds the source file size;

7. loading the data contained in one of the related instructions
exceeds the maximum memory size.
NOTE The checking of instructions that follow a faulty

instruction is optional. For some failures, e.g., the
variable octet-string size of the data does not
comply with the actual data, any processing of the
remaining instructions is no longer possible.

f. For each request to load raw memory data areas by reference that is
rejected, the raw data memory management subservice shall generate a
failed start of execution notification.

g. For each request to load raw memory data areas by reference that
contains only valid instructions, the raw data memory management
subservice shall execute those instructions in the order of their
appearance in that request.

h. For each valid instruction to load a raw memory data area by reference,
the raw data memory management subservice shall:
1. read the data from the source file;
2. write the data to memory.

i. If an error occurs during the writing to memory of the data related to an
instruction to load a raw memory data area by reference, the raw data
memory management subservice shall:
1. immediately abort the execution of the related request;
2. generate a failed execution notification for that instruction.

NOTE For example, an error can occur when the memory
becomes write-protected by hardware during the
course of the load operation.

j. If the subservice provides checksumming, then once the data related to
an instruction to load a raw memory data area by reference has been
written to the memory, the raw data memory management subservice
shall:
1. calculate the checksum of the loaded data;
2. compare it to the checksum value in that instruction;
3. if that checksum comparison fails:

(a) immediately abort the execution of the related request;
(b) generate a failed execution notification for that instruction.

k. For each request to load raw memory data areas by reference that is
aborted, the raw data memory management subservice shall generate a

137

ECSS-E-ST-70-41C
15 April 2016

failed completion of execution verification report that contains the failed
execution notification.

6.6.3.7 Dump raw memory data areas to file
a. The raw data memory management subservice capability to dump raw

memory data areas to file shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[6,20] dump raw memory data areas to file".

b. Each request to dump raw memory data areas to file shall contain:
1. if the raw data memory management subservice manages more

than one memory, the identifier of the memory;
2. the object path of the destination file;
3. one or more instructions to dump a raw memory data area to file.

NOTE 1 For item 1, refer to requirement 6.6.3.2a. If the raw
data memory management subservice manages
only one memory, the instructions apply to that
memory.

c. The raw data memory management subservice shall reject any request to
dump raw memory data areas to file if any of the following conditions
occurs:
1. that request refers to an invalid memory identifier;
2. the subservice does not have read access to the memory referred to

in that request;
3. the destination file already exists.

d. For each request to dump raw memory data areas to file that is rejected,
the raw data memory management subservice shall generate a failed start
of execution notification.

e. Each instruction to dump a raw memory data area to file shall contain:
1. the start address of the memory area to dump, expressed as a byte

pointer aligned on the memory access alignment constraint;
2. the octet length of the memory area to dump.

f. The raw data memory management subservice shall reject any
instruction to dump a raw memory data area to file if any of the
following conditions occurs:
1. that instruction refers to a start address that exceeds the maximum

memory size;
2. that instruction refers to a start address which is not aligned with

the memory access alignment constraint;
3. that instruction refers to a length that combined with the start

address exceeds the maximum memory size;
4. that instruction refers to a length that is not a multiple of the

memory access alignment constraint.

138

ECSS-E-ST-70-41C
15 April 2016

g. For each instruction to dump a raw memory data area to file that it
rejects, the raw data memory management subservice shall generate the
failed start of execution notification for that instruction.

h. The raw data memory management subservice shall process any valid
instruction that is contained within a request to dump raw memory data
areas to file regardless of the presence of faulty instructions.

i. For each valid request to dump raw memory data areas to file, the raw
data memory management subservice shall:
1. create the file according to the provided file path.

j. For each valid instruction to dump a raw memory data area to file, the
raw data memory management subservice shall:
1. extract the memory data specified by that instruction from the

memory;
2. append the memory data to the destination file.

NOTE This standard does not specify the formatting of
data within the file. For example, data can be
written as a raw byte stream, or include headers
identifying the origin of the dumped data.

6.6.3.8 Subservice observables
 This Standard does not define any observables for the raw data memory

management subservice.

6.6.4 Structured data memory management
subservice

6.6.4.1 Checksumming
a. Whether the structured data memory management subservice provides

checksumming shall be declared when specifying that subservice.

6.6.4.2 Memory accessibility
a. The list of memories managed by the structured data memory

management subservice shall be declared when specifying that
subservice.

NOTE Refer also to clause 5.4.3.3.

b. Each memory managed by the structured data memory management
subservice shall use the base plus offset addressing scheme.

c. For each writeable memory that it manages, whether the structured data
memory management subservice has write access to that memory shall
be declared when specifying that subservice.

139

ECSS-E-ST-70-41C
15 April 2016

6.6.4.3 Base plus offset
a. For each memory managed by the structured data memory management

subservice, the definition of the base in its base plus offset addressing
scheme shall be declared when specifying that memory.

NOTE For example:
• if the memory is used to store files, the base can

be the unique identifier of the file used by the
file management service (see clause 6.23), i.e.
the combination of a repository path and a file
name;

• if the memory is used by the OBCP service to
store loaded OBCPs, the base can be the OBCP
identifier.

b. For each memory managed by the structured data memory management
subservice, whether that memory uses static base references or dynamic
base references shall be declared when specifying that memory.

NOTE 1 The static base references are those declared upon
the specification of the subservice, e.g. a list of
static configuration tables.

NOTE 2 The dynamic base references are those
dynamically created when using the memory, e.g.
when uploading a file using the file management
service.

c. If a memory managed by the structured data memory management
subservice uses static base references, the list of base identifiers shall be
declared when specifying that memory, including for each base:
1. its maximum size in a multiple of the memory access alignment

constraint.
NOTE The maximum size of dynamic bases is derived

from the size of the related memory object.

d. For each memory managed by the structured data memory management
subservice that uses dynamic base references, the base identifier type
used to access that memory shall be declared when specifying that
memory.

NOTE 1 The base identifier type is either "base address" or
"memory object identifier".

NOTE 2 The structure and format of the memory object
identifiers depend on the memory content type
and what the base refers to, refer to requirement
6.6.4.3a.

6.6.4.4 Load object memory data
a. The structured data memory management subservice shall provide the

capability to load object memory data.
NOTE 1 The corresponding requests are of message type

"TC[6,1] load object memory data".

140

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 A request to load object memory data that contains
more than one instruction is also known as scatter
load.

b. Each request to load object memory data shall contain:
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier;
3. an ordered list of one or more instructions to load an object

memory data.
NOTE 1 For item 1, refer to requirement 6.6.4.2a. If the

structured data memory management subservice
manages only one memory, the instructions apply
to that memory.

NOTE 2 For item 2, refer to requirement 6.6.4.3a.
NOTE 3 All the instructions in the request apply to the

memory object identified by the base identifier.

c. The execution verification profile of each request to load object memory
data shall include the reporting of the completion of execution.

NOTE For the execution verification profile, refer to
requirement 5.3.5.2.3g.

d. Each instruction to load an object memory data shall contain:
1. the byte offset within the memory object identified by the base

identifier;
2. the data to load;
3. if the structured data memory management subservice provides

checksumming, the checksum value for the verification of the data
after it has been loaded to the memory.
NOTE For item 3, refer to requirement 6.6.4.1a.

e. The structured data memory management subservice shall reject any
request to load object memory data if any of the following conditions
occurs:
1. that request refers to a memory identifier that is unknown;
2. the subservice does not have write access to the memory referred

to in that request;
3. that request refers to a memory that is write protected;
4. that request refers to a memory object that is write protected;
5. the base identifier in that request refers to a memory object that is

unknown;
6. that request contains an instruction that refers to an offset that

exceeds the maximum memory size of the memory object
identified by the base identifier;

7. loading the data contained in any related instruction exceeds the
maximum memory size of the memory object identified by the
base identifier;

141

ECSS-E-ST-70-41C
15 April 2016

8. the size of the data contained within any of the related instruction
is not a multiple of the memory access alignment constraint.
NOTE The checking of instructions that follow a faulty

instruction is optional. For some failures, e.g., the
variable octet-string size of the data does not
comply with the actual data, any processing of the
remaining instructions in the request does not
make sense.

f. For each request to load object memory data that is rejected, the
structured data memory management subservice shall generate a failed
start of execution notification.

g. For each request to load object memory data that contains only valid
instructions, the structured data memory management subservice shall
execute those instructions in the order of their appearance in that request.

h. For each valid instruction to load an object memory data, the structured
data memory management subservice shall:
1. write the data to memory.

i. If an error occurs during the writing to memory of the data related to an
instruction to load an object memory data, the structured data memory
management subservice shall:
1. immediately abort the execution of the related request;
2. generate a failed execution notification for that instruction.

NOTE For example, an error can occur when the memory
becomes write-protected by hardware during the
course of the load operation.

j. If the subservice provides checksumming, then once the data related to
an instruction to load an object memory data has been written to the
memory, the structured data memory management subservice shall:
1. calculate the checksum of the loaded data;
2. compare it to the checksum value in that instruction;
3. if that checksum comparison fails:

(a) immediately abort the execution of the related request;
(b) generate a failed execution notification for that instruction.

k. For each request to load object memory data that is aborted, the
structured data memory management subservice shall generate a failed
completion of execution verification report that contains the failed
execution notification.

6.6.4.5 Dump object memory data
a. The structured data memory management subservice shall provide the

capability to dump object memory data.
NOTE The corresponding requests are of message type

"TC[6,3] dump object memory data". The
responses are data reports of message type
"TM[6,4] dumped object memory data report".

142

ECSS-E-ST-70-41C
15 April 2016

b. Each request to dump object memory data shall contain:
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier;
3. one or more instructions to dump an object memory data.

NOTE 1 For item 1, refer to requirement 6.6.4.2a. If the
structured data memory management subservice
manages only one memory, the instructions apply
to that memory.

NOTE 2 For item 2, refer to requirement 6.6.4.3a.
NOTE 3 All the instructions in the request apply to the

memory object identified by the base identifier.

c. The structured data memory management subservice shall reject any
request to dump object memory data if any of the following conditions
occurs:
1. that request refers to a memory identifier that is unknown;
2. the base identifier in that request refers to a memory object that is

unknown;
3. the subservice does not have read access to the memory referred to

in that request;
4. that request implies a response to transmit a telemetry packet that

exceeds the maximum packet size of the CCSDS space packet
protocol.
NOTE For item 4, refer to requirement 5.4.11.3.2b.

d. For each request to dump object memory data that is rejected, the
structured data memory management subservice shall generate a failed
start of execution notification.

e. Each instruction to dump an object memory data shall contain:
1. the byte offset within the memory object identified by the base

identifier;
2. the octet length of the memory area to dump.

f. The structured data memory management subservice shall reject any
instruction to dump an object memory data if any of the following
conditions occurs:
1. that instruction refers to an offset that combined with the length of

the memory area to dump exceeds the maximum memory size of
the memory object identified by the base identifier;

2. that instruction refers to an offset which is not aligned with the
memory access alignment constraint;

3. that instruction refers to a length that is not a multiple of the
memory access alignment constraint.

g. For each instruction to dump an object memory data that it rejects, the
structured data memory management subservice shall generate the failed
start of execution notification for that instruction.

143

ECSS-E-ST-70-41C
15 April 2016

h. The structured data memory management subservice shall process any
valid instruction that is contained within a request to dump object
memory data regardless of the presence of faulty instructions.

i. For each valid instruction to dump an object memory data, the structured
data memory management subservice shall:
1. extract the memory data specified by that instruction from the

memory;
2. if the subservice provides checksumming, calculate the checksum

of the extracted memory data;
3. generate a single dumped object memory data notification that

includes:
(a) the byte offset within the memory object identified by the

base identifier;
(b) the dumped data;
(c) if the subservice provides checksumming, the calculated

checksum of that dumped area.
NOTE For item 3(a), refer to requirement 6.6.4.1a.

j. For each valid request to dump object memory data, the structured data
memory management subservice shall generate a single dumped object
memory data report that contains:
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier;
3. all related dumped object memory data notifications.

NOTE 1 For item 1, refer to requirement 6.6.4.2a.
NOTE 2 For item 2, refer to requirement 6.6.4.3a.

6.6.4.6 Check object memory data
a. The structured data memory management subservice capability to check

object memory data shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[6,7] check object memory data". The responses
are data reports of message type "TM[6,8] checked
object memory data report".

NOTE 2 Checking memory and reporting the calculated
checksum for ground checksum comparison
avoids downlinking on-board memory areas that
are suspected to be faulty.

b. Each request to check object memory data shall contain:
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier;
3. one or more instructions to check an object memory data.

NOTE 1 For item 1, refer to requirement 6.6.4.2a. If the
structured data memory management subservice

144

ECSS-E-ST-70-41C
15 April 2016

manages only one memory, the instructions apply
to that memory.

NOTE 2 For item 2, refer to requirement 6.6.4.3a.
NOTE 3 All the instructions in the request apply to the

memory object identified by the base identifier.

c. The structured data memory management subservice shall reject any
request to check object memory data if any of the following conditions
occurs:
1. the request refers to a memory identifier that is unknown;
2. the subservice does not have read access to the memory referred to

in that request;
3. the base identifier in that request refers to a memory object that is

unknown.

d. For each request to check object memory data that is rejected, the
structured data memory management subservice shall generate a failed
start of execution notification.

e. Each instruction to check an object memory data shall contain:
1. the byte offset within the memory object identified by the base

identifier;
2. the octet length of the memory area to check.

f. The structured data memory management subservice shall reject any
instruction to check an object memory data if any of the following
conditions occurs:
1. that instruction refers to an offset that combined with the length of

the memory area to check exceeds the maximum memory size of
the memory object identified by the base identifier;

2. that instruction refers to an offset which is not aligned with the
memory access alignment constraint;

3. that instruction refers to a length that is not a multiple of the
memory access alignment constraint.

g. For each instruction to check an object memory data that it rejects, the
structured data memory management subservice shall generate the failed
start of execution notification for that instruction.

h. The structured data memory management subservice shall process any
valid instruction that is contained within a request to check object
memory data regardless of the presence of faulty instructions.

i. For each valid instruction to check an object memory data, the structured
data memory management subservice shall:
1. calculate the checksum of the memory area specified by that

instruction
2. generate a single checked object memory data notification that

includes:
(a) the byte offset within that base;
(b) the octet length of the data that has been checked;
(c) the calculated checksum of the checked data.

145

ECSS-E-ST-70-41C
15 April 2016

j. For each valid request to check object memory data, the structured data
memory management subservice shall generate a single checked object
memory data report that contains
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier;
3. all related checked object memory data notifications.

NOTE 1 For item 1, refer to requirement 6.6.4.2a.
NOTE 2 For item 2, refer to requirement 6.6.4.3a.

6.6.4.7 Check an object memory object
a. The structured data memory management subservice capability to check

an object memory object shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[6,17] check an object memory object". The
responses are data reports of message type
"TM[6,18] checked object memory object report".

NOTE 2 For example, if the memory is used to store files,
the base can be the unique identifier of a file and
this request can be used to obtain a checksum of
the contents of the file.

b. Each request to check an object memory object shall contain exactly one
instruction to check an object memory object.

c. Each instruction to check an object memory object shall contain:
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier of the memory object to checksum.

NOTE 1 For item 1, refer to requirement 6.6.4.2a.
NOTE 2 For item 2, refer to requirement 6.6.4.3a.

d. The structured data memory management subservice shall reject any
request to check an object memory object if any of the following
conditions occurs:
1. that request refers to a memory identifier that is unknown;
2. the base identifier in that request refers to a memory object that is

unknown;
3. the subservice cannot determine the length of the memory object

referred to by the base identifier.

e. For each request to check an object memory object that is rejected, the
structured data memory management subservice shall generate a failed
start of execution notification.

f. For each valid instruction to check an object memory object, the
structured data memory management subservice shall:
1. calculate the checksum of the memory object specified by that

instruction;

146

ECSS-E-ST-70-41C
15 April 2016

2. generate a single checked object memory object notification that
includes:
(a) the octet length of the data that has been checked;
(b) the calculated checksum of the memory object.

g. For each valid request to check an object memory object, the structured
data memory management subservice shall generate a single checked
object memory object report that includes:
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier;
3. the related checked object memory object notification.

NOTE 1 For item 1, refer to requirement 6.6.4.2a.
NOTE 2 For item 2, refer to requirement 6.6.4.3a.

6.6.4.8 Load object memory data areas by reference
a. The structured data memory management subservice capability to load

object memory data areas by reference shall be declared when specifying
that subservice.

NOTE The corresponding requests are of message type
"TC[6,21] load object memory data areas by
reference".

b. Each request to load object memory data areas by reference shall contain:
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier;
3. the file path of the file containing the data to load;
4. an ordered list of one or more instructions to load an object

memory data area by reference.
NOTE 1 For item 1, refer to requirement 6.6.4.2a. If the

structured data memory management subservice
manages only one memory, the instructions apply
to that memory.

NOTE 2 All the instructions in the request apply to the
same memory and to the same file.

c. The execution verification profile of each request to load object memory
data areas by reference shall include the reporting of the completion of
execution.

NOTE For the execution verification profile, refer to
requirement 5.3.5.2.3g.

d. Each instruction to load an object memory data area by reference shall
contain:
1. the byte offset within the memory object identified by the base

identifier;
2. the offset in bytes of the data in the source file;
3. the length in bytes of the data to load;

147

ECSS-E-ST-70-41C
15 April 2016

4. if the structured data memory management subservice provides
checksumming, the checksum value for the verification of the data
after it has been loaded to the memory.
NOTE For item 4, refer to requirement 6.6.4.1a.

e. The structured data memory management subservice shall reject any
request to load object memory data areas by reference if any of the
following conditions occurs:
1. that request refers to an invalid memory identifier;
2. the subservice does not have write access to the memory referred

to in that request;
3. that request refers to a memory that is write protected;
4. that request refers to a memory object that is write protected;
5. the base identifier in that request refers to a memory object that is

unknown;
6. that request refers to a file that does not exist;
7. that request refers to a file that is not recognized as a file

containing memory data;
8. that request contains an instruction that refers to:

(a) a byte offset that exceeds the maximum memory size of the
memory object identified by the base identifier;

(b) a byte offset which is not aligned with respect to the
memory access alignment constraint;

(c) a load length which is not a multiple of the memory access
alignment constraint;

(d) an offset that exceeds the source file size;
9. loading the data contained in one of the related instructions

exceeds the maximum memory size.
NOTE The checking of instructions that follow a faulty

instruction is optional. For some failures, e.g., the
variable octet-string size of the data does not
comply with the actual data, any processing of the
remaining instructions is no longer possible.

f. For each request to load object memory data areas by reference that is
rejected, the structured data memory management subservice shall
generate a failed start of execution notification.

g. For each request to load object memory data areas by reference that
contains only valid instructions, the structured data memory
management subservice shall execute those instructions in the order of
their appearance in that request.

h. For each valid instruction to load an object memory data area by
reference, the structured data memory management subservice shall:
1. read the data from the source file;
2. write the data to memory.

148

ECSS-E-ST-70-41C
15 April 2016

i. If an error occurs during the writing to memory of the data related to an
instruction to load an object memory data area by reference, the
structured data memory management subservice shall:
1. immediately abort the execution of the related request;
2. generate a failed execution notification for that instruction.

NOTE For example, an error can occur when the memory
becomes write-protected by hardware during the
course of the load operation.

j. If the subservice provides checksumming, then once the data related to
an instruction to load an object memory data area by reference has been
written to the memory, the structured data memory management
subservice shall:
1. calculate the checksum of the loaded data;
2. compare it to the checksum value in that instruction;
3. if that checksum comparison fails:

(a) immediately abort the execution of the related request;
(b) generate a failed execution notification for that instruction.

k. For each request to load object memory data areas by reference that is
aborted, the structured data memory management subservice shall
generate a failed completion of execution verification report that contains
the failed execution notification.

6.6.4.9 Dump object memory data areas to file
a. The structured data memory management subservice capability to dump

object memory data areas to file shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[6,22] dump object memory data areas to file".

b. Each request to dump object memory data areas to file shall contain:
1. if the structured data memory management subservice manages

more than one memory, the identifier of the memory;
2. the base identifier;
3. the object path of the destination file;
4. one or more instructions to dump an object memory data area to

file.
NOTE For item 1, refer to requirement 6.6.4.2a. If the

structured data memory management subservice
manages only one memory, the instructions apply
to that memory.

c. The structured data memory management subservice shall reject any
request to dump object memory data areas to file if any of the following
conditions occurs:
1. that request refers to an invalid memory identifier;
2. the base identifier in that request refers to a memory object that is

unknown;

149

ECSS-E-ST-70-41C
15 April 2016

3. the subservice does not have read access to the memory referred to
in that request;

4. the destination file already exists.

d. For each request to dump object memory data areas to file that is rejected,
the structured data memory management subservice shall generate a
failed start of execution notification.

e. Each instruction to dump an object memory data area to file shall
contain:
1. the byte offset within the memory object identified by the base

identifier;
2. the octet length of the memory area to dump.

f. The structured data memory management subservice shall reject any
instruction to dump an object memory data area to file if any of the
following conditions occurs:
1. that instruction refers to an offset that, combined with the length of

the memory area to dump, exceeds the maximum memory size of
the memory object identified by the base identifier;

2. that instruction refers to an offset which is not aligned with the
memory access alignment constraint;

3. that instruction refers to a length that is not a multiple of the
memory access alignment constraint.

g. For each instruction to dump an object memory data area to file that it
rejects, the structured data memory management subservice shall
generate the failed start of execution notification for that instruction.

h. The structured data memory management subservice shall process any
valid instruction that is contained within a request to dump object
memory data areas to file regardless of the presence of faulty
instructions.

i. For each valid request to dump object memory data areas to file, the raw
data memory management subservice shall:
1. create the file according to the provided file path.

j. For each valid instruction to dump an object memory data area to file, the
structured data memory management subservice shall:
1. extract the memory data specified by that instruction from the

memory;
2. append the memory data to the destination file.

NOTE This standard does not specify the formatting of
data within the file. For example, data can be
written as a raw byte stream, or include headers
identifying the origin of the dumped data.

6.6.4.10 Subservice observables
 This Standard does not define any observables for the structured data memory

management subservice.

150

ECSS-E-ST-70-41C
15 April 2016

6.6.5 Common memory management subservice

6.6.5.1 Abort all memory dumps
a. The common memory management subservice shall provide the

capability to abort all memory dumps.
NOTE 1 The corresponding requests are of message type

"TC[6,12] abort all memory dumps".
NOTE 2 Abort all memory dumps implies aborting all

dumps of the raw data memory management
subservice (refer to clauses 6.6.3.4 and 6.6.3.7) and
those of the structured data memory management
subservice (refer to clauses 6.6.4.5 and 6.6.4.9).

b. Each request to abort all memory dumps shall contain exactly one
instruction to abort all memory dumps.

NOTE The instructions to abort all memory dumps
contain no argument.

c. For each valid instruction to abort all memory dumps, the common
memory management subservice shall:
1. if the service includes a raw data memory management subservice,

abort the execution of all dump requests that are under execution
by that subservice;

2. if the service includes a structured data memory management
subservice, abort the execution of all dump requests that are under
execution by that subservice.

6.6.5.2 Subservice observables
a. The following observables shall be defined for the common memory

management subservice:
1. a flag signalling that at least one dump is in-progress.

6.6.6 Memory configuration subservice

6.6.6.1 Scrubbing memory

6.6.6.1.1 Capability

a. Whether the memory configuration subservice supports scrubbing
memories shall be declared when specifying that subservice.

6.6.6.1.2 Memory accessibility

a. The list of memories for which scrubbing can be initiated by the memory
management service shall be declared when specifying that subservice.

151

ECSS-E-ST-70-41C
15 April 2016

6.6.6.1.3 Status

a. For each memory for which scrubbing can be initiated by the memory
management service, the service shall maintain a status indicating
whether scrubbing the memory is enabled or disabled.

NOTE 1 This status is named "memory scrubbing status".
NOTE 2 This Standard does not specify the mechanism

providing the memory scrubbing functionality.
This mechanism is memory dependent and can
rely on hardware or software processes. The
memory scrubbing status is used to trigger the
scrubbing of the related memory.

b. For each memory for which scrubbing can be initiated by the memory
management service, the initial value of the memory scrubbing status for
that memory shall be declared when specifying the service.

6.6.6.1.4 Enable the scrubbing of a memory

a. The memory configuration subservice shall provide the capability to
enable the scrubbing of a memory if that subservice supports scrubbing
memories.

NOTE 1 The corresponding requests are of message type
"TC[6,13] enable the scrubbing of a memory".

NOTE 2 For the support to scrub memories, refer to
requirement 6.6.6.1.1a.

NOTE 3 For the capability to disable the scrubbing of a
memory, refer to clause 6.6.6.1.5.

b. Each request to enable the scrubbing of a memory shall contain exactly
one instruction to enable the scrubbing of a memory.

c. Each instruction to enable the scrubbing of a memory shall contain:
1. if the memory configuration subservice manages more than one

memory, the identifier of the memory.
NOTE For item 1, refer to requirement 6.6.6.1.2a.

d. The memory configuration subservice shall reject any request to enable
the scrubbing of a memory if:
1. that request contains an instruction that refers to a memory that

cannot be scrubbed.
NOTE For item 1, refer to requirement 6.6.6.1.2a.

e. For each request to enable the scrubbing of a memory that is rejected, the
memory configuration subservice shall generate a failed start of
execution notification.

f. For each valid instruction to enable the scrubbing of a memory, the
memory configuration subservice shall:
1. set the memory scrubbing status of that memory to "enabled".

152

ECSS-E-ST-70-41C
15 April 2016

6.6.6.1.5 Disable the scrubbing of a memory

a. The memory configuration subservice shall provide the capability to
disable the scrubbing of a memory if that subservice supports scrubbing
memories.

NOTE 1 The corresponding requests are of message type
"TC[6,14] disable the scrubbing of a memory".

NOTE 2 For the support to scrub memories, refer to
requirement 6.6.6.1.1a.

NOTE 3 For the capability to enable the scrubbing of a
memory, refer to clause 6.6.6.1.4.

b. Each request to disable the scrubbing of a memory shall contain exactly
one instruction to disable the scrubbing of a memory.

c. Each instruction to disable the scrubbing of a memory shall contain:
1. if the memory configuration subservice manages more than one

memory, the identifier of the memory.
NOTE For item 1, refer to requirement 6.6.6.1.2a.

d. The memory configuration subservice shall reject any request to disable
the scrubbing of a memory if:
1. that request contains an instruction that refers to a memory that

cannot be scrubbed.
NOTE For item 1, refer to requirement 6.6.6.1.2a.

e. For each request to disable the scrubbing of a memory that is rejected, the
memory configuration subservice shall generate a failed start of
execution notification.

f. For each valid instruction to disable the scrubbing of a memory, the
memory configuration subservice shall:
1. set the memory scrubbing status of that memory to "disabled".

6.6.6.2 Write protecting memory

6.6.6.2.1 Capability

a. Whether the memory configuration subservice supports write protecting
memories shall be declared when specifying that subservice.

6.6.6.2.2 Memory accessibility

a. The list of memories for which write protection can be controlled by the
memory management service shall be declared when specifying that
subservice.

6.6.6.2.3 Status

a. For each memory for which the write protection can be controlled by the
memory management service, the service shall maintain a status
indicating whether the memory is write protected or write unprotected.

NOTE 1 This status is named "memory write protection
status".

153

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 The actual implementation of the write protection
is memory dependent i.e. write protection by
hardware or by software.

6.6.6.2.4 Enable the write protection of a memory

a. The memory configuration subservice shall provide the capability to
enable the write protection of a memory if that subservice supports write
protecting memories.

NOTE 1 The corresponding requests are of message type
"TC[6,15] enable the write protection of a
memory".

NOTE 2 For the support to write protecting memories, refer
to requirement 6.6.6.2.1a.

NOTE 3 For the capability to disable the write protection of
a memory, refer to clause 6.6.6.2.5.

b. Each request to enable the write protection of a memory shall contain
exactly one instruction to enable the write protection of a memory.

c. Each instruction to enable the write protection of a memory shall contain:
1. if the memory configuration subservice manages more than one

memory, the identifier of the memory.
NOTE For item 1, refer to requirement 6.6.6.2.2a.

d. The memory configuration subservice shall reject any request to enable
the write protection of a memory if:
1. that request contains an instruction that refers to a memory that

cannot be write protected.
NOTE For item 1, refer to requirement 6.6.6.2.2a.

e. For each request to enable the write protection of a memory that is
rejected, the memory configuration subservice shall generate a failed start
of execution notification.

f. For each valid instruction to enable the write protection of a memory, the
memory configuration subservice shall:
1. set the memory write protection status of that memory to "write

protected".

6.6.6.2.5 Disable the write protection of a memory

a. The memory configuration subservice shall provide the capability to
disable the write protection of a memory if that subservice supports write
protecting memories.

NOTE 1 The corresponding requests are of message type
"TC[6,16] disable the write protection of a
memory".

NOTE 2 For the support to write protecting memories, refer
to requirement 6.6.6.2.1a.

NOTE 3 For the capability to enable the write protection of
a memory, refer to clause 6.6.6.2.4.

154

ECSS-E-ST-70-41C
15 April 2016

b. Each request to disable the write protection of a memory shall contain
exactly one instruction to disable the write protection of a memory.

c. Each instruction to disable the write protection of a memory shall
contain:
1. if the memory configuration subservice manages more than one

memory, the identifier of the memory.
NOTE For item 1, refer to requirement 6.6.6.2.2a.

d. The memory configuration subservice shall reject any request to disable
the write protection of a memory if:
1. that request contains an instruction that refers to a memory that

cannot be write protected.
NOTE For item 1, refer to requirement 6.6.6.2.2a.

e. For each request to disable the write protection of a memory that is
rejected, the memory configuration subservice shall generate a failed start
of execution notification.

f. For each valid instruction to disable the write protection of a memory,
the memory configuration subservice shall:
1. set the memory write protection status of that memory to "write

unprotected".

6.6.6.3 Subservice observables
a. The following observables shall be defined for the memory configuration

subservice:
1. for each memory for which scrubbing can be controlled by this

subservice, its enabled or disabled scrubbing status;
2. for each memory for which write protection can be controlled by

this subservice, its write protected or write unprotected status.

155

ECSS-E-ST-70-41C
15 April 2016

6.7 ST[07] (reserved)

156

ECSS-E-ST-70-41C
15 April 2016

6.8 ST[08] function management

6.8.1 Scope

6.8.1.1 General
 The function management service type provides the capability for performing

specific functions of an application process.

 A given application process can support one or more functions that are invoked
from the ground. These functions relate to the specialized role assigned to the
application process on-board the spacecraft, for example, responsibility for
controlling the operation of a payload instrument or an AOCS subsystem.

 The nature of this control can vary quite considerably and is not prescribed or
constrained in any way by this Standard. It can cover all on-board nominal
operations for subsystems and payloads including predefined mode change
operations.

 These functions can also be implemented as mission-specific services, with their
own request and report data structures and service models.

 Missions tailoring this Standard are encouraged to develop mission specific
service types or mission specific subservice types of standardized services
instead of using the function management service type. The function
management service type remains in this version of the Standard for backward
compatibility reasons.

 The function management service type defines a single standardized subservice
type, i.e. the function management subservice type.

6.8.1.2 Function management subservice
 The function management subservice type defines a standard service request

for performing specific functions of an application process.

6.8.2 Service layout

6.8.2.1 Subservice

6.8.2.1.1 Function management subservice

a. Each function management service shall contain at least one function
management subservice.

6.8.2.2 Application process
a. Each application process shall host at most one function management

subservice provider.

157

ECSS-E-ST-70-41C
15 April 2016

6.8.3 Accessibility

6.8.3.1 Function
a. The list of functions that the function management subservice accesses

shall be declared when specifying that subservice.

b. For each function, if that function uses arguments, the list of arguments
and their definition shall be declared when specifying that function.

c. For each function that uses arguments, the policy for supplying the
arguments shall be declared when specifying that function:
1. supplying a value for each argument, or
2. supplying only values for those arguments to update, the other

arguments retaining their current values.

6.8.4 Perform a function
a. The function management subservice shall provide the capability to

perform a function.
NOTE The corresponding requests are of message type

"TC[8,1] perform a function".

b. Each request to perform a function shall contain exactly one instruction
to perform a function.

c. Each instruction to perform a function shall contain:
1. the identifier of the function;
2. if the function uses arguments, the list of arguments and argument

values.
NOTE For item 2:

• Refer to requirement 6.8.3.1b for the presence of
arguments.

• Whether all arguments are updated in each
instruction to perform a function depends on
the supplying arguments policy, refer to
requirement 6.8.3.1c.

d. The function management subservice shall reject any request to perform
a function if any of the following conditions occurs:
1. that request contains an instruction that refers to a function that is

unknown;
2. that request contains an instruction that refers to an argument that

is unknown;
3. an argument value contained within the related instruction does

not comply with the function arguments specified for that
function.

e. For each request to perform a function that is rejected, the function
management subservice shall generate a failed start of execution
notification.

158

ECSS-E-ST-70-41C
15 April 2016

f. For each valid instruction to perform a function, the function
management subservice shall:
1. initiate the execution of the function.

6.8.5 Subservice observables
 This standard does not define any observables for the function management

subservice.

159

ECSS-E-ST-70-41C
15 April 2016

6.9 ST[09] time management

6.9.1 Scope

6.9.1.1 General
 The time management service type provides capabilities related to the

generation of time reports.

 All spacecraft maintain a spacecraft time reference, which can be downlinked in
time reports. The ground segment can perform a correlation between the
reported spacecraft time and the UTC (coordinated universal time) used by the
ground segment. This correlation enables the ground system to reconstitute
accurately the on-board time of other information reported by the spacecraft,
such as the time of occurrence of an event.

 The time management service type defines two standardized subservice types,
i.e.:

• the time reporting subservice type;

• the time reporting control subservice type.

6.9.1.2 Time reporting subservice
 The time reporting subservice type includes the capability to generate time

reports. The time contained in a time report uses a standardized time code
format and the subservice type includes capabilities for two of these formats.
However, a given time reporting subservice can support only one time code
format.

 The time code formats are:

• CUC (CCSDS unsegmented), which represents consecutive bits of a
binary counter. The CUC format is suitable for applications such as
spacecraft time measurement.

• CDS (CCSDS day segmented), which is typically used to report on-board
time that is synchronized with a ground time reference, e.g. TAI, UTC.

 Each of these time formats consists of two fields, the time code preamble field
(P-field) and the time specification field (T-field).

6.9.1.3 Time reporting control subservice
 The time reporting control subservice type includes the capability to control the

rate of generation of the time reports. This subservice type is used when a
mission has varying requirements for time correlation accuracy.

160

ECSS-E-ST-70-41C
15 April 2016

6.9.2 Service layout

6.9.2.1 Service
a. Each spacecraft shall contain exactly one time management service.

6.9.2.2 Subservice

6.9.2.2.1 Time reporting subservice

a. Each time management service shall contain exactly one time reporting
subservice.

6.9.2.2.2 Time reporting control subservice

a. Each time management service shall contain at most one time reporting
control subservice.

6.9.2.3 Application process
a. The time reporting subservice provider shall be hosted by the on-board

application process that is identified by APID 0.

b. Each application process shall host at most one time reporting control
subservice provider.

NOTE The time reporting subservice and the time
reporting control subservice can be hosted by
different application processes.

c. If the time reporting control subservice has the capability to generate
reports, that subservice shall not be hosted by the application process
that hosts the time reporting subservice.

NOTE All reports generated by the application process
that is identified by APID 0 are time reports. These
time reports are transported in CCSDS space
packets that have no secondary header, resulting
in no adequate means to identify reports of any
other type.

6.9.3 Spacecraft time reference
a. The time management service shall have access to the spacecraft time

reference.
NOTE This Standard does not specify how the on-board

clock that provides the spacecraft time reference is
implemented. It can, for example, be a free
running counter or a clock synchronized to a GPS
receiver.

b. The default time report generation rate used by the time management
service shall be declared when specifying that subservice.

c. The time report generation rates supported by the spacecraft shall be
declared when specifying the time management service.

161

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 The possible time report generation rates are 1, 2,
4, 8, 16, 32, 64, 128 or 256.

NOTE 2 The report generation rate is relative to the
generation of telemetry transfer frames on virtual
channel 0. For example, if the report generation
rate is 16, then every 16th transfer frame on virtual
channel 0 causes the generation of a time report
packet.

d. The spacecraft time reference sampling accuracy shall be declared when
specifying the spacecraft architecture.

e. The accuracy of the time difference between the transmission time of a
reference frame and the on-board time sampled and reported in the
corresponding time report shall be declared when specifying the time
management service.

NOTE 1 The spacecraft time reference sampling accuracy
contributes to the time correlation accuracy.

NOTE 2 This Standard does not assume the downlinking of
the time packet in the same transfer frame as the
one that causes its generation.

f. The time management service shall provide the synchronized timing
information used to timestamp the reports generated by all services of
the mission.

NOTE For time stamping the reports, refer to requirement
5.4.2.1f.

6.9.4 Time reporting subservice

6.9.4.1 Capability
a. The time reporting subservice shall provide exactly one of the following

capabilities:

1. the capability for generating time reports in CUC format specified
in clause 6.9.4.2;

2. the capability for generating time reports in CDS format specified
in clause 6.9.4.3.

b. Whether the time reporting subservice supports the capability to report
the spacecraft time reference status shall be declared when specifying
that subservice.

c. If the time reporting subservice supports the capability to report the
spacecraft time reference status, the meaning of the spacecraft time
reference status shall be declared when specifying that subservice.

d. Whether the time reporting subservice supports the capability to report
the time report generation rate in the time reports shall be declared when
specifying that time reporting subservice.

162

ECSS-E-ST-70-41C
15 April 2016

6.9.4.2 Time reporting in CUC format
a. The time reporting subservice capability to generate time reports in CUC

time format shall be declared when specifying that subservice.
NOTE 1 The corresponding reports are data reports of

message type "TM[9,2] CUC time report".
NOTE 2 For that declaration, refer to requirement 6.9.4.1a.

b. Whether the time reporting subservice includes the P-field in the CUC
time reports shall be declared when specifying that subservice.

NOTE If the P-field is not explicitly included, the P-field
value is considered implicit.

c. If the time reporting subservice does not include the P-field in the CUC
time reports, the implicit P-field value shall be declared when specifying
that subservice.

d. The time reporting subservice shall use the CUC time code format
specified in CCSDS 301.0-B-4 when generating the CUC time reports.

e. When generating a time report in CUC time format, the time reporting
subservice shall:
1. generate a CUC time notification containing:

(a) if supported, the time report generation rate, represented by
the rate exponential value;

(b) the spacecraft time;
(c) the spacecraft time reference status if the subservice

supports the capability to report that status;
2. generate a single CUC time report containing the CUC time

notification.
NOTE 1 For item 1(a):

• refer to requirements 6.9.4.1d;
• the rate exponential value is a value that is

greater than or equal to 0, and less than or
equal to 8, see also requirement 6.9.4.2e.

NOTE 2 For item 1(b), refer to clause 6.9.4.4.
NOTE 3 For item 1(c), refer to requirements 6.9.4.1b and

6.9.4.1c.
NOTE 4 The time reporting subservice generates CUC time

reports at a time report generation rate that is
equal to:

2rate exponential value

The time report generation rate is defined in
requirement 6.9.3c.

6.9.4.3 Time reporting in CDS format
a. The time reporting subservice capability to generate time reports in CDS

time format shall be declared when specifying that subservice.
NOTE 1 The corresponding reports are data reports of

message type "TM[9,3] CDS time report".

163

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For that declaration, refer to requirement 6.9.4.1a.

b. Whether the time reporting subservice includes the P-field in the CDS
time reports shall be declared when specifying that subservice.

NOTE If the P-field is not explicitly included, the P-field
value is considered implicit.

c. If the time reporting subservice does not include the P-field in the CDS
time reports, the implicit P-field value shall be declared when specifying
that subservice.

d. The time reporting subservice shall use the CDS time code format
specified in CCSDS 301.0-B-4 when generating the CDS time report.

e. When generating a time report in CDS time format, the time reporting
subservice shall:
1. generate a CDS time notification containing:

(a) if supported, the time report generation rate, represented by
the rate exponential value;

(b) the spacecraft time;
(c) the spacecraft time reference status if the subservice

supports the capability to report that status;
2. generate a single CDS time report containing the CUC time

notification.
NOTE 1 For item 1(a):

• refer to requirement 6.9.4.1d;
• the rate exponential value is a value that is

greater than or equal to 0, and less than or
equal to 8, see also requirement 6.9.4.3e.

NOTE 2 For item 1(b), refer to clause 6.9.4.4.
NOTE 3 For item 1(c), refer to requirements 6.9.4.1b and

6.9.4.1c.
NOTE 4 The time reporting subservice generates CDS time

reports at a time report generation rate that is
equal to:

2rate exponential value

The time report generation rate is defined in
requirement 6.9.3c.

6.9.4.4 Time report generation process
a. The time reporting subservice shall sample the spacecraft time reference

once for each telemetry transfer frame on virtual channel 0 that satisfies
the following condition:
1. the virtual channel frame count carried in the header of a telemetry

transfer frame modulo the time report generation rate equals to 0.

b. When the time report generation rate is changed, the time reporting
subservice shall immediately use the new time report generation rate to
determine the next transfer frame that triggers a sampling of the
spacecraft time reference.

164

ECSS-E-ST-70-41C
15 April 2016

c. When a telemetry transfer frame triggers the time reporting subservice to
sample the spacecraft time reference, the subservice shall sample the time
reference at the instant of occurrence of the leading edge of the first bit of
the attached synchronization marker of the frame.

d. When a telemetry transfer frame triggers the time reporting subservice to
sample the spacecraft time reference, the subservice shall generate the
resulting time report at the required time report generation rate.

NOTE 1 The time reports are of message report type
"TM[9,2] CUC time report" or "TM[9,3] CDS time
report" as derived from requirement 6.9.4.1a.

NOTE 2 For the default time report generation rate, refer to
requirement 6.9.3b.

NOTE 3 The time report generation rate can also be set by
request, refer to clause 6.9.5.1.1.

e. For each generated time report, the time reporting subservice shall set the
T-field of that time report to the sampled value of the spacecraft time
reference, formatted according to the time code format.

6.9.4.5 Subservice observables
 This Standard does not define any observables for the time reporting

subservice.

6.9.5 Time reporting control subservice

6.9.5.1 Controlling the time reporting rate

6.9.5.1.1 Set the time report generation rate

a. The time reporting control subservice shall provide the capability to set
the time report generation rate.

NOTE The corresponding requests are of message type
"TC[9,1] set the time report generation rate".

b. Each request to set the time report generation rate shall contain exactly
one instruction to set the time report generation rate.

c. Each instruction to set the time report generation rate shall contain:
1. the rate exponential value representation of the time report

generation rate.
NOTE The rate exponential value is calculated as follows:

time report generation rate = 2rate exponential value

The time report generation rate is defined in
requirement 6.9.3c.

d. The time reporting control subservice shall reject any request to set the
time report generation rate if:
1. that request contains an instruction that contains an invalid time

report generation rate.

165

ECSS-E-ST-70-41C
15 April 2016

e. For each request to set the time report generation rate that is rejected, the
time reporting control subservice shall generate a failed start of execution
notification.

f. For each valid instruction to set the time report generation rate, the time
reporting control subservice shall:
1. set the time report generation rate used by the time reporting

subservice to the new value in that instruction.

6.9.5.2 Subservice observables
a. The following observables shall be defined for the time reporting control

subservice:
1. the time report generation rate.

166

ECSS-E-ST-70-41C
15 April 2016

6.10 ST[10] (reserved)

167

ECSS-E-ST-70-41C
15 April 2016

6.11 ST[11] time-based scheduling

6.11.1 Scope

6.11.1.1 General
 The time-based scheduling service type provides the capability to command on-

board application processes using requests pre-loaded on-board the spacecraft
and released at their due time.

 The time-based scheduling service type defines a single standardized
subservice type, i.e. the time-based scheduling subservice type.

6.11.1.2 Time-based scheduling subservice
 The time-based scheduling subservice type includes the capability to maintain

an on-board time-based schedule of requests and to ensure the timely release of
those requests.

 This provides an extension of the ground monitoring and control. As such, the
application process that executes a request released by the time-based
scheduling subservice directly sends the request verification reports, if any, to
the source identified by the source identifier specified in the request. The
release of a request by the subservice is not conditional on the successful or
unsuccessful execution of earlier requests released by the subservice.

 The time-based scheduling subservice type provides the optional concept of
sub-schedules. If the time-based scheduling subservice supports sub-schedules,
each request in the time-based schedule is associated to a sub-schedule. Each
sub-schedule reflects a coherent on-board operation. Once that operation is
completed, the sub-schedule has no further reason to exist. Therefore, sub-
schedules are automatically created when used and deleted when empty. The
time-based scheduling subservice type includes the capability for enabling and
disabling the execution of each sub-schedule.

 The time-based scheduling subservice type also provides the optional concept
of groups. If the time-based scheduling subservice supports groups, each
request in the time-based schedule is associated to a group. The time-based
scheduling subservice type includes the capability for enabling and disabling
the execution of grouped requests, independently of the application processes
they are released to and of the sub-schedules they belong to. Groups are
typically related to spacecraft entities (e.g. hardware or software). Groups can
be created and deleted by request and can exist even if empty. They can be
used, for example, to group all requests associated to a specific instrument and
disable their release when the conditions for their execution are not fulfilled,
while other requests for the same application process are associated to a
different group and enabled for release.

168

ECSS-E-ST-70-41C
15 April 2016

 The term "scheduled activity" is used in the time-based scheduling service type to
refer to each entry of the time-based schedule. A scheduled activity consists of:

• scheduling data, e.g. the identifier of the sub-schedule, the identifier of
the group, the release time;

• the request that is scheduled for later release.

 Each scheduled activity is identified by the identifier of the request that is
scheduled for later release.

 The time-based scheduling subservice type includes optional capability to use a
delta time value to time-shift the release times of a set of the activities in the
time-based schedule.

6.11.2 Service layout

6.11.2.1 Subservice

6.11.2.1.1 Time-based scheduling subservice

a. Each time-based scheduling service shall contain at least one time-based
scheduling subservice.

6.11.2.2 Application process
a. Each application process shall host at most one time-based scheduling

subservice provider.

6.11.3 Accessibility

6.11.3.1 Application process
a. The list of application processes that can be addressed by the time-based

scheduling subservice when releasing requests shall be declared when
specifying that subservice.

NOTE 1 This Standard assumes that all requests of
addressable application processes can be used by
the time-based scheduling subservice. The
application process that hosts the time-based
scheduling subservice is, by nature, an addressable
application process.

NOTE 2 When the time-based scheduling subservice
releases a request, the request is processed by the
service that is indicated by the service type and
hosted by the application process identified within
the request.

NOTE 3 Requests released by the time-based scheduling
subservice are not generated by that subservice but
by the source that initiated the insert activities into
schedule request, i.e. the original source.

169

ECSS-E-ST-70-41C
15 April 2016

6.11.4 Managing the time-based schedule

6.11.4.1 Capability
a. Whether the time-based scheduling subservice supports the capability for

managing sub-schedules shall be declared when specifying that
subservice.

NOTE See clause 6.11.5.

b. Whether the time-based scheduling subservice supports the capability for
managing groups specified shall be declared when specifying that
subservice.

NOTE See clause 6.11.6.

6.11.4.2 General
a. Each scheduled activity definition shall consist of:

1. the request;
2. the release time of that request;
3. if sub-schedules are supported, the identifier of the sub-schedule

to which that scheduled activity is associated;
4. if groups are supported, the identifier of the group to which that

scheduled activity is associated.
NOTE 1 For item 3, refer to requirement 6.11.4.1a.
NOTE 2 For item 4, refer requirement 6.11.4.1b.

b. Each scheduled activity definition shall be identified by a scheduled
activity identifier that corresponds to the identifier of the request
contained in that definition.

NOTE For the request identifier, refer to requirement
5.4.11.2.1c.

c. The maximum number of scheduled activity definitions that the time-
based scheduling subservice can insert within the time-based schedule
and contemporaneously process at any time shall be declared when
specifying that subservice.

NOTE This Standard assumes that the resources allocated
to the time-based scheduling subservice are
sufficient to support this maximum number of
scheduled activities independently of the size of
the requests they contain.

d. The time margin that the time-based scheduling subservice uses when
inserting activities in the time-based schedule or time-shifting activities
shall be declared when specifying that subservice.

NOTE 1 The time margin is present in order to ensure the
consistency and operability of the schedule at any
time. Inserting activities or time-shifting them can
only be performed if the release time of these
activities is greater than or equal to the current
time plus a time margin.

170

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 The time margin parameter is called the "time-
based schedule time margin".

e. The maximum delta time between the release time specified in a
scheduled activity definition and the real release time of the related
request shall be declared when specifying that subservice.

6.11.4.3 Controlling the time-based schedule execution
function

6.11.4.3.1 Status

a. The time-based scheduling subservice shall maintain a status indicating
whether the overall time-based schedule execution function is enabled or
disabled.

NOTE This status is named "time-based schedule
execution function status".

b. When starting the time-based scheduling subservice, the time-based
schedule execution function status shall be set to "disabled".

6.11.4.3.2 Enable the time-based schedule execution function

a. The time-based scheduling subservice shall provide the capability to
enable the time-based schedule execution function.

NOTE 1 The corresponding requests are of message type
"TC[11,1] enable the time-based schedule
execution function".

NOTE 2 For the capability to disable the time-based
schedule execution function, refer to clause
6.11.4.3.3.

b. Each request to enable the time-based schedule execution function shall
contain exactly one instruction to enable the time-based schedule
execution function.

NOTE The instructions to enable the time-based schedule
execution function contain no argument.

c. For each valid instruction to enable the time-based schedule execution
function, the time-based scheduling subservice shall:
1. set the time-based schedule execution function status to "enabled".

NOTE Enabling the time-based schedule execution
function does not depend on the presence of
scheduled activities in the schedule.

6.11.4.3.3 Disable the time-based schedule execution function

a. The time-based scheduling subservice shall provide the capability to
disable the time-based schedule execution function.

NOTE 1 The corresponding requests are of message type
"TC[11,2] disable the time-based schedule
execution function".

171

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For the capability to enable the time-based
schedule execution function, refer to clause
6.11.4.3.2.

b. Each request to disable the time-based schedule execution function shall
contain exactly one instruction to disable the time-based schedule
execution function.

NOTE The instructions to disable the time-based schedule
execution function contain no argument.

c. For each valid instruction to disable the time-based schedule execution
function, the time-based scheduling subservice shall:
1. set the time-based schedule execution function status to "disabled".

NOTE Disabling the time-based schedule execution
function does not depend on the presence of
scheduled activities in the schedule.

6.11.4.4 Reset the time-based schedule
a. The time-based scheduling subservice shall provide the capability to

reset the time-based schedule.
NOTE 1 The corresponding requests are of message type

"TC[11,3] reset the time-based schedule".
NOTE 2 This request is accepted regardless of the time-

based schedule execution function status.

b. Each request to reset the time-based schedule shall contain exactly one
instruction to reset the time-based schedule.

NOTE The instructions to reset the time-based schedule
contain no argument.

c. For each valid instruction to reset the time-based schedule, the time-
based scheduling subservice shall:
1. set the time-based schedule execution function status to "disabled";
2. delete all scheduled activities from the schedule;
3. if sub-schedules are supported, delete all sub-schedules;
4. if groups are supported, enable all groups.

NOTE 1 For item 3, refer to requirement 6.11.4.1a.
NOTE 2 For item 4, refer to requirement 6.11.4.1b.

6.11.4.5 Insert activities into the time-based schedule
a. The time-based scheduling subservice shall provide the capability to

insert activities into the time-based schedule.
NOTE 1 The corresponding requests are of message type

"TC[11,4] insert activities into the time-based
schedule".

NOTE 2 Each valid instruction to insert an activity into the
time-based schedule results in the creation of a
new scheduled activity in the time-based schedule.

172

ECSS-E-ST-70-41C
15 April 2016

NOTE 3 If sub-schedules are supported, the new scheduled
activity is associated to the specified sub-schedule.

NOTE 4 If groups are supported, the new scheduled
activity is associated to the specified group.

b. Each request to insert activities into the time-based schedule shall
contain:
1. if sub-schedules are supported, the sub-schedule identifier;
2. one or more instructions to insert an activity into the time-based

schedule.
NOTE For item 1, refer to requirement 6.11.4.1a.

c. The time-based scheduling subservice shall reject any request to insert
activities into the time-based schedule if:
1. that request implies the creation of a new sub-schedule but the

maximum number of sub-schedules that can be
contemporaneously managed is already reached.
NOTE For that maximum number of sub-schedules, refer

to requirement 6.11.5.1a.

d. For each request to insert activities into the time-based schedule that is
rejected, the time-based scheduling subservice shall generate a failed
start of execution notification.

e. Each instruction to insert an activity into the time-based schedule shall
contain:
1. if groups are supported, the group identifier associated to the new

scheduled activity;
2. the release time of that new scheduled activity;
3. the request associated to that new scheduled activity.

NOTE For item 1, refer to requirement 6.11.4.1b.

f. The list of verification checks that the time-based scheduling subservice
shall perform on the requests associated to the new scheduled activities
shall be declared when specifying that subservice.

g. The time-based scheduling subservice shall reject any instruction to insert
an activity into the time-based schedule if any of the following conditions
occurs:
1. the activity cannot be added since the maximum number of

scheduled activities that can be contemporaneously processed is
already reached ;

2. the release time of the activity is earlier than the time obtained by
adding the time-based schedule time margin to the current time;

3. that instruction refers to a group that is unknown;
4. the request contained in that instruction fails any of the verification

checks.
NOTE 1 For item 1, refer to requirement 6.11.4.2c.
NOTE 2 For item 2, refer to requirement 6.11.4.2d.

173

ECSS-E-ST-70-41C
15 April 2016

h. For each instruction to insert an activity into the time-based schedule that
it rejects, the time-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

i. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to insert activities into the time-based
schedule regardless of the presence of faulty instructions.

j. For each valid request to insert activities into the time-based schedule,
the time-based scheduling subservice shall:
1. if sub-schedules are supported and the sub-schedule specified in

that request is unknown:
(a) create that sub-schedule;
(b) set its status to "disabled".
NOTE For item 1, refer to requirement 6.11.4.1a.

k. For each valid instruction to insert an activity into the time-based
schedule, the time-based scheduling subservice shall:
1. create a new scheduled activity in the schedule;
2. place the request specified in that instruction into the new

scheduled activity;
3. set the release time of the new scheduled activity to the release

time specified in that instruction;
4. if sub-schedules are supported, associate the new scheduled

activity to the sub-schedule specified in that instruction;
5. if groups are supported, associate the new scheduled activity to

the group specified in that instruction.
NOTE 1 For item 4, refer to requirement 6.11.4.1a.
NOTE 2 For item 5, refer to requirement 6.11.4.1b.

6.11.4.6 Schedule execution logic
a. The time-based schedule execution process shall process the scheduled

activities in the order of their release times.

b. The time-based schedule execution process shall consider a scheduled
activity is disabled if any of the following conditions occurs:
1. the time-based schedule execution function status is "disabled";
2. that scheduled activity is associated to a disabled sub-schedule;
3. that scheduled activity is associated to a disabled group.

c. For each scheduled activity whose release time is reached, the time-based
schedule execution process shall, in sequence:
1. if that scheduled activity is not disabled, release the related

request;
2. delete that scheduled activity from the schedule;
3. if that scheduled activity was the last scheduled activity of a sub-

schedule, delete the sub-schedule.

174

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 Items 2 and 3 ensure that scheduled activities that
cannot be released when their release time is
reached are deleted from the schedule.

NOTE 2 This Standard does not prescribe any notification
to ground when requests are deleted without
being released.

NOTE 3 This Standard does not prescribe the release order
of activities scheduled at the same exact time.

6.11.5 Managing time-based sub-schedules

6.11.5.1 Time-based sub-schedules
a. The maximum number of sub-schedules that the time-based scheduling

subservice can contemporaneously manage shall be declared when
specifying that subservice.

b. For each sub-schedule, the time-based scheduling subservice shall
maintain a status indicating whether the schedule execution function for
that sub-schedule is enabled or disabled.

NOTE This status is named "sub-schedule status".

6.11.5.2 Enabling and disabling time-based sub-schedules

6.11.5.2.1 Enable time-based sub-schedules

a. The time-based scheduling subservice capability to enable time-based
sub-schedules shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,20] enable time-based sub-schedules".

NOTE 2 For the capability to disable time-based sub-
schedules, refer to clause 6.11.5.2.2.

b. Each request to enable time-based sub-schedules shall contain:
1. one or more instructions to enable a time-based sub-schedule, or
2. exactly one instruction to enable all time-based sub-schedules.

NOTE The instructions to enable all time-based sub-
schedules contain no argument.

c. Each instruction to enable a time-based sub-schedule shall contain:
1. the identifier of the sub-schedule to enable.

d. The time-based scheduling subservice shall reject any instruction to
enable a time-based sub-schedule if:
1. that instruction refers to an unknown sub-schedule.

e. For each instruction to enable a time-based sub-schedule that it rejects,
the time-based scheduling subservice shall generate the failed start of
execution notification for that instruction.

175

ECSS-E-ST-70-41C
15 April 2016

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to enable time-based sub-schedules
regardless of the presence of faulty instructions.

g. For each valid instruction to enable a time-based sub-schedule, the time-
based scheduling subservice shall:
1. set the status of that sub-schedule to "enabled".

h. For each valid instruction to enable all time-based sub-schedules, the
time-based scheduling subservice shall:
1. for each sub-schedule maintained by the subservice, set its status

to "enabled".

6.11.5.2.2 Disable time-based sub-schedules

a. The time-based scheduling subservice shall provide the capability to
disable time-based sub-schedules if the capability to enable time-based
sub-schedule is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,21] disable time-based sub-schedules".

NOTE 2 For the capability to enable time-based sub-
schedule, refer to clause 6.11.5.2.1.

b. Each request to disable time-based sub-schedules shall contain:
1. one or more instructions to disable a time-based sub-schedule, or
2. exactly one instruction to disable all time-based sub-schedules.

NOTE The instructions to disable all time-based sub-
schedules contain no argument.

c. Each instruction to disable a time-based sub-schedule shall contain:
1. the identifier of the sub-schedule to disable.

d. The time-based scheduling subservice shall reject any instruction to
disable a time-based sub-schedule if:
1. that instruction refers to an unknown sub-schedule.

e. For each instruction to disable a time-based sub-schedule that it rejects,
the time-based scheduling subservice shall generate the failed start of
execution notification for that instruction.

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to disable time-based sub-schedules
regardless of the presence of faulty instructions.

g. For each valid instruction to disable a time-based sub-schedule, the time-
based scheduling subservice shall:
1. set the status of that sub-schedule to "disabled".

h. For each valid instruction to disable all time-based sub-schedules, the
time-based scheduling subservice shall:
1. for each sub-schedule maintained by the subservice, set its status

to "disabled".

176

ECSS-E-ST-70-41C
15 April 2016

6.11.5.2.3 Report the status of each time-based sub-schedule

a. The time-based scheduling subservice capability to report the status of
each time-based sub-schedule shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,18] report the status of each time-based
sub-schedule". The responses are data reports of
message type "TM[11,19] time-based sub-schedule
status report".

NOTE 2 That capability requires the capability for that
subservice to enable time-based sub-schedules
(refer to clause 6.11.5.2.1).

b. Each request to report the status of each time-based sub-schedule shall
contain exactly one instruction to report the status of each time-based
sub-schedule.

NOTE The instructions to report the status of each time-
based sub-schedule contain no argument.

c. For each valid instruction to report the status of each time-based sub-
schedule, the time-based scheduling subservice shall:
1. generate, for each time-based sub-schedule managed by the time-

based scheduling subservice, a single time-based sub-schedule
status notification that includes:
(a) its identifier;
(b) its status.

d. For each valid request to report the status of each time-based sub-
schedule, the time-based scheduling subservice shall generate a single
time-based sub-schedule status report that includes all related time-based
sub-schedule status notifications.

6.11.6 Managing time-based scheduling groups

6.11.6.1 Time-based scheduling groups
a. The maximum number of groups that the time-based scheduling

subservice can contemporaneously manage shall be declared when
specifying that subservice.

b. For each group, the time-based scheduling subservice shall maintain a
status indicating whether the schedule execution function for that group
is enabled or disabled.

NOTE This status is named "group status".

177

ECSS-E-ST-70-41C
15 April 2016

6.11.6.2 Creating and deleting time-based scheduling
groups

6.11.6.2.1 Create time-based scheduling groups

a. The time-based scheduling subservice capability to create time-based
scheduling groups shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,22] create time-based scheduling groups".

NOTE 2 For the capability to delete time-based scheduling
groups, refer to clause 6.11.6.2.2.

b. Each request to create time-based scheduling groups shall contain one or
more instructions to create a time-based scheduling group.

c. Each instruction to create a time-based scheduling group shall contain:
1. the identifier of the group;
2. the group status at creation time.

d. The time-based scheduling subservice shall reject any instruction to
create a time-based scheduling group if any of the following conditions
occurs:
1. that instruction refers to an already existing group;
2. the maximum number of groups that can be contemporaneously

managed is already reached.

e. For each instruction to create a time-based scheduling group that it
rejects, the time-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to create time-based scheduling groups
regardless of the presence of faulty instructions.

g. For each valid instruction to create a time-based scheduling group, the
time-based scheduling subservice shall:
1. add the group identifier to the list of groups maintained by that

sub-service;
2. set the group status to the value specified in the instruction.

6.11.6.2.2 Delete time-based scheduling groups

a. The time-based scheduling subservice shall provide the capability to
delete time-based scheduling groups if the capability to create time-based
scheduling groups is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,23] delete time-based scheduling groups".

NOTE 2 For the capability to create time-based scheduling
groups, refer to clause 6.11.6.2.1.

b. Each request to delete time-based scheduling groups shall contain:
1. one or more instructions to delete a time-based scheduling group,

or
2. exactly one instruction to delete all time-based scheduling groups.

178

ECSS-E-ST-70-41C
15 April 2016

NOTE The instructions to delete all time-based
scheduling groups contain no argument.

c. Each instruction to delete a time-based scheduling group shall contain:
1. the identifier of the group to delete.

d. The time-based scheduling subservice shall reject any instruction to
delete a time-based scheduling group if any of the following conditions
occurs:
1. that instruction refers to a group that does not exist;
2. that instruction refers to a group that has associated activities.

NOTE If there are scheduled activities associated to a
group, the group cannot be deleted.

e. For each instruction to delete a time-based scheduling group that it
rejects, the time-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to delete time-based scheduling groups
regardless of the presence of faulty instructions.

g. For each valid instruction to delete a time-based scheduling group, the
time-based scheduling subservice shall:
1. delete the group identifier from the list of groups maintained by

that subservice.

h. For each valid instruction to delete all time-based scheduling groups, the
time-based scheduling subservice shall:
1. for each group that has no associated activity, delete the identifier

of that group;
2. for each group that has associated activities, generate a failed

execution notification for that group.

6.11.6.3 Enabling and disabling time-based scheduling
groups

6.11.6.3.1 Enable time-based scheduling groups

a. The time-based scheduling subservice shall provide the capability to
enable time-based scheduling groups if the capability to create time-
based scheduling groups is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,24] enable time-based scheduling groups".

NOTE 2 For the capability to disable time-based scheduling
groups, refer to clause 6.11.6.3.2.

b. Each request to enable time-based scheduling groups shall contain:
1. one or more instructions to enable a time-based scheduling group,

or
2. exactly one instruction to enable all time-based scheduling groups.

NOTE The instructions to enable all time-based
scheduling groups contain no argument.

179

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to enable a time-based scheduling group shall contain:
1. the identifier of the group to enable.

d. The time-based scheduling subservice shall reject any instruction to
enable a time-based scheduling group if:
1. that instruction refers to an unknown group.

e. For each instruction to enable a time-based scheduling group that it
rejects, the time-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to enable time-based scheduling
groups regardless of the presence of faulty instructions.

g. For each valid instruction to enable a time-based scheduling group, the
time-based scheduling subservice shall:
1. set the status of that group to "enabled".

h. For each valid instruction to enable all time-based scheduling groups, the
time-based scheduling subservice shall:
1. for each group maintained by that subservice, set its status to

"enabled".

6.11.6.3.2 Disable time-based scheduling groups

a. The time-based scheduling subservice shall provide the capability to
disable time-based scheduling groups if the capability to enable time-
based scheduling groups is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,25] disable time-based scheduling groups".

NOTE 2 For the capability to enable time-based scheduling
groups, refer to clause 6.11.6.3.1.

b. Each request to disable time-based scheduling groups shall contain:
1. one or more instructions to disable a time-based scheduling group,

or
2. exactly one instruction to disable all time-based scheduling groups.

NOTE The instructions to disable all time-based
scheduling groups contain no argument.

c. Each instruction to disable a time-based scheduling group shall contain:
1. the identifier of the group to disable.

d. The time-based scheduling subservice shall reject any instruction to
disable a time-based scheduling group if:
1. that instruction refers to an unknown group.

e. For each instruction to disable a time-based scheduling group that it
rejects, the time-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to disable time-based scheduling
groups regardless of the presence of faulty instructions.

180

ECSS-E-ST-70-41C
15 April 2016

g. For each valid instruction to disable a time-based scheduling group, the
time-based scheduling subservice shall:
1. set the status of that group to "disabled".

h. For each valid instruction to disable all time-based scheduling groups,
the time-based scheduling subservice shall:
1. for each group maintained by that subservice, set its status to

"disabled".

6.11.6.3.3 Report the status of each time-based scheduling group

a. The time-based scheduling subservice capability to report the status of
each time-based scheduling group shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,26] report the status of each time-based
scheduling group". The responses are data reports
of message type "TM[11,27] time-based scheduling
group status report".

NOTE 2 That capability requires the capability for that
subservice to create time-based scheduling groups,
refer to clause 6.11.6.2.1.

b. Each request to report the status of each time-based scheduling group
shall contain exactly one instruction to report the status of each time-
based scheduling group.

NOTE The instructions to report the status of each time-
based scheduling group contain no argument.

c. For each valid instruction to report the status of each time-based
scheduling group, the time-based scheduling subservice shall:
1. generate, for each group managed by the time-based scheduling

subservice, a single time-based scheduling group status
notification that includes:
(a) the group identifier;
(b) its status.

d. For each valid request to report the status of each time-based scheduling
group, the time-based scheduling subservice shall generate a single time-
based scheduling group status report that includes all related time-based
scheduling group status notifications.

6.11.7 Reports of time-based scheduled activities

6.11.7.1 Time-based schedule summary report
a. The time-based scheduling subservice shall provide the capability to

generate time-based schedule summary reports if any of the capabilities
to summary-report scheduled activities is provided by that subservice.

181

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 The corresponding reports are data reports of
message type "TM[11,13] time-based schedule
summary report".

NOTE 2 The capabilities to summary-report scheduled
activities are:
• the capability to summary-report all time-based

scheduled activities (refer to clause 6.11.8.2);
• the capability to summary-report time-based

scheduled activities identified by request
identifier (refer to clause 6.11.9.4);

• the capability to summary-report the time-
based scheduled activities identified by a filter
(refer to clause 6.11.10.5).

b. Each time-based schedule summary report shall contain, for each
scheduled activity to summary report, a notification consisting of:
1. if sub-schedules are supported, the identifier of the sub-schedule;
2. if groups are supported, the identifier of the group;
3. the release time;
4. the identifier of the related request consisting of:

(a) its source identifier;
(b) its application process identifier;
(c) its sequence count.
NOTE 1 For item 1, refer to requirement 6.11.4.1a.
NOTE 2 For item 2, refer to requirement 6.11.4.1b.
NOTE 3 The time-based scheduled activities to summary

report are determined by one of the requests
specified in clauses 6.11.8.2, 6.11.9.4 and 6.11.10.5.

c. The notifications contained in a time-based schedule summary report
shall be ordered according to the release time of the reported scheduled
activities.

6.11.7.2 Time-based schedule detail report
a. The time-based scheduling subservice shall provide the capability to

generate time-based schedule detail reports if any of the capabilities to
detail-report scheduled activities is provided by that subservice.

NOTE 1 The corresponding reports are data reports of
message type "TM[11,10] time-based schedule
detail report".

NOTE 2 The capabilities to detail-report scheduled
activities are:
• the capability to detail-report all time-based

(refer to clause 6.11.8.3);
• the capability to detail-report time-based

scheduled activities identified by request
identifier (refer to clause 6.11.9.5);

182

ECSS-E-ST-70-41C
15 April 2016

• the capability to detail-report the time-based
scheduled activities identified by a filter (refer
to clause 6.11.10.6).

b. Each time-based schedule detail report shall contain, for each scheduled
activity to detail report, a notification consisting of:
1. if sub-schedules are supported, the identifier of the sub-schedule;
2. if groups are supported, the identifier of the group;
3. the release time;
4. the request.

NOTE 1 For item 1, refer to requirement 6.11.4.1a.
NOTE 2 For item 2, refer to requirement 6.11.4.1b.
NOTE 3 The time-based scheduled activities to detail report

are determined by one of the requests specified in
clauses 6.11.8.3, 6.11.9.5 and 6.11.10.6.

NOTE 4 The time-based schedule summary report in clause
6.11.7.1 includes only the identifier of the request
contained in the scheduled activity. The time-
based schedule detail report specified here
includes the complete request.

c. The notifications contained in a time-based schedule detail report shall be
ordered according to the release time of the reported scheduled activities.

6.11.8 Managing all time-based scheduled
activities

6.11.8.1 Time-shift all scheduled activities
a. The time-based scheduling subservice capability to time-shift all

scheduled activities shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[11,15] time-shift all scheduled activities".

b. Each request to time-shift all scheduled activities shall contain exactly
one instruction to time-shift all scheduled activities.

c. Each instruction to time-shift all scheduled activities shall contain:
1. a time offset, positive or negative, to add to the release time of all

scheduled activities.

d. The time-based scheduling subservice shall reject any request to time-
shift all scheduled activities if:
1. the time obtained by adding the time offset to the release time of

the earliest activity contained within the time-based schedule is
earlier than the time obtained by adding the time-based schedule
time margin to the current time.
NOTE If the time offset is sufficient to result in a

scheduled activity with a release time in the past
or with a release time that is too close to the

183

ECSS-E-ST-70-41C
15 April 2016

current time, that instruction is rejected and no
activities are time-shifted.

e. For each request to time-shift all scheduled activities that is rejected, the
time-based scheduling subservice shall generate a failed start of
execution notification.

f. For each valid instruction to time-shift all scheduled activities, the time-
based scheduling subservice shall:
1. for each scheduled activity contained within the time-based

schedule:
(a) set the release time of that scheduled activity to the sum of

the current release time of that activity and the time offset.

6.11.8.2 Summary-report all time-based scheduled activities
a. The time-based scheduling subservice capability to summary-report all

time-based scheduled activities shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[11,17] summary-report all time-based
scheduled activities". The responses are data
reports of message type "TM[11,13] time-based
schedule summary report" (refer to clause 6.11.7.1).

b. Each request to summary-report all time-based scheduled activities shall
contain exactly one instruction to summary-report all time-based
scheduled activities.

NOTE The instructions to summary-report all time-based
scheduled activities contain no argument.

c. For each valid instruction to summary-report all time-based scheduled
activities, the time-based scheduling subservice shall generate, for each
scheduled activity contained within the time-based schedule, a single
time-based schedule summary notification.

NOTE The time-based schedule summary notification
content is specified in clause 6.11.7.1.

d. For each valid request to summary-report all time-based scheduled
activities, the time-based scheduling subservice shall generate a single
time-based schedule summary report that includes all related time-based
schedule summary notifications.

NOTE The time-based schedule summary report is
specified in clause 6.11.7.1.

6.11.8.3 Detail-report all time-based scheduled activities
a. The time-based scheduling subservice capability to detail-report all time-

based scheduled activities shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[11,16] detail-report all time-based scheduled
activities". The responses are data reports of

184

ECSS-E-ST-70-41C
15 April 2016

message type "TM[11,10] time-based schedule
detail report"(refer to clause 6.11.7.2).

b. Each request to detail-report all time-based scheduled activities shall
contain exactly one instruction to detail-report all time-based scheduled
activities.

NOTE The instructions to detail-report all time-based
scheduled activities contain no argument.

c. For each valid instruction to detail-report all time-based scheduled
activities, the time-based scheduling subservice shall generate, for each
scheduled activity contained within the time-based schedule, a single
time-based schedule detail notification.

NOTE The time-based schedule detail notification content
is specified in clause 6.11.7.2.

d. For each valid request to detail-report all time-based scheduled activities,
the time-based scheduling subservice shall generate a single time-based
schedule detail report that includes all related time-based schedule detail
notifications.

NOTE The time-based schedule detail report is specified
in clause 6.11.7.2.

6.11.9 Managing time-based scheduled activities
identified by request identifier

6.11.9.1 General
a. Whether the time-based scheduling subservice supports the identification

of scheduled activities by request identifier shall be declared when
specifying that subservice.

NOTE That support is required for the capabilities to
manage scheduled activities identified by request
identifier, i.e.:
• the capability to delete time-based scheduled

activities identified by request identifier (refer
to clause 6.11.9.2);

• the capability to time-shift scheduled activities
identified by request identifier (refer to clause
6.11.9.3);

• the capability to summary-report time-based
scheduled activities identified by request
identifier (refer to clause 6.11.9.4);

• the capability to detail-report time-based
scheduled activities identified by request
identifier (refer to clause 6.11.9.5).

185

ECSS-E-ST-70-41C
15 April 2016

6.11.9.2 Delete time-based scheduled activities identified by
request identifier

a. The time-based scheduling subservice capability to delete time-based
scheduled activities identified by request identifier shall be declared
when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[11,5] delete time-based scheduled activities
identified by request identifier".

NOTE That capability implies that the subservice
provides the capability to identify scheduled
activities by request identifier (refer to
requirement 6.11.9.1a).

b. Each request to delete time-based scheduled activities identified by
request identifier shall contain one or more instructions to delete a time-
based scheduled activity identified by request identifier.

c. Each instruction to delete a time-based scheduled activity identified by
request identifier shall contain:
1. the identifier of the scheduled activity to delete.

NOTE See requirement 6.11.4.2b.

d. The time-based scheduling subservice shall reject any instruction to
delete a time-based scheduled activity identified by request identifier if:
1. that instruction contains a request identifier is unknown.

e. For each instruction to delete a time-based scheduled activity identified
by request identifier that it rejects, the time-based scheduling subservice
shall generate the failed start of execution notification for that instruction.

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to delete time-based scheduled
activities identified by request identifier regardless of the presence of
faulty instructions.

g. For each valid instruction to delete a time-based scheduled activity
identified by request identifier, the time-based scheduling subservice
shall:
1. delete the scheduled activity corresponding to the request

identifier;
2. if that scheduled activity was the last scheduled activity of a sub-

schedule, delete the sub-schedule.

6.11.9.3 Time-shift scheduled activities identified by request
identifier

a. The time-based scheduling subservice capability to time-shift scheduled
activities identified by request identifier shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,7] time-shift scheduled activities identified
by request identifier".

186

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 That capability implies that the subservice
provides the capability to identify scheduled
activities by request identifier (refer to requirement
6.11.9.1a).

b. Each request to time-shift scheduled activities identified by request
identifier shall contain:
1. a time offset, positive or negative, to add to the release time of the

specified scheduled activities;
2. one or more instructions to time-shift a scheduled activity

identified by request identifier.
NOTE The time offset in a request to time-shift scheduled

activities identified by request identifier applies to
all the instructions in that request.

c. The time-based scheduling subservice shall reject any request to time-
shift scheduled activities identified by request identifier if:
1. the time obtained by adding the time offset to the release time of

the earliest activity identified by an instruction in the request is
earlier than the time obtained by adding the time-based schedule
time margin to the current time.
NOTE If the time offset is sufficient to result in a

scheduled activity with a release time in the past
or with a release time that is too close to the
current time, that request is rejected and no
activities are time-shifted.

d. For each request to time-shift scheduled activities identified by request
identifier that is rejected, the time-based scheduling subservice shall
generate a failed start of execution notification.

e. Each instruction to time-shift a scheduled activity identified by request
identifier shall contain:
1. the identifier of the scheduled activity to time-shift.

NOTE See requirement 6.11.4.2b.

f. The time-based scheduling subservice shall reject any instruction to time-
shift a scheduled activity identified by request identifier if:
1. that request identifier is unknown.

g. For each instruction to time-shift a scheduled activity identified by
request identifier that it rejects, the time-based scheduling subservice
shall generate the failed start of execution notification for that instruction.

h. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to time-shift scheduled activities
identified by request identifier regardless of the presence of faulty
instructions.

i. For each valid instruction to time-shift a scheduled activity identified by
request identifier, the time-based scheduling subservice shall:
1. set the release time of the scheduled activity specified in the

instruction to the sum of the current release time of that activity
and the time offset.

187

ECSS-E-ST-70-41C
15 April 2016

6.11.9.4 Summary-report time-based scheduled activities
identified by request identifier

a. The time-based scheduling subservice capability to summary-report
time-based scheduled activities identified by request identifier shall be
declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,12] summary-report time-based scheduled
activities identified by request identifier". The
responses are data reports of message type
"TM[11,13] time-based schedule summary report"
(refer to clause 6.11.7.1).

NOTE 2 That capability implies that the subservice
provides the capability to identify scheduled
activities by request identifier (refer to 6.11.9.1a).

b. Each request to Summary-report time-based scheduled activities
identified by request identifier shall contain one or more instructions to
summary-report a time-based scheduled activity identified by request
identifier.

c. Each instruction to summary-report a time-based scheduled activity
identified by request identifier shall contain:
1. the identifier of the scheduled activity to report.

NOTE See requirement 6.11.4.2b.

d. The time-based scheduling subservice shall reject any instruction to
summary-report a time-based scheduled activity identified by request
identifier if:
1. that request identifier is unknown;

e. For each instruction to summary-report a time-based scheduled activity
identified by request identifier that it rejects, the time-based scheduling
subservice shall generate the failed start of execution notification for that
instruction.

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to Summary-report time-based
scheduled activities identified by request identifier regardless of the
presence of faulty instructions.

g. For each valid instruction to summary-report a time-based scheduled
activity identified by request identifier, the time-based scheduling
subservice shall generate a single time-based schedule summary
notification for that scheduled activity.

NOTE The time-based schedule summary notification
content is specified in clause 6.11.7.1

h. For each valid request to Summary-report time-based scheduled
activities identified by request identifier, the time-based scheduling
subservice shall generate a single time-based schedule summary report
that contains all related time-based schedule summary notifications.

NOTE The time-based schedule summary report is
specified in clause 6.11.7.1.

188

ECSS-E-ST-70-41C
15 April 2016

6.11.9.5 Detail-report time-based scheduled activities
identified by request identifier

a. The time-based scheduling subservice capability to detail-report time-
based scheduled activities identified by request identifier shall be
declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,9] detail-report time-based scheduled
activities identified by request identifier". The
responses are data reports of message type
"TM[11,10] time-based schedule detail report"(refer
to clause 6.11.7.2).

NOTE 2 That capability implies that the subservice
provides the capability to identify scheduled
activities by request identifier (refer to 6.11.9.1a).

b. Each request to detail-report time-based scheduled activities identified
by request identifier shall contain one or more instructions to detail-
report a time-based scheduled activity identified by request identifier.

c. Each instruction to detail-report a time-based scheduled activity
identified by request identifier shall contain:
1. the identifier of the scheduled activity to report.

NOTE The activity identifier is specified in requirement
6.11.4.2b.

d. The time-based scheduling subservice shall reject any instruction to
detail-report a time-based scheduled activity identified by request
identifier if:
1. that request identifier is unknown;

e. For each instruction to detail-report a time-based scheduled activity
identified by request identifier that it rejects, the time-based scheduling
subservice shall generate the failed start of execution notification for that
instruction.

f. The time-based scheduling subservice shall process any valid instruction
that is contained within a request to detail-report time-based scheduled
activities identified by request identifier regardless of the presence of
faulty instructions.

g. For each valid instruction to detail-report a time-based scheduled activity
identified by request identifier, the time-based scheduling subservice
shall generate a single time-based schedule detail notification for that
scheduled activity.

NOTE The time-based schedule detail notification content
is specified in clause 6.11.7.2.

h. For each valid request to detail-report time-based scheduled activities
identified by request identifier, the time-based scheduling subservice
shall generate a single time-based schedule detail report that contains all
related time-based schedule detail notifications.

NOTE The time-based schedule detail report is specified
in clause 6.11.7.2.

189

ECSS-E-ST-70-41C
15 April 2016

6.11.10 Managing the time-based scheduled
activities identified by a filter

6.11.10.1 General
a. Whether the time-based scheduling subservice supports selecting

scheduled activity using a time-window filtering function shall be
declared when specifying that subservice.

NOTE 1 For the time-window filtering function refer to
clause 6.11.10.2.

NOTE 2 That support is required for the capabilities to
manage time-based scheduled activities identified
by a filter, i.e.:
• the capability to delete the time-based

scheduled activities identified by a filter (refer
to clause 6.11.10.3);

• the capability to time-shift the time-based
scheduled activities identified by a filter (refer
to clause 6.11.10.4);

• the capability to summary-report the time-
based scheduled activities identified by a filter
(refer to clause 6.11.10.5);

• the capability to detail-report the time-based
scheduled activities identified by a filter (refer
to clause 6.11.10.6).

6.11.10.2 Time-window filtering function

6.11.10.2.1 Overview
 Each request that uses the time-window filtering function contains a single filter

that identifies which scheduled activities are concerned in that request, based
on a combination of:

• a time window;

• if sub-schedules are supported, zero or more sub-schedules;

• if groups are supported, zero or more groups.

6.11.10.2.2 Time window filtering

a. The time window filtering function shall support the following filtering
mechanisms:
1. "select all activities",
2. "select all activities scheduled from time tag to time tag",
3. "select all activities scheduled from time tag",
4. "select all activities scheduled up to time tag".

b. The set of scheduled activities identified by the "select all activities
scheduled from time tag to time tag" filtering mechanism shall be all

190

ECSS-E-ST-70-41C
15 April 2016

activities that are scheduled between and including the specified "from
time tag" and "to time tag".

c. The set of scheduled activities identified by the "select all activities
scheduled from time tag" filtering mechanism shall be all activities that
are scheduled at and after that specified "from time tag".

d. The set of scheduled activities identified by the "select all activities
scheduled up to time tag" filtering mechanism shall be all activities that
are scheduled before and at that specified "to time tag".

6.11.10.2.3 Sub-schedule filtering

a. The set of scheduled activities identified by the sub-schedule filtering
function shall be all activities that are associated to that sub-schedule.

b. The sub-schedule filtering function shall ignore any unknown sub-
schedule that appears in a filter.

6.11.10.2.4 Group filtering

a. The set of scheduled activities identified by the group filtering function
shall be all activities that are associated to that group.

6.11.10.2.5 Overall filtering
a. If the overall filtering only includes the time window filtering, the set of

scheduled activities identified by the overall filtering function is the set of
scheduled activities identified by the time window filtering function.

b. If the overall filtering includes both the time window filtering and the
sub-schedule filtering, the set of scheduled activities identified by the
overall filtering function is the scheduled activities that result from the
intersection of the sets of scheduled activities:
1. identified by the time window filtering function;
2. identified by the sub-schedule filtering function.

NOTE The set of scheduled activities identified by the
sub-schedule filtering function consists of the sum
of all activities that are associated to the specified
sub-schedules. Unknown sub-schedules are
ignored.

c. If the overall filtering includes both the time window filtering and the
group filtering, the set of scheduled activities identified by the overall
filtering function is the scheduled activities that result from the
intersection of the sets of scheduled activities:
1. identified by the time window filtering function;
2. identified by the group filtering function.

NOTE The set of scheduled activities identified by the
group filtering function consists of the sum of all
activities that are associated to the specified
groups.

d. If the overall filtering includes the time window filtering, the sub-
schedule filtering and the group filtering, the set of scheduled activities

191

ECSS-E-ST-70-41C
15 April 2016

identified by the overall filtering function is the scheduled activities that
result from the intersection of the sets of scheduled activities:
1. identified by the time window filtering function;
2. identified by the sub-schedule filtering function;
3. identified by the group filtering function.

6.11.10.3 Delete the time-based scheduled activities
identified by a filter

a. The time-based scheduling subservice capability to delete the time-based
scheduled activities identified by a filter shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,6] delete the time-based scheduled
activities identified by a filter".

NOTE 2 That capability implies that the subservice
provides the capability of the time-window
filtering function (refer to requirement 6.11.10.1a).

b. Each request to delete the time-based scheduled activities identified by a
filter shall contain exactly one instruction to delete the time-based
scheduled activities identified by a filter.

c. Each instruction to delete the time-based scheduled activities identified
by a filter shall contain the filter to identify the scheduled activities to
delete consisting of:
1. a time window, consisting of:

(a) the type of the time window that is one of "select all", "from
time tag", "to time tag", "from time tag to time tag";

(b) for "from time tag" and "from time tag to time tag", the from
time tag;

(c) for "to time tag" and "from time tag to time tag", the to time
tag;

2. if sub-schedules are supported, zero or more sub-schedules;
3. if groups are supported, zero or more groups.

NOTE 1 For item 2, refer to requirement 6.11.4.1a.
NOTE 2 For item 3, refer to requirement 6.11.4.1b.
NOTE 3 For the filtering mechanism, including the

interaction of the parts of the filter, refer to clause
6.11.10.2.

d. The time-based scheduling subservice shall reject any request to delete
the time-based scheduled activities identified by a filter if any of the
following conditions occurs:
1. that request contains an instruction that refers to an invalid time

window type;
2. that request contains an instruction that refers to a "from time tag"

that is greater than a "to time tag".

192

ECSS-E-ST-70-41C
15 April 2016

e. For each request to delete the time-based scheduled activities identified
by a filter that is rejected, the time-based scheduling subservice shall
generate a failed start of execution notification.

f. For each valid instruction to delete the time-based scheduled activities
identified by a filter, the time-based scheduling subservice shall:
1. for each scheduled activity identified by that instruction:

(a) delete that scheduled activity;
(b) if that scheduled activity was the last scheduled activity of a

sub-schedule, delete the sub-schedule.

6.11.10.4 Time-shift the scheduled activities identified by a
filter

a. The time-based scheduling subservice capability to time-shift the
scheduled activities identified by a filter shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,8] time-shift the scheduled activities
identified by a filter".

NOTE 2 That capability implies that the subservice
provides the capability of the time-window
filtering function (refer to requirement 6.11.10.1a).

b. Each request to time-shift the scheduled activities identified by a filter
shall contain exactly one instruction to time-shift the scheduled activities
identified by a filter.

c. Each instruction to time-shift the scheduled activities identified by a filter
shall contain:
1. a time offset, positive or negative, to add to the release time of the

identified scheduled activities;
2. the time window, consisting of:

(a) the type of the time window that is one of "select all", "from
time tag", "to time tag", "from time tag to time tag";

(b) for "from time tag" and "from time tag to time tag", the from
time tag;

(c) for "to time tag" and "from time tag to time tag", the to time
tag;

3. if sub-schedules are supported, zero or more sub-schedules;
4. if groups are supported, zero or more groups.

NOTE 1 For item 3, refer to requirement 6.11.4.1a.
NOTE 2 For item 4, refer to requirement 6.11.4.1b.
NOTE 3 For the filtering mechanism, including the

interaction of the parts of the filter, refer to clause
6.11.10.2.

d. The time-based scheduling subservice shall reject any request to time-
shift the scheduled activities identified by a filter if any of the following
conditions occurs:

193

ECSS-E-ST-70-41C
15 April 2016

1. that request contains an instruction that refers to an invalid time
window type;

2. that request contains an instruction that refers to a "from time tag"
that is greater than a "to time tag";

3. that request contains an instruction that refers to an unknown sub-
schedule;

4. that request contains an instruction refers to an unknown group;
5. the time obtained by adding the time offset to the release time of

the earliest activity identified by the filter is earlier than the time
obtained by adding the time-based schedule time margin to
current time.
NOTE If the time offset is sufficient to result in a

scheduled activity with a release time in the past
or with a release time that is too close to the
current time, no activities are time-shifted.

e. For each request to time-shift the scheduled activities identified by a filter
that is rejected, the time-based scheduling subservice shall generate a
failed start of execution notification.

f. For each valid instruction to time-shift the scheduled activities identified
by a filter, the time-based scheduling subservice shall:
1. for each scheduled activity identified by that instruction:

(a) set the release time of that scheduled activity to the sum of
the current release time of that activity and the time offset.

6.11.10.5 Summary-report the time-based scheduled
activities identified by a filter

a. The time-based scheduling subservice capability to summary-report the
time-based scheduled activities identified by a filter shall be declared
when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,14] summary-report the time-based
scheduled activities identified by a filter". The
responses are data reports of message type
"TM[11,13] time-based schedule summary report"
(refer to clause 6.11.7.1).

NOTE 2 That capability implies that the subservice
provides the capability of the time-window
filtering function (refer to requirement 6.11.10.1a).

b. Each request to summary-report the time-based scheduled activities
identified by a filter shall contain exactly one instruction to summary-
report the time-based scheduled activities identified by a filter.

c. Each instruction to summary-report the time-based scheduled activities
identified by a filter shall contain the filter to identify the scheduled
activities to report consisting of:
1. a time window, consisting of:

(a) the type of the time window that is one of "select all", "from
time tag", "to time tag", "from time tag to time tag";

194

ECSS-E-ST-70-41C
15 April 2016

(b) for "from time tag" and "from time tag to time tag", the from
time tag;

(c) for "to time tag" and "from time tag to time tag", the to time
tag;

2. if sub-schedules are supported, zero or more sub-schedules;
3. if groups are supported, zero or more groups.

NOTE 1 For item 2, refer to requirement 6.11.4.1a.
NOTE 2 For item 3, refer to requirement 6.11.4.1b.
NOTE 3 For the filtering mechanism, including the

interaction of the parts of the filter, refer to clause
6.11.10.2.

d. The time-based scheduling subservice shall reject any request to
summary-report the time-based scheduled activities identified by a filter
if any of the following conditions occurs:
1. that request contains an instruction that refers to an invalid time

window type;
2. that request contains an instruction that refers to a "from time tag"

that is greater than a "to time tag".

e. For each request to summary-report the time-based scheduled activities
identified by a filter that is rejected, the time-based scheduling subservice
shall generate a failed start of execution notification.

f. For each valid instruction to summary-report the time-based scheduled
activities identified by a filter, the time-based scheduling subservice shall
generate, for each scheduled activity identified by that instruction a
single time-based schedule summary notification.

NOTE The time-based schedule summary notification
content is specified in clause 6.11.7.1.

g. For each valid request to summary-report the time-based scheduled
activities identified by a filter, the time-based scheduling subservice shall
generate a single time-based schedule summary report that includes all
related time-based schedule summary notifications.

NOTE The time-based schedule summary report is
specified in clause 6.11.7.1.

6.11.10.6 Detail-report the time-based scheduled activities
identified by a filter

a. The time-based scheduling subservice capability to detail-report the time-
based scheduled activities identified by a filter shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[11,11] detail-report the time-based scheduled
activities identified by a filter". The responses are
data reports of message type "TM[11,10] time-
based schedule detail report"(refer to clause
6.11.7.2).

195

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 That capability implies that the subservice
provides the capability of the time-window
filtering function (refer to requirement 6.11.10.1a).

b. Each request to detail-report the time-based scheduled activities
identified by a filter shall contain exactly one instruction to detail-report
the time-based scheduled activities identified by a filter.

c. Each instruction to detail-report the time-based scheduled activities
identified by a filter shall contain the filter to identify the scheduled
activities to report, consisting of:
1. a time window, consisting of:

(a) the type of the time window, that is one of "select all", "from
time tag", "to time tag", "from time tag to time tag";

(b) for "from time tag" and "from time tag to time tag", the from
time tag;

(c) for "to time tag" and "from time tag to time tag", the to time
tag;

2. if sub-schedules are supported, zero or more sub-schedules;
3. if groups are supported, zero or more groups.

NOTE 1 For item 2, refer to requirement 6.11.4.1a.
NOTE 2 For item 3, refer to requirement 6.11.4.1b.
NOTE 3 For the filtering mechanism, including the

interaction of the parts of the filter, refer to clause
6.11.10.2.

d. The time-based scheduling subservice shall reject any request to detail-
report the time-based scheduled activities identified by a filter if any of
the following conditions occurs:
1. that request contains an instruction that refers to an invalid time

window type;
2. that request contains an instruction that refers to a "from time tag"

that is greater than a "to time tag".

e. For each request to detail-report the time-based scheduled activities
identified by a filter that is rejected, the time-based scheduling subservice
shall generate a failed start of execution notification.

f. For each valid instruction to detail-report the time-based scheduled
activities identified by a filter, the time-based scheduling subservice shall
generate, for each scheduled activity identified by that instruction, a
single time-based schedule detail notification.

NOTE The time-based schedule detail notification content
is specified in clause 6.11.7.2.

g. For each valid request to detail-report the time-based scheduled activities
identified by a filter, the time-based scheduling subservice shall generate
a single time-based schedule detail report that includes all related time-
based schedule detail notifications.

NOTE The time-based schedule detail report is specified
in clause 6.11.7.2.

196

ECSS-E-ST-70-41C
15 April 2016

6.11.11 Subservice observables
a. The following observables shall be defined for the time-based scheduling

subservice:
1. the time-based schedule execution function status (enabled or

disabled);
2. the current number of scheduled activities in the time-based

schedule;
3. if sub-schedules are supported, the current number of sub-

schedules;
4. if groups are supported, the current number of groups.

197

ECSS-E-ST-70-41C
15 April 2016

6.12 ST[12] on-board monitoring

6.12.1 Scope

6.12.1.1 General
 The on-board monitoring service type provides the capability to monitor on-

board parameters or groups of parameters and react to the violations of the
related monitoring conditions by raising events. The resulting event reports can
be sent to ground and caught on-board, e.g. by an event-action subservice.

 The on-board monitoring service type defines two standardized subservice
types, i.e.:

• the parameter monitoring subservice type;

• the functional monitoring subservice type.

6.12.1.2 Parameter monitoring subservice
 The parameter monitoring subservice type provides the capability to monitor

on-board parameters with respect to checks defined by the ground system, to
report any parameter check transitions to the ground and when monitoring
conditions are violated to raise events.

 The types of check that can be applied for an on-board parameter depend on
the parameter and its type. The subservice type provides the capability to check
that a parameter value lies within specified limits or that a parameter has the
expected value. It provides optional capability to check that the delta change in
a parameter value lies within a pair of threshold values.

 For each parameter and associated check, a parameter monitoring definition is
specified. This Standard does not introduce any limitation on the number of
checks that can be performed on an on-board parameter. A parameter
monitoring definition can specify warning limits for an on-board parameter
when another definition can specify danger limits for that same parameter. A
parameter can be at the same time limit checked and delta checked, using two
different parameter monitoring definitions.

 The parameter monitoring subservice type provides optional capability to
include a conditional check in a parameter monitoring definition. If the
conditional check is false, the parameter monitoring check in that definition is
not performed. For example, this can be used to disable the monitoring of an
on-board parameter when the associated equipment is inactive.

6.12.1.3 Functional monitoring subservice
 The functional monitoring subservice type provides the capability to monitor

the functional health of on-board elements (e.g. software applications,
hardware).

 A functional monitoring definition includes a set of one or more parameter
monitoring definitions: when a minimum number of these definitions is

198

ECSS-E-ST-70-41C
15 April 2016

contemporaneously violated, that functional monitoring definition is
considered violated and the associated event is raised.

 The behaviour of the functional monitoring subservice type relies on the
parameter monitoring subservice type.

6.12.2 Service layout

6.12.2.1 Subservice

6.12.2.1.1 Parameter monitoring subservice

a. Each on-board monitoring service shall contain exactly one parameter
monitoring subservice.

6.12.2.1.2 Functional monitoring subservice

a. Each on-board monitoring service shall contain at most one functional
monitoring subservice.

6.12.2.2 Application process
a. For each on-board monitoring service that contains both, a parameter

monitoring subservice and a functional monitoring subservice, the two
subservice providers of that service shall be hosted by the same
application process.

6.12.2.3 Accessibility

6.12.2.3.1 Service

a. Each on-board monitoring service shall be associated to exactly one event
reporting subservice.

NOTE 1 This event reporting subservice (refer to clause 6.5)
is responsible for catching the events raised by the
on-board monitoring service and issuing the
corresponding event notifications.

NOTE 2 The events that can be raised by the on-board
monitoring service are identified by the
combination of the identifier of the application
process that hosts the event reporting subservice
and an event definition identifier.

b. The event reporting subservice that is associated to the on-board
monitoring service shall be declared when specifying that on-board
monitoring service.

199

ECSS-E-ST-70-41C
15 April 2016

6.12.3 Parameter monitoring subservice

6.12.3.1 Parameter accessibility
a. The parameter monitoring subservice shall be able to monitor all on-

board parameters that are accessible to the application process that hosts
the subservice.

6.12.3.2 Check types

6.12.3.2.1 Minimum capability

a. The parameter monitoring subservice shall support the evaluation of the
following minimum check types:
1. Limit-check,
2. Expected-value-check.

b. When performing a limit-check, the parameter monitoring subservice
shall:
1. check that the value of a parameter lies within a pair of limit

values;
2. declare the check successful when the value of the parameter is

less than or equal to the high limit value and greater than or equal
to the low limit value.

c. When performing an expected-value-check, the parameter monitoring
subservice shall:
1. check that the value resulting from applying a bit mask to a

parameter is equal to the expected value;
2. declare the check successful when these two values are equal.

6.12.3.2.2 Additional capability

a. The parameter monitoring subservice may support the evaluation of the
delta-check type.

b. Whether the parameter monitoring subservice supports the delta-check
type shall be declared when specifying that subservice.

c. When performing a delta-check, the parameter monitoring subservice
shall:
1. calculate the delta value between two consecutive values of a

parameter;
2. declare the check successful when the delta value is less than or

equal to the high threshold value and greater than or equal to the
low threshold value.
NOTE For item 1, the delta value is the difference

between the two values.

200

ECSS-E-ST-70-41C
15 April 2016

6.12.3.3 Parameter monitoring definition
a. The maximum number of parameter monitoring definitions that the

parameter monitoring subservice can contemporaneously evaluate at any
time shall be declared when specifying that subservice.

NOTE This maximum represents the maximum number
of entries in the parameter monitoring definition
list. The parameter monitoring definition list is
named "PMON list".

b. The parameter monitoring subservice shall provide the capability to
process several parameter monitoring definitions for the same on-board
parameter.

NOTE For example, with this capability, the monitoring
plan can be adapted to specific spacecraft mode
conditions using different check validity
conditions.

c. Whether the parameter monitoring subservice supports conditional
checking of parameter monitoring definitions shall be declared when
specifying that subservice.

NOTE This conditional checking depends on a Boolean
condition, named "check validity condition". When
that Boolean condition is true, the check in the
parameter monitoring definition is performed.

d. Whether the parameter monitoring subservice uses a single, subservice-
specific monitoring interval for all parameter monitoring definitions or
uses a definition-specific monitoring interval for each parameter
monitoring definition shall be declared when specifying that subservice.

NOTE The monitoring interval corresponds to the time
between two consecutive evaluations of the same
parameter monitoring definition.

e. If the parameter monitoring subservice uses a subservice-specific
monitoring interval, that monitoring interval shall be declared when
specifying that subservice.

f. Monitoring intervals shall be expressed in "on-board parameter
minimum sampling interval" units.

NOTE The on-board parameter minimum sampling
interval is driven by requirement 5.4.3.2c.

g. Each parameter monitoring definition shall contain:
1. the identifier of the parameter monitoring definition;
2. the identifier of the on-board parameter to monitor;
3. if the parameter monitoring subservice supports the conditional

checking of parameter monitoring definitions, a check validity
condition that yielding false prevents the check being performed;

4. if the parameter monitoring subservice uses definition-specific
monitoring intervals, a monitoring interval;

5. a check definition.

201

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 For item 3, refer to requirements 6.12.3.3c and
6.12.3.3h.

NOTE 2 For item 4, refer to requirement d.
NOTE 3 For item 5, refer to requirement 6.12.3.3j.

h. Each check validity condition shall contain:
1. the identifier of an on-board parameter to use as a validity

parameter;
2. a bit-mask;
3. an expected value.

i. When computing the check validity condition, the parameter monitoring
subservice shall:
1. perform a bitwise-and between the bit-mask and the sampled

value of the validity parameter;
2. declare the condition true when the masked value equals the

expected value.

j. Each check definition shall contain:
1. the repetition number that is the number of successive and

consistent checks that establishes a new checking status;
2. the check type that is one of:

(a) limit-check,
(b) expected-value-check,
(c) delta-check;

3. for a limit-check:
(a) the low limit;
(b) if establishment of a new "below low limit" checking status

causes the parameter monitoring subservice to raise an
event, the event definition identifier corresponding to that
event;

(c) the high limit;
(d) if establishment of a new "above high limit" checking status

causes the parameter monitoring subservice to raise an
event, the event definition identifier corresponding to that
event;

4. for an expected-value-check:
(a) the expected value;
(b) the mask to apply to the sampled value;
(c) if establishment of a new "unexpected value" checking status

causes the parameter monitoring subservice to raise an
event, the event definition identifier corresponding to that
event;

5. for a delta-check:
(a) the number of consecutive delta values, each one calculated

between two consecutive values of the parameter, used to
calculate the average value of these consecutive delta values
that is compared to the low delta threshold value and to the

202

ECSS-E-ST-70-41C
15 April 2016

high delta threshold value to determine the PMON checking
status;

(b) the low delta threshold value;
(c) if establishment of a new "below low threshold" checking

status causes the parameter monitoring subservice to raise
an event, the event definition identifier corresponding to
that event;

(d) the high delta threshold value;
(e) if establishment of a new "above high threshold" checking

status causes the parameter monitoring subservice to raise
an event, the event definition identifier corresponding to
that event.

NOTE The types of check that can be applied to
parameters depend on their nature, e.g.
parameters of analogue nature can be limit or delta
checked, status parameters can be expected value
checked.

6.12.3.4 Statuses
a. The parameter monitoring subservice shall maintain a status indicating

whether the overall parameter monitoring function is enabled or
disabled.

NOTE This status is named "PMON function status".

b. When starting the parameter monitoring subservice, the overall
parameter monitoring function status shall be set to "enabled".

c. For each parameter monitoring definition, the parameter monitoring
subservice shall maintain a status indicating whether that parameter
monitoring definition is enabled or disabled.

NOTE This status is named "PMON status".

d. For each parameter monitoring definition, the parameter monitoring
subservice shall maintain a status indicating the established status of the
checks performed on the monitored parameter.

NOTE 1 This status is named "PMON checking status".
NOTE 2 For an expected-value-check, the PMON checking

status can have any of the following values:
"unchecked", "invalid", "expected value" or
"unexpected value".

NOTE 3 For a limit-check, the PMON checking status can
have any of the following values: "unchecked",
"invalid", "within limits", "below low limit" or
"above high limit".

NOTE 4 For a delta-check, the PMON checking status can
have any of the following values: "unchecked",
"invalid", "within threshold", "below low
threshold" or "above high threshold".

203

ECSS-E-ST-70-41C
15 April 2016

NOTE 5 The value of the PMON checking status is changed
when a number of successive and consistent
parameter checks establish a new checking status,
see requirement 6.12.3.3j.1. The status values
"unchecked" and "invalid" indicate that no
checking status is currently established for the
parameter.

6.12.3.5 Controlling the parameter monitoring function

6.12.3.5.1 Enable the parameter monitoring function

a. The parameter monitoring subservice shall provide the capability to
enable the parameter monitoring function.

NOTE 1 The corresponding requests are of message type
"TC[12,15] enable the parameter monitoring
function".

NOTE 2 For the capability to disable the parameter
monitoring function, refer to clause 6.12.3.5.2.

b. Each request to enable the parameter monitoring function shall contain
exactly one instruction to enable the parameter monitoring function.

NOTE The instructions to enable the parameter
monitoring function contain no argument.

c. For each valid instruction to enable the parameter monitoring function,
the parameter monitoring subservice shall:
1. set the PMON function status to "enabled";
2. for each parameter monitoring definition that is enabled:

(a) set its PMON checking status to "unchecked";
(b) reset the repetition counter;

3. start the parameter monitoring process.
NOTE Enabling the parameter monitoring function does

not affect the PMON status of the parameter
monitoring definitions.

6.12.3.5.2 Disable the parameter monitoring function

a. The parameter monitoring subservice shall provide the capability to
disable the parameter monitoring function.

NOTE 1 The corresponding requests are of message type
"TC[12,16] disable the parameter monitoring
function".

NOTE 2 For the capability to enable the parameter
monitoring function, refer to clause 6.12.3.5.1.

b. Each request to disable the parameter monitoring function shall contain
exactly one instruction to disable the parameter monitoring function.

NOTE The instructions to disable the parameter
monitoring function contain no argument.

204

ECSS-E-ST-70-41C
15 April 2016

c. The parameter monitoring subservice shall reject any instruction to
disable the parameter monitoring function if:
1. the on-board monitoring service includes a functional monitoring

subservice whose functional monitoring function is enabled.
NOTE See clause 6.12.4.4.1.

d. For each request to disable the parameter monitoring function that is
rejected, the parameter monitoring subservice shall generate a failed start
of execution notification.

e. For each valid instruction to disable the parameter monitoring function,
the parameter monitoring subservice shall:
1. set the PMON function status to "disabled";
2. stop the parameter monitoring process.

NOTE Disabling the parameter monitoring function
affects neither the PMON status nor the PMON
checking status of the parameter monitoring
definitions.

6.12.3.6 Controlling the parameter monitoring definitions

6.12.3.6.1 Enable parameter monitoring definitions

a. The parameter monitoring subservice shall provide the capability to
enable parameter monitoring definitions.

NOTE 1 The corresponding requests are of message type
"TC[12,1] enable parameter monitoring
definitions".

NOTE 2 For the capability to disable parameter monitoring
definitions, refer to clause 6.12.3.6.2.

b. Each request to enable parameter monitoring definitions shall contain
one or more instructions to enable a parameter monitoring definition.

c. Each instruction to enable a parameter monitoring definition shall
contain:
1. the identifier of the parameter monitoring definition.

d. The parameter monitoring subservice shall reject any instruction to
enable a parameter monitoring definition if any of the following
conditions occurs:
1. that instruction refers to a parameter monitoring definition

identifier that is not in the PMON list;
2. that instruction refers to a parameter monitoring definition that is

used by a protected functional monitoring definition.
NOTE For item 2, the existence of protected functional

monitoring definitions depends on the presence of
a functional monitoring subservice with support
for protecting functional monitoring definitions.
See also clause 6.12.4.6.

205

ECSS-E-ST-70-41C
15 April 2016

e. For each instruction to enable a parameter monitoring definition that it
rejects, the parameter monitoring subservice shall generate the failed
start of execution notification for that instruction.

f. The parameter monitoring subservice shall process any valid instruction
that is contained within a request to enable parameter monitoring
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to enable a parameter monitoring definition,
the parameter monitoring subservice shall:
1. reset the repetition counter of that parameter monitoring

definition;
2. set the PMON status of that parameter monitoring definition to

"enabled".
NOTE Enabling the PMON status of the parameter

monitoring definition does not affect the PMON
checking status of that definition.

6.12.3.6.2 Disable parameter monitoring definitions

a. The parameter monitoring subservice shall provide the capability to
disable parameter monitoring definitions.

NOTE 1 The corresponding requests are of message type
"TC[12,2] disable parameter monitoring
definitions".

NOTE 2 For the capability to enable parameter monitoring
definitions, refer to clause 6.12.3.6.1.

b. Each request to disable parameter monitoring definitions shall contain
one or more instructions to disable a parameter monitoring definition.

c. Each instruction to disable a parameter monitoring definition shall
contain:
1. the identifier of the parameter monitoring definition.

d. The parameter monitoring subservice shall reject any instruction to
disable a parameter monitoring definition if any of the following
conditions occurs:
1. that instruction refers to a parameter monitoring definition

identifier that is not in the PMON list;
2. that instruction refers to a parameter monitoring definition that is

used by a protected functional monitoring definition.
NOTE For item 2, the existence of protected functional

monitoring definitions depends on the presence of
a functional monitoring subservice with support
for protecting functional monitoring definitions.
See clause 6.12.4.6.

e. For each instruction to disable a parameter monitoring definition that it
rejects, the parameter monitoring subservice shall generate the failed
start of execution notification for that instruction.

206

ECSS-E-ST-70-41C
15 April 2016

f. The parameter monitoring subservice shall process any valid instruction
that is contained within a request to disable parameter monitoring
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to disable a parameter monitoring definition,
the parameter monitoring subservice shall:
1. set the PMON status of the parameter monitoring definition to

"disabled";
2. set the PMON checking status of the parameter monitoring

definition to "unchecked".

6.12.3.6.3 Parameter monitoring process

a. If the PMON function status is "disabled", the parameter monitoring
subservice shall not perform the parameter monitoring process for any
parameter monitoring definitions.

b. If the PMON status of a parameter monitoring definition is disabled, the
parameter monitoring subservice shall not perform the parameter
monitoring process for that definition.

c. When performing the parameter monitoring process for a parameter
monitoring definition, at the end of the monitoring interval, the
parameter monitoring subservice shall, in sequence:
1. if the subservice supports the conditional checking of parameter

monitoring definitions, compute the check validity condition;
2. if the computed check validity condition yields false:

(a) set the PMON checking status to "invalid";
(b) reset the repetition counter of that parameter monitoring

definition;
3. if the subservice does not support the conditional checking of

parameter monitoring definitions, or if the check validity condition
yields true:
(a) perform the check specified by the check definition, using a

newly sampled value of the monitored parameter;
(b) if the specified "repetition number" of consecutive checks of

the monitored parameter have all produced the same
checking status output, establish a new PMON checking
status;

d. When a new PMON checking status is established, if that status differs
from the previous PMON checking status, the parameter monitoring
subservice shall:

(a) record a check transition by adding that transition to the
check transition list;

(b) if an event definition is associated to that transition, raise the
corresponding event.

e. When a new PMON checking status is established for an expected-value-
check, the parameter monitoring subservice shall set the PMON checking
status to:

207

ECSS-E-ST-70-41C
15 April 2016

1. "unexpected value" if the specified "repetition number" of
consecutive checks were declared unsuccessful;

2. "expected value", if the specified "repetition number" of
consecutive checks were declared successful.
NOTE See requirement 6.12.3.2.1c for the conditions to

declare success for an expected-value check.

f. When a new PMON checking status is established for a limit-check, the
parameter monitoring subservice shall set the PMON checking status to:
1. "above high limit", if the specified "repetition number" of

consecutive checks were declared unsuccessful and the parameter
value in each check was greater than the high limit value;

2. "below low limit", if the specified "repetition number" of
consecutive checks were declared unsuccessful and the parameter
value in each check was less than the low limit value;

3. "within limits", if the specified "repetition number" of consecutive
checks were declared successful.
NOTE See requirement 6.12.3.2.1b for the conditions to

declare success for a limit check.

g. When a new PMON checking status is established for a delta-check, the
parameter monitoring subservice shall set the PMON checking status to:
1. "above high threshold", if the specified "repetition number" of

consecutive checks were declared unsuccessful and the delta value
in each check was greater than the high threshold value;

2. "below low threshold", if the specified "repetition number" of
consecutive checks were declared unsuccessful and the delta value
in each check was less than the low threshold value;

3. "within thresholds", if the specified "repetition number" of
consecutive checks were declared successful.
NOTE See requirement 6.12.3.2.2c for the conditions to

declare success for a delta check.

6.12.3.7 Reporting the check transitions
a. The parameter monitoring subservice shall provide the capability to

report the contents of the check transition list.
NOTE The corresponding reports are data reports of

message type "TM[12,12] check transition report".

b. When reporting the contents of the check transition list, the parameter
monitoring subservice shall:
1. for each check transition in the check transition list, generate a

check transition notification containing:
(a) the identifier of the parameter monitoring definition for

which the check transition is recorded;
(b) the identifier of the monitored parameter;
(c) the check type;
(d) for an expected-value-check, the expected-value-check

mask;

208

ECSS-E-ST-70-41C
15 April 2016

(e) the parameter value that has caused the transition;
(f) the limit crossed;
(g) the PMON checking status before the transition;
(h) the PMON checking status resulting from the transition;
(i) the transition time;

2. generate a single check transition report containing all the
generated check transition notifications;

3. remove all the reported check transitions from the check transition
list.
NOTE 1 For item 1(e), it is the sampled value of the

monitored parameter that was used for the last
check.

NOTE 2 For item 1(f), it is the specified check value of the
parameter monitoring definition that was violated.

NOTE 3 For item 1(i), it is the sampling time of the first
parameter sample which was used to establish the
new checking status.

c. The maximum number of transitions required for issuing a check
transition report shall be declared when specifying the parameter
monitoring subservice.

d. The parameter monitoring subservice shall report the contents of the
check transition list whenever one of the following condition occurs:
1. the maximum number of transitions required for issuing a check

transition report is reached;
2. at the maximum transition reporting delay after the occurrence of

the first check transition recorded in the check transition list.

e. The maximum transition reporting delay shall be expressed in "on-board
parameter minimum sampling interval" units.

NOTE The on-board parameter minimum sampling
interval is driven by requirement 5.4.3.2c.

f. The default maximum transition reporting delay shall be declared when
specifying the parameter monitoring subservice.

NOTE For changing the maximum transition reporting
delay, refer to requirement 6.12.3.8a.

6.12.3.8 Change the maximum transition reporting delay
a. The parameter monitoring subservice capability to change the maximum

transition reporting delay shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[12,3] change the maximum transition
reporting delay".

b. Each request to change the maximum transition reporting delay shall
contain exactly one instruction to change the maximum transition
reporting delay.

209

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to change the maximum transition reporting delay shall
contain:
1. the maximum transition reporting delay.

d. For each valid instruction to change the maximum transition reporting
delay, the parameter monitoring subservice shall:
1. set the maximum transition reporting delay to the value specified

in that instruction.

6.12.3.9 Managing parameter monitoring definitions

6.12.3.9.1 Add parameter monitoring definitions

a. The parameter monitoring subservice capability to add parameter
monitoring definitions shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[12,5] add parameter monitoring definitions".

NOTE 2 For the capability to delete all parameter
monitoring definitions, refer to clause 6.12.3.9.2.

NOTE 3 For the capability to delete parameter monitoring
definitions, refer to clause 6.12.3.9.3.

b. If the capability to add parameter monitoring definitions is provided by
the parameter monitoring subservice, that subservice shall provide at
least one of the following capabilities:
1. the capability to delete all parameter monitoring definitions

specified in clause 6.12.3.9.2;
2. the capability to delete parameter monitoring definitions specified

in clause 6.12.3.9.3.

c. Each request to add parameter monitoring definitions shall contain one
or more instructions to add a parameter monitoring definition.

d. Each instruction to add a parameter monitoring definition shall contain:
1. the contents of the parameter monitoring definition.

NOTE The contents of a parameter monitoring definition
are specified in clause 6.12.3.3g.

e. The parameter monitoring subservice shall reject any instruction to add a
parameter monitoring definition if any of the following conditions
occurs:
1. that instruction cannot be added since the PMON list is full;
2. that instruction refers to a parameter monitoring definition

identifier that is already in the PMON list;
3. that instruction refers to a parameter to monitor that is not

accessible;
4. that instruction refers to a validity parameter that is not accessible;
5. that instruction refers to a limit check for which the high limit is

lower than the low limit;
6. that instruction refers to a delta check for which the high threshold

is lower than the low threshold.

210

ECSS-E-ST-70-41C
15 April 2016

f. For each instruction to add a parameter monitoring definition that it
rejects, the parameter monitoring subservice shall generate the failed
start of execution notification for that instruction.

g. The parameter monitoring subservice shall process any valid instruction
that is contained within a request to add parameter monitoring
definitions regardless of the presence of faulty instructions.

h. For each valid instruction to add a parameter monitoring definition, the
parameter monitoring subservice shall:
1. add a new parameter monitoring definition to the PMON list,

using data from that instruction;
2. set the PMON checking status of the new parameter monitoring

definition to "unchecked";
3. set the PMON status of the new parameter monitoring definition

to "disabled".

6.12.3.9.2 Delete all parameter monitoring definitions

a. The parameter monitoring subservice capability to delete all parameter
monitoring definitions shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[12,4] delete all parameter monitoring
definitions".

NOTE 2 For that declaration, refer to requirement
6.12.3.9.1b.

b. Each request to delete all parameter monitoring definitions shall contain
exactly one instruction to delete all parameter monitoring definitions.

NOTE The instructions to delete all parameter monitoring
definitions contain no argument.

c. The parameter monitoring subservice shall reject any request to delete all
parameter monitoring definitions if any of the following conditions
occurs:
1. the PMON list contains one or more parameter monitoring

definitions that are used by the functional monitoring subservice;
2. the PMON function status is "enabled".

d. For each request to delete all parameter monitoring definitions that is
rejected, the parameter monitoring subservice shall generate a failed start
of execution notification.

e. For each valid instruction to delete all parameter monitoring definitions,
the parameter monitoring subservice shall:
1. delete all entries in the PMON list;
2. delete all entries in the check transition list.

6.12.3.9.3 Delete parameter monitoring definitions

a. The parameter monitoring subservice capability to delete parameter
monitoring definitions shall be declared when specifying that subservice.

211

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 The corresponding requests are of message type
"TC[12,6] delete parameter monitoring
definitions".

NOTE 2 For that declaration, refer to requirement
6.12.3.9.1b.

b. Each request to delete parameter monitoring definitions shall contain one
or more instructions to delete a parameter monitoring definition.

c. Each instruction to delete a parameter monitoring definition shall
contain:
1. the identifier of the parameter monitoring definition.

d. The parameter monitoring subservice shall reject any instruction to delete
a parameter monitoring definition if any of the following conditions
occurs:
1. that instruction refers to a parameter monitoring definition

identifier that is not in the PMON list;
2. that instruction refers to a parameter monitoring definition whose

PMON status is "enabled";
3. that instruction refers to a parameter monitoring definition that is

used by a functional monitoring definition.

e. For each instruction to delete a parameter monitoring definition that it
rejects, the parameter monitoring subservice shall generate the failed
start of execution notification for that instruction.

f. The parameter monitoring subservice shall process any valid instruction
that is contained within a request to delete parameter monitoring
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to delete a parameter monitoring definition,
the parameter monitoring subservice shall:
1. remove the parameter monitoring definition that is referred to by

that instruction from the PMON list.

6.12.3.9.4 Modify parameter monitoring definitions

a. The parameter monitoring subservice capability to modify parameter
monitoring definitions shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[12,7] modify parameter monitoring
definitions".

NOTE 2 That capability requires the capability for that
subservice to add parameter monitoring
definitions (refer to clause 6.12.3.9.1).

b. Each request to modify parameter monitoring definitions shall contain
one or more instructions to modify a parameter monitoring definition.

c. Each instruction to modify a parameter monitoring definition shall
contain:
1. the identifier of the parameter monitoring definition;

212

ECSS-E-ST-70-41C
15 April 2016

2. the identifier of the monitored parameter used by that parameter
monitoring definition;

3. the means to modify:
(a) the repetition number;
(b) for a limit-check, its low limit, its high limit and the event

definition identifier of each associated event;
(c) for an expected-value-check, its expected-value-check mask,

its expected value and the event definition identifier of its
associated event;

(d) for a delta-check, its low delta threshold, its high delta
threshold and the event definition identifier of each
associated event.

NOTE In order to modify the other parameter monitoring
definition characteristics, e.g. the check type, this
Standard promotes the scenario to delete the
parameter monitoring definition and create a new
one.

d. The parameter monitoring subservice shall reject any instruction to
modify a parameter monitoring definition if any of the following
conditions occurs:
1. that instruction refers to a parameter monitoring definition

identifier that is not in the PMON list;
2. that instruction refers to a monitored parameter that is not the one

used in that parameter monitoring definition;
3. that instruction refers to a limit check for which the high limit is

lower than the low limit;
4. that instruction refers to a delta check for which the high threshold

is lower than the low threshold;
5. that instruction refers to a parameter monitoring definition that is

used by a protected functional monitoring definition.
NOTE 1 For item 5, the existence of protected functional

monitoring definitions depends on the presence of
a functional monitoring subservice with support
for protecting functional monitoring definitions.
See clause 6.12.4.6.

NOTE 2 See clause 8.12.2.7 for additional constraints due to
the interface specification.

e. For each instruction to modify a parameter monitoring definition that it
rejects, the parameter monitoring subservice shall generate the failed
start of execution notification for that instruction.

f. The parameter monitoring subservice shall process any valid instruction
that is contained within a request to modify parameter monitoring
definitions regardless of the presence of faulty instructions.

213

ECSS-E-ST-70-41C
15 April 2016

g. For each valid instruction to modify a parameter monitoring definition,
the parameter monitoring subservice shall:
1. modify the parameter monitoring definition that is referred to by

that instruction, using data from that instruction;
2. set the PMON checking status of the modified parameter

monitoring definition to "unchecked";
3. reset the repetition counter of that parameter monitoring

definition.

6.12.3.10 Report parameter monitoring definitions
a. The parameter monitoring subservice capability to report parameter

monitoring definitions shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[12,8] report parameter monitoring
definitions". The responses are data reports of
message type "TM[12,9] parameter monitoring
definition report".

NOTE 2 That capability requires the capability for that
subservice to provide at least one of:
• the capability to add parameter monitoring

definitions (refer to clause 6.12.3.9.1),;
• the capability to modify parameter monitoring

definitions (refer to clause 6.12.3.9.4).

b. Each request to report parameter monitoring definitions shall contain:
1. one or more instructions to report a parameter monitoring

definition, or
2. exactly one instruction to report all parameter monitoring

definitions.
NOTE The instructions to report all parameter

monitoring definitions contain no argument.

c. Each instruction to report a parameter monitoring definition shall
contain:
1. the identifier of the parameter monitoring definition.

d. The parameter monitoring subservice shall reject any instruction to
report a parameter monitoring definition if:
1. that instruction refers to a parameter monitoring definition

identifier that is not in the PMON list.

e. For each instruction to report a parameter monitoring definition that it
rejects, the parameter monitoring subservice shall generate the failed
start of execution notification for that instruction.

f. The parameter monitoring subservice shall process any valid instruction
that is contained within a request to report parameter monitoring
definitions regardless of the presence of faulty instructions.

214

ECSS-E-ST-70-41C
15 April 2016

g. For each valid instruction to report a parameter monitoring definition,
the parameter monitoring subservice shall generate a single parameter
monitoring definition notification that includes:
1. the parameter monitoring definition that is referred to by that

instruction;
2. the PMON status of that parameter monitoring definition.

NOTE The parameter monitoring definition is specified in
requirement 6.12.3.3g.

h. For each valid instruction to report all parameter monitoring definitions,
the parameter monitoring subservice shall generate, for each parameter
monitoring definition maintained by that subservice, a single parameter
monitoring definition notification.

i. For each valid request to report parameter monitoring definitions, the
parameter monitoring subservice shall generate a single parameter
monitoring definition report that contains:
1. if changing the maximum transition reporting delay is supported,

the current value of that delay;
2. all related parameter monitoring definition notifications.

NOTE For item 1, refer to requirement 6.12.3.8a.

6.12.3.11 Report the status of each parameter monitoring
definition

a. The parameter monitoring subservice capability to report the status of
each parameter monitoring definition shall be declared when specifying
that subservice.

NOTE 1 The corresponding requests are of message type
"TC[12,13] report the status of each parameter
monitoring definition". The responses are data
reports of message type "TM[12,14] parameter
monitoring definition status report".

NOTE 2 That capability requires the capability for that
subservice to enable parameter monitoring
definitions, refer to clause 6.12.3.6.1.

b. Each request to report the status of each parameter monitoring definition
shall contain exactly one instruction to report the status of each
parameter monitoring definition.

NOTE The instructions to report the status of each
parameter monitoring definition contain no
argument.

c. For each valid instruction to report the status of each parameter
monitoring definition, the parameter monitoring subservice shall:
1. generate, for each parameter monitoring definition in the PMON

list, a single parameter monitoring definition status notification
that includes:
(a) the identifier of the parameter monitoring definition;
(b) its PMON status.

215

ECSS-E-ST-70-41C
15 April 2016

d. For each valid request to report the status of each parameter monitoring
definition, the parameter monitoring subservice shall generate a single
parameter monitoring definition status report that includes all related
parameter monitoring definition status notifications.

6.12.3.12 Report the out-of-limits
a. The parameter monitoring subservice capability to report the out-of-

limits shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[12,10] report the out-of-limits". The responses
are data reports of message type "TM[12,11] out-
of-limits report".

b. Each request to report the out-of-limits shall contain exactly one
instruction to report the out-of-limits.

NOTE The instructions to report the out-of-limits contain
no argument.

c. For an expected-value-check, only the following transitions shall be
reported in the out-of-limits report:
1. "unchecked" to "unexpected value";
2. "invalid" to "unexpected value";
3. "expected value" to "unexpected value".

d. For a limit-check, only the following transitions shall be reported in the
out-of-limits report:
1. "unchecked" to "below low limit";
2. "unchecked" to "above high limit";
3. "invalid" to "below low limit";
4. "invalid" to "above high limit";
5. "within limits" to "below low limit";
6. "within limits" to "above high limit";
7. "below low limit" to "above high limit";
8. "above high limit" to "below low limit".

e. For a delta-check, only the following transitions shall be reported in the
out-of-limits report:
1. "unchecked" to "below low threshold";
2. "unchecked" to "above high threshold";
3. "invalid" to "below low threshold";
4. "invalid" to "above high threshold";
5. "within threshold" to "below high threshold";
6. "within threshold" to "above high threshold";
7. "below low threshold" to "above high threshold";
8. "above high threshold" to "below low threshold".

216

ECSS-E-ST-70-41C
15 April 2016

f. For each valid instruction to report the out-of-limits, the parameter
monitoring subservice shall generate:
1. for each check transition to report, a single out-of-limit notification

that includes:
(a) the identifier of the parameter monitoring definition for

which the check transition is recorded;
(b) the identifier of the monitored parameter;
(c) the check type;
(d) for an expected-value-check, the expected-value-check

mask;
(e) the parameter value that has caused the transition;
(f) the limit crossed;
(g) the PMON checking status before the transition;
(h) the PMON checking status resulting from the transition;
(i) the transition time.
NOTE 1 For item 1(e), it is the sampled value of the

monitored parameter that was used for the last
check.

NOTE 2 For item 1(f), it is the specified check value of the
parameter monitoring definition that was violated.

NOTE 3 For item 1(i), it is the sampling time of the first
parameter sample that was used to establish the
new checking status.

g. For each valid request to report the out-of-limits, the parameter
monitoring subservice shall generate a single out-of-limits report that
includes all related out-of-limit notifications.

NOTE Following the generation of an out-of-limits report,
the reported transitions are not removed from the
check transition list. The transitions are removed
when they are reported in a check transition
report, see clause 6.12.3.7.

6.12.3.13 Subservice observables
a. The following observables shall be defined for the parameter monitoring

subservice:
1. the number of remaining available entries in the parameter

monitoring definition list;
2. the number of enabled parameter monitoring definitions;
3. the PMON function status.

217

ECSS-E-ST-70-41C
15 April 2016

6.12.4 Functional monitoring subservice

6.12.4.1 Accessibility

6.12.4.1.1 Parameter monitoring definition

a. The functional monitoring subservice shall be able to observe, at any
time, the PMON checking status of each parameter monitoring definition
of the parameter monitoring subservice of the parent on-board
monitoring service.

6.12.4.2 Functional monitoring definition

6.12.4.2.1 General

a. The maximum number of functional monitoring definitions that the
functional monitoring subservice can contemporaneously evaluate at any
time shall be declared when specifying that subservice.

NOTE This maximum is the maximum number of entries
in the functional monitoring definition list. The
functional monitoring definition list is named
"FMON list".

b. The maximum number of parameter monitoring definitions that a
functional monitoring definition can refer to shall be declared when
specifying the functional monitoring subservice.

NOTE This Standard does not limit the number of times a
parameter monitoring definition can be called by a
functional monitoring definition.

c. Whether the functional monitoring subservice supports conditional
checking of functional monitoring definitions shall be declared when
specifying that subservice.

d. Whether the functional monitoring subservice supports specifying, for
each functional monitoring definition, the minimum number of
contemporaneously violated parameter monitoring definitions that
establishes a functional monitoring checking failure shall be declared
when specifying that subservice.

NOTE 1 This minimum number is named "minimum
PMON failing number".

NOTE 2 A minimum PMON failing number that equals 1
means that a functional monitoring definition fails
as soon as one of its parameter monitoring
definitions fails. This is equivalent to a logical OR
of the PMON conditions.

NOTE 3 If a functional monitoring definition has a
minimum PMON failing number that is equal to
the number of its parameter monitoring
definitions, then the functional monitoring
definition fails when all its parameter monitoring
definitions fail. This is equivalent to a logical AND
of the PMON conditions.

218

ECSS-E-ST-70-41C
15 April 2016

e. If the functional monitoring subservice does not support specifying, for
each functional monitoring definition, the minimum PMON failing
number, the subservice shall use a value of 1 as the minimum PMON
failing number for all functional monitoring definitions.

f. Each functional monitoring definition shall contain:
1. its identifier;
2. if the functional monitoring subservice supports the conditional

checking of functional monitoring definitions, a check validity
condition that yielding false prevents the check being performed;

3. the event definition identifier of the event to raise;
4. if the subservice supports specifying the minimum PMON failing

number, a minimum PMON failing number;
5. a set of one or more parameter monitoring definition identifiers.

NOTE 1 For item 2, refer to requirement 6.12.4.2.1c.
NOTE 2 For item 4, refer to requirement 6.12.4.2.1d.

6.12.4.3 Statuses
a. The functional monitoring subservice shall maintain a status indicating

whether the overall functional monitoring function is enabled or
disabled.

NOTE This status is named "FMON function status".

b. For each functional monitoring definition, the functional monitoring
subservice shall maintain a status indicating whether that functional
monitoring definition is enabled or disabled.

NOTE This status is named "FMON status".

c. For each functional monitoring definition, the functional monitoring
subservice shall maintain a status indicating the result of the check
performed.

NOTE 1 This status is named "FMON checking status".
NOTE 2 The FMON checking status can have any of the

following values: "unchecked", "invalid", "running"
or "failed".

d. If the functional monitoring subservice supports the capability for
protecting functional monitoring definitions, the functional monitoring
subservice shall maintain, for each functional monitoring definition, a
status indicating whether that functional monitoring definition is
protected or unprotected.

NOTE 1 For that capability, refer to requirement 6.12.4.6.1a.
NOTE 2 This status is named "FMON protection status".
NOTE 3 When a functional monitoring definition is

protected, it cannot be deleted. The parameter
monitoring definitions used by a protected
functional monitoring definition cannot be
enabled, disabled or modified

219

ECSS-E-ST-70-41C
15 April 2016

NOTE 4 If the subservice does not support that capability,
all functional monitoring definitions are implicitly
unprotected.

6.12.4.4 Controlling the functional monitoring function

6.12.4.4.1 Enable the functional monitoring function

a. The functional monitoring subservice shall provide the capability to
enable the functional monitoring function.

NOTE 1 The corresponding requests are of message type
"TC[12,17] enable the functional monitoring
function".

NOTE 2 For the capability to disable the functional
monitoring function, refer to clause 6.12.4.4.2.

b. Each request to enable the functional monitoring function shall contain
exactly one instruction to enable the functional monitoring function.

NOTE The instructions to enable the functional
monitoring function contain no argument.

c. The functional monitoring subservice shall reject any request to enable
the functional monitoring function if:
1. the parameter monitoring function of the associated parameter

monitoring subservice is disabled.
NOTE See clause 6.12.3.5.1.

d. For each request to enable the functional monitoring function that is
rejected, the functional monitoring subservice shall generate a failed start
of execution notification.

e. For each valid instruction to enable the functional monitoring function,
the functional monitoring subservice shall:
1. set the FMON function status to "enabled";
2. for each functional monitoring definition that is enabled:

(a) set its FMON checking status to "unchecked";
3. start immediately the monitoring of the enabled functional

monitoring definitions.
NOTE Enabling the functional monitoring function has

no impact on the FMON and FMON protection
statuses of the functional monitoring definitions.

6.12.4.4.2 Disable the functional monitoring function

a. The functional monitoring subservice shall provide the capability to
disable the functional monitoring function.

NOTE 1 The corresponding requests are of message type
"TC[12,18] disable the functional monitoring
function".

NOTE 2 For the capability to enable the functional
monitoring function, refer to clause 6.12.4.4.1.

220

ECSS-E-ST-70-41C
15 April 2016

b. Each request to disable the functional monitoring function shall contain
exactly one instruction to disable the functional monitoring function.

NOTE The instructions to disable the functional
monitoring function contain no argument.

c. For each valid instruction to disable the functional monitoring function,
the functional monitoring subservice shall:
1. set the FMON function status to "disabled".
2. stop immediately the monitoring of the functional monitoring

definitions.
NOTE Disabling the functional monitoring function has

no impact on the FMON, FMON protection and
FMON checking statuses of the functional
monitoring definitions.

6.12.4.5 Controlling the functional monitoring definitions

6.12.4.5.1 Monitoring transitions

a. For each functional monitoring definition, whenever a new PMON
checking status has been established for one of its parameter monitoring
definitions, the functional monitoring subservice shall perform the
following:
1. If the FMON function status is "enabled" and the FMON status is

"enabled" and the current FMON checking status is not "failed":
(a) the check validity condition, if any, is computed;
(b) If the computed check validity condition yields false, the

FMON checking status is set to "invalid".
2. If the FMON function status is "enabled", the FMON status is

"enabled" and the current FMON checking status is neither "failed"
nor "invalid":
(a) check if the number of related parameter monitoring

definitions that are contemporaneously in violation equals
or exceeds the minimum PMON failing number;

(b) if the check yields true, the FMON checking status is set to
"failed" and the associated event is raised;

(c) if the check yields false, the FMON checking status is set to
"running".

6.12.4.5.2 Enable functional monitoring definitions

a. The functional monitoring subservice shall provide the capability to
enable functional monitoring definitions.

NOTE 1 The corresponding requests are of message type
"TC[12,19] enable functional monitoring
definitions".

NOTE 2 For the capability to disable functional monitoring
definitions, refer to clause 6.12.4.5.3.

b. Each request to enable functional monitoring definitions shall contain
one or more instructions to enable a functional monitoring definition.

221

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to enable a functional monitoring definition shall
contain:
1. the identifier of the functional monitoring definition.

d. The functional monitoring subservice shall reject any instruction to
enable a functional monitoring definition if:
1. that instruction refers to a functional monitoring definition

identifier that is not in the FMON list.

e. For each instruction to enable a functional monitoring definition that it
rejects, the functional monitoring subservice shall generate the failed start
of execution notification for that instruction.

f. The functional monitoring subservice shall process any valid instruction
that is contained within a request to enable functional monitoring
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to enable a functional monitoring definition,
the functional monitoring subservice shall:
1. set the FMON status of the functional monitoring definition to

"enabled".
NOTE Enabling the FMON status of the functional

monitoring definition does not affect the FMON
checking status of that definition.

6.12.4.5.3 Disable functional monitoring definitions

a. The functional monitoring subservice shall provide the capability to
disable functional monitoring definitions.

NOTE 1 The corresponding requests are of message type
"TC[12,20] disable functional monitoring
definitions".

NOTE 2 For the capability to enable functional monitoring
definitions, refer to clause 6.12.4.5.2.

b. Each request to disable functional monitoring definitions shall contain
one or more instructions to disable a functional monitoring definition.

c. Each instruction to disable a functional monitoring definition shall
contain:
1. the identifier of the functional monitoring definition.

d. The functional monitoring subservice shall reject any instruction to
disable a functional monitoring definition if:
1. that instruction refers to a functional monitoring definition

identifier that is not in the FMON list.

e. For each instruction to disable a functional monitoring definition that it
rejects, the functional monitoring subservice shall generate the failed start
of execution notification for that instruction.

f. The functional monitoring subservice shall process any valid instruction
that is contained within a request to disable functional monitoring
definitions regardless of the presence of faulty instructions.

222

ECSS-E-ST-70-41C
15 April 2016

g. For each valid instruction to disable a functional monitoring definition,
the functional monitoring subservice shall:
1. set the FMON status of the functional monitoring definition to

"disabled";
2. set the FMON checking status of the functional monitoring

definition to "unchecked".

6.12.4.6 Protecting functional monitoring definitions

6.12.4.6.1 Protect functional monitoring definitions

a. The functional monitoring subservice capability to protect functional
monitoring definitions shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[12,21] protect functional monitoring
definitions".

NOTE 2 For the capability to unprotect functional
monitoring definitions, refer to clause 6.12.4.6.2.

b. Each request to protect functional monitoring definitions shall contain
one or more instructions to protect a functional monitoring definition.

c. Each instruction to protect a functional monitoring definition shall
contain:
1. the identifier of the functional monitoring definition.

d. The functional monitoring subservice shall reject any instruction to
protect a functional monitoring definition if:
1. that instruction refers to a functional monitoring definition

identifier that is not in the FMON list.

e. For each instruction to protect a functional monitoring definition that it
rejects, the functional monitoring subservice shall generate the failed start
of execution notification for that instruction.

f. The functional monitoring subservice shall process any valid instruction
that is contained within a request to protect functional monitoring
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to protect a functional monitoring definition,
the functional monitoring subservice shall:
1. set the FMON protection status of the functional monitoring

definition to "protected".
NOTE When a functional monitoring definition is

protected, it cannot be deleted and it prevents the
enabling, disabling or modifying of any parameter
monitoring definition that is used in that
functional monitoring definition. See clauses
6.12.4.7.2, 6.12.3.6.1, 6.12.3.6.2 and 6.12.3.9.4.

223

ECSS-E-ST-70-41C
15 April 2016

6.12.4.6.2 Unprotect functional monitoring definitions

a. The functional monitoring subservice capability to unprotect functional
monitoring definitions shall be provided if the capability to protect
functional monitoring definitions is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[12,22] unprotect functional monitoring
definitions".

NOTE 2 For the capability to protect functional monitoring
definitions, refer to clause 6.12.4.6.1.

b. Each request to unprotect functional monitoring definitions shall contain
one or more instructions to unprotect a functional monitoring definition.

c. Each instruction to unprotect a functional monitoring definition shall
contain:
1. the identifier of the functional monitoring definition.

d. The functional monitoring subservice shall reject any instruction to
unprotect a functional monitoring definition if:
1. that instruction refers to a functional monitoring definition

identifier that is not in the FMON list.

e. For each instruction to unprotect a functional monitoring definition that
it rejects, the functional monitoring subservice shall generate the failed
start of execution notification for that instruction.

f. The functional monitoring subservice shall process any valid instruction
that is contained within a request to unprotect functional monitoring
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to unprotect a functional monitoring definition,
the functional monitoring subservice shall:
1. set the FMON protection status of the functional monitoring

definition to "unprotected".

6.12.4.7 Modifying functional monitoring definitions

6.12.4.7.1 Add functional monitoring definitions

a. The functional monitoring subservice capability to add functional
monitoring definitions shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[12,23] add functional monitoring definitions".

NOTE 2 For the capability to delete functional monitoring
definitions, refer to clause 6.12.4.7.2.

b. Each request to add functional monitoring definitions shall contain one
or more instructions to add a functional monitoring definition.

c. Each instruction to add a functional monitoring definition shall contain:
1. the contents of the functional monitoring definition.

NOTE The contents of a functional monitoring definition
are specified in requirement 6.12.4.2.1f.

224

ECSS-E-ST-70-41C
15 April 2016

d. The functional monitoring subservice shall reject any request to add
functional monitoring definitions if any of the following conditions
occurs:
1. that request contains an instruction that refers to a functional

monitoring definition identifier that is already in the FMON list;
2. that request contains more than one instruction for the same

functional monitoring definition.

e. The functional monitoring subservice shall reject any instruction to add a
functional monitoring definition if any of the following conditions
occurs:
1. that instruction cannot be added since the FMON list is full;
2. that instruction refers to a parameter monitoring definition

identifier that is not in the PMON list;
3. that instruction refers to a validity parameter that is not accessible.

f. For each request to add functional monitoring definitions that it rejects,
the functional monitoring subservice shall generate the failed start of
execution notification for that request.

g. For each instruction to add a functional monitoring definition that it
rejects, the functional monitoring subservice shall generate the failed start
of execution notification for that instruction.

h. The functional monitoring subservice shall process any valid instruction
that is contained within a request to add functional monitoring
definitions regardless of the presence of faulty instructions.

i. For each valid instruction to add a functional monitoring definition, the
functional monitoring subservice shall:
1. add a new functional monitoring definition to the FMON list,

using data from that instruction;
2. set the FMON checking status of the new functional monitoring

definition to "unchecked";
3. set the FMON status of the new functional monitoring definition to

"disabled";
4. if the functional monitoring subservice supports the capability for

protecting functional monitoring definitions, set the FMON
protection status of the new functional monitoring definition to
"protected".
NOTE For the capability in item 4 refer to requirement

6.12.4.6.1a.

6.12.4.7.2 Delete functional monitoring definitions

a. The functional monitoring subservice shall provide the capability to
delete functional monitoring definitions if the capability to add
functional monitoring definitions is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[12,24] delete functional monitoring
definitions".

225

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For the capability to add functional monitoring
definitions, refer to clause 6.12.4.7.1.

b. Each request to delete functional monitoring definitions shall contain one
or more instructions to delete a functional monitoring definition.

c. Each instruction to delete a functional monitoring definition shall
contain:
1. the identifier of the functional monitoring definition.

d. The functional monitoring subservice shall reject any instruction to delete
a functional monitoring definition if any of the following conditions
occurs:
1. that instruction refers to a functional monitoring definition

identifier that is not in the FMON list;
2. that instruction refers to a functional monitoring definition whose

FMON status is "enabled";
3. that instruction refers to a functional monitoring definition whose

FMON protection status is "protected".

e. For each instruction to delete a functional monitoring definition that it
rejects, the functional monitoring subservice shall generate the failed start
of execution notification for that instruction.

f. The functional monitoring subservice shall process any valid instruction
that is contained within a request to delete functional monitoring
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to delete a functional monitoring definition, the
functional monitoring subservice shall:
1. remove the functional monitoring definition that is referred to by

that instruction from the FMON list.

6.12.4.8 Report functional monitoring definitions
a. The functional monitoring subservice capability to report functional

monitoring definitions shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[12,25] report functional monitoring
definitions". The responses are data reports of
message type "TM[12,26] functional monitoring
definition report".

NOTE 2 That capability requires the capability for that
subservice to add functional monitoring
definitions. refer to clause 6.12.4.7.1.

b. Each request to report functional monitoring definitions shall contain:
1. one or more instructions to report a functional monitoring

definition, or
2. exactly one instruction to report all functional monitoring

definitions.
NOTE The instructions to report all functional monitoring

definitions contain no argument.

226

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to report a functional monitoring definition shall
contain:
1. the identifier of the functional monitoring definition.

d. The functional monitoring subservice shall reject any instruction to report
a functional monitoring definition if:
1. that instruction refers to a functional monitoring definition

identifier that is not in the FMON list.

e. For each instruction to report a functional monitoring definition that it
rejects, the functional monitoring subservice shall generate the failed start
of execution notification for that instruction.

f. The functional monitoring subservice shall process any valid instruction
that is contained within a request to report functional monitoring
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to report a functional monitoring definition,
the functional monitoring subservice shall
1. generate a single functional monitoring definition notification that

includes:
(a) the content of the functional monitoring definition that is

referred to by that instruction;
(b) if the functional monitoring subservice supports the

capability for protecting functional monitoring definitions,
the FMON protection status of that functional monitoring
definition;

(c) the FMON status of that functional monitoring definition.
NOTE 1 For item 1(a), the content of a functional

monitoring definition is specified in requirement
6.12.4.2.1f.

NOTE 2 For item 1(b), refer to requirement 6.12.4.6.1a.

h. For each valid instruction to report all functional monitoring definitions,
the functional monitoring subservice shall:
1. for each functional monitoring definition maintained by that

subservice, generate a single functional monitoring definition
notification that includes:
(a) the contents of that functional monitoring definition;
(b) if the functional monitoring subservice supports the

capability for protecting functional monitoring definitions,
the FMON protection status of that functional monitoring
definition;

(c) the FMON status of that functional monitoring definition.
NOTE 1 The contents of a functional monitoring definition

are specified in requirement 6.12.4.2.1f.
NOTE 2 For the capability for protecting functional

monitoring definitions, refer to requirement
6.12.4.6.1a.

227

ECSS-E-ST-70-41C
15 April 2016

i. For each valid request to report functional monitoring definitions, the
functional monitoring subservice shall generate a single functional
monitoring definition report that contains all related functional
monitoring definition notifications.

6.12.4.9 Report the status of each functional monitoring
definition

a. The functional monitoring subservice capability to report the status of
each functional monitoring definition shall be declared when specifying
that subservice.

NOTE The corresponding requests are of message type
"TC[12,27] report the status of each functional
monitoring definition". The responses are data
reports of message type "TM[12,28] functional
monitoring definition status report".

b. Each request to report the status of each functional monitoring definition
shall contain exactly one instruction to report the status of each
functional monitoring definition.

NOTE The instructions to report the status of each
functional monitoring definition contain no
argument.

c. For each valid instruction to report the status of each functional
monitoring definition, the functional monitoring subservice shall:
1. generate, for each functional monitoring definition in the FMON

list, a single functional monitoring definition status notification
that includes:
(a) the identifier of that functional monitoring definition;
(b) if the functional monitoring subservice supports the

capability for protecting functional monitoring definitions,
its FMON protection status;

(c) its FMON status;
(d) its FMON checking status.
NOTE For item 1(b), refer to requirement 6.12.4.6.1a.

d. For each valid request to report the status of each functional monitoring
definition, the functional monitoring subservice shall generate a single
functional monitoring definition status report that includes all related
functional monitoring definition status notifications.

6.12.4.10 Subservice observables
a. The following observables shall be defined for the functional monitoring

subservice:
1. the number of remaining available entries in the functional

monitoring definition list;
2. the number of enabled functional monitoring definitions;
3. the FMON function status.

228

ECSS-E-ST-70-41C
15 April 2016

6.13 ST[13] large packet transfer

6.13.1 Scope

6.13.1.1 General
 The ground to space protocol implementations usually limit the maximum

length of the CCSDS telemetry and telecommand packets that can be
transferred on the downlink and uplink of a spacecraft. These limits are
frequently less that the maximum packet size supported by the definition of the
CCSDS packet format.

 Large requests sent by ground for on-board services can exceed the mission
maximum telecommand packet length and large reports generated by the on-
board services for the ground can exceed the mission maximum telemetry
packet length. These limitations imply that large packets need a specific
protocol to manage their transfer.

 The large packet transfer service type implements such protocol by splitting a
large packet into smaller packets, each containing a part of the large packet. The
smaller packets can be transferred between ground and space, and the large
packet can be reconstructed from its parts at the receiving end.

 The large packet transfer service type defines two standardized subservice
types, of similar capabilities and architecture, i.e.:

• the large packet downlink subservice type;

• the large packet uplink subservice type.

 As a matter of principle, the services that issue large packets (the sources) and
those that receive large packets (the destinations) do not need to know the
ground to space constraints and, as such, do not need to know that their large
packets are processed by the large packet transfer service.

6.13.1.2 Large packet downlink subservice
 The large packet downlink subservice type is composed of:

• a sending entity type which includes the capability, on-board, to:
− receive and decompose a large packet into an ordered sequence of

parts, taking into account the mission maximum telemetry packet
length constraint;

− encapsulate each part within a report, i.e. a "downlink part report";
− downlink the part reports.

• a receiving entity type which includes the capability, for the ground, to:
− collect all received part reports for a given large packet;
− rebuild the large packet from the parts extracted from these part

reports;
− deliver the large packet to its destination.

229

ECSS-E-ST-70-41C
15 April 2016

6.13.1.3 Large packet uplink subservice
 The large packet uplink subservice type is composed of:

• a sending entity type which includes the capability, for the ground, to:
− receive and decompose a large packet into an ordered sequence of

parts taking into account the mission maximum telecommand
packet length constraint;

− encapsulate each part within a request, i.e. an "uplink part
request";

− uplink the part requests.

• a receiving entity type which includes the capability, on-board, to:
− collect all part requests received from the uplink sending entity for

a given large packet;
− rebuild the large packet from the parts extracted from the part

requests;
− deliver the large packet to its destination.

6.13.2 Service layout

6.13.2.1 Subservice

6.13.2.1.1 General

a. Each large packet transfer service shall contain at least one of:
1. the large packet downlink subservice;
2. the large packet uplink subservice.

6.13.2.1.2 Large packet downlink subservice

a. Each large packet transfer service shall contain at most one large packet
downlink subservice.

6.13.2.1.3 Large packet uplink subservice

a. Each large packet transfer service shall contain at most one large packet
uplink subservice.

6.13.2.2 Application process
a. Each large packet transfer subservice provider shall be hosted by exactly

one application process.
NOTE This implies that when both the large packet

downlink subservice and the large packet uplink
subservice are supported, the sending entity of the
downlink subservice and the receiving entity of
the uplink subservice are both hosted by that same
on-board application process.

b. Each application process shall host at most one large packet transfer
subservice provider.

230

ECSS-E-ST-70-41C
15 April 2016

6.13.3 Large packet downlink subservice

6.13.3.1 Configuration
a. The maximum number of large packets that can be downlinked

concurrently shall be declared when specifying the large packet
downlink subservice.

b. The part size used by the large packet downlink subservice to decompose
large packets shall be declared when specifying that subservice.

NOTE This part size is called "downlink maximum part
size" and is constrained by the packet field size of a
telemetry packet whose length equals the
maximum telemetry packet length used to
communicate with the spacecraft.

c. The maximum time allocated to the receiving entity for receiving a
subsequent downlink part report after the reception of the previous one
shall be declared when specifying the large packet downlink subservice.

NOTE This maximum time is called "downlink reception
timeout"

6.13.3.2 Resources
a. The resources allocated to the sending entity of the large packet

downlink subservice to process large packets shall be declared when
specifying the spacecraft architecture and its operations.

6.13.3.3 Downlink process

6.13.3.3.1 Generating downlink part reports

a. The sending entity of the large packet downlink subservice shall have the
capability to process each large packet that it receives.

NOTE This Standard assumes that on-board, the large
packets are not duplicated. The synchronization
between the source of the large packets and the
large packet downlink subservice is beyond the
scope of this Standard.

b. For each large packet that it processes, the sending entity of the large
packet downlink subservice shall:
1. assign a unique large message transaction identifier to that large

packet;
2. split the large packet into parts;
3. associate to each part, a unique part sequence number;
4. encapsulate each part into a single "downlink part report".

NOTE 1 The large message transaction identifier is used to
uniquely identify the large packet during its
overall downlink operation.

NOTE 2 All parts resulting from the decomposition of a
large packet have a size that equals the downlink

231

ECSS-E-ST-70-41C
15 April 2016

maximum part size (refer to requirement
6.13.3.1b), except for the last part, which has a size
less than or equal to the downlink maximum part
size.

NOTE 3 For each large packet, the part sequence number is
a counter starting from 1 that specifies, for each
part, its position within that large packet. This
counter is used by the receiving end when
reconstructing the packet, to identify the sequence
and position for each part.

c. Each part report shall contain:
1. exactly one part notification made of:

(a) an identifier of whether the part report contains the "First"
part, an "Intermediate" part or the "Last" part of the large
packet;

(b) the large message transaction identifier;
(c) the part sequence number;
(d) the part itself.
NOTE The corresponding reports are data reports of

message type:
• "TM[13,1] first downlink part report" for the

first part,
• "TM[13,2] intermediate downlink part report"

for the intermediate parts, and
• "TM[13,3] last downlink part report" for the last

part.

d. The destination of the part reports generated by the large packet
downlink subservice shall be declared when specifying the space to
ground architecture.

NOTE The destination referred to in that requirement is
the ground application process that hosts the large
packet downlink subservice receiving entity.

e. The sending entity of the large packet downlink subservice shall generate
the part reports related to each large packet, in increasing order of the
part sequence number and at the highest frequency supported under the
prevailing operation constraints.

6.13.3.3.2 Accepting part reports and reconstructing large packets

a. The receiving entity of the large packet downlink subservice shall have
the capability to process all part reports that it receives.

NOTE This process is called "large packet acceptance and
reconstruction process".

b. The receiving entity of the large packet downlink subservice shall initiate
the downlink operation when it receives the first part report of the large
packet.

232

ECSS-E-ST-70-41C
15 April 2016

c. The receiving entity of the large packet downlink subservice shall initiate
the reception timer after the successful reception of a first or intermediate
part report.

d. For each part report that is received, the receiving entity of the large
packet downlink subservice shall include that part in the reconstruction
process of the related large packet.

e. The receiving entity of the large packet downlink subservice shall end the
downlink operation when the last part report of the large packet has been
successfully received.

f. The receiving entity of the large packet downlink subservice shall abort
the downlink operation when the reception timer reaches the downlink
reception timeout.

NOTE See requirement 6.13.3.1c.

g. Upon completion of the downlink operation, if all part reports have been
successfully received, the receiving entity of the large packet downlink
subservice shall:
1. generate that large packet for subsequent routing to its destination.

NOTE The receiving entity is not in charge of checking
the checksum of the reconstructed large packet.

h. For each large packet reconstruction that is aborted or that completes
without having successfully received all parts, the receiving entity of the
large packet downlink subservice shall:
1. notify the ground monitoring and control system of that large

packet downlink abortion and the missing parts;
2. discard that large packet and related part reports.

6.13.3.4 Subservice Observables
a. The following observables shall be defined for the on-board large packet

downlink subservice:
1. the number of on-going downlinks;
2. the list of large message transaction identifiers associated to the on-

going downlinks in an array of size corresponding to the
maximum number of large packets that can be downlinked
concurrently.
NOTE For item 2, refer to requirements 6.13.3.3.1b.1 and

6.13.3.1a.

6.13.4 Large packet uplink subservice

6.13.4.1 Configuration
a. The maximum number of large packets that can be uplinked

concurrently shall be declared when specifying the large packet uplink
subservice.

233

ECSS-E-ST-70-41C
15 April 2016

b. The part size used by the large packet uplink subservice to decompose
large packets shall be declared when specifying that subservice.

NOTE This part size is called "uplink maximum part
size". It corresponds to the packet field size used
by the part of a telecommand packet which packet
size equals to the maximum telecommand packet
length used for communicating with the
spacecraft.

c. The maximum time allocated to the uplink receiving entity for receiving
a subsequent uplink part request after the reception of the previous one
shall be declared when specifying the large packet uplink subservice.

NOTE This maximum time is called "Uplink reception
timeout".

6.13.4.2 Resources
a. The resources allocated to the uplink receiving entity of the large packet

uplink subservice to process large packets shall be declared when
specifying the spacecraft architecture and its operations.

6.13.4.3 Uplink process

6.13.4.3.1 Generating uplink part requests

a. For each large packet that it processes, the sending entity of the large
packet uplink subservice shall:
1. assign a unique large message transaction identifier to that large

packet;
2. split the large packet into parts;
3. associate to each part, a unique part sequence number;
4. encapsulate each part into a single "uplink part request".

NOTE 1 The large message transaction identifier is used to
uniquely identify the large packet during its
overall uplink operation.

NOTE 2 All parts resulting from the decomposition of a
large packet have a size that is equal to the uplink
maximum part size (refer to requirement
6.13.4.1b), except for the last part, which has a size
less than or equal to the uplink maximum part
size.

NOTE 3 For each large packet, the part sequence number is
a counter starting from 1 that specifies, for each
part, its position within that large packet. This
counter is used by the receiving end when
reconstructing the packet, to identify the sequence
and position for each part.

234

ECSS-E-ST-70-41C
15 April 2016

b. Each part request shall contain:
1. exactly one part instruction made of:

(a) an identifier of whether the part request is the "First" part,
an "Intermediate" part or the "Last" part of the large packet;

(b) the large message transaction identifier;
(c) the part sequence number;
(d) the part itself.
NOTE The corresponding requests are of message type:

• "TC[13,9] uplink the first part" for the first part,
• "TC[13,10] uplink an intermediate part" for the

intermediate parts, and
• "TC[13,11] uplink the last part" for the last part.

c. The destination of the uplink part requests generated by the large packet
uplink subservice shall be declared when specifying the space to ground
architecture.

NOTE The destination referred in that requirement is the
on-board application process that hosts the large
packet uplink subservice receiving entity.

d. The sending entity of the large packet uplink subservice shall generate
the uplink part requests related to each large packet, in increasing order
of part sequence number and at the highest frequency supported under
the prevailing operation constraints.

6.13.4.3.2 Accepting uplink part requests and reconstructing large
packets

a. The receiving entity of the large packet uplink subservice shall be able to
process all uplink part requests that it receives.

NOTE This process is called "large packet acceptance and
reconstruction process".

b. The receiving entity of the large packet uplink subservice shall initiate
the uplink operation when it receives the request to uplink the first part
of the large packet.

c. The receiving entity of the large packet uplink subservice shall initiate
the reception timer after the successful reception of the request to uplink
the first part or the request to uplink an intermediate part.

d. The receiving entity of the large packet uplink subservice shall end the
uplink operation when the request to uplink the last part of the large
packet has successfully been received.

e. The receiving entity of the large packet uplink subservice shall abort the
uplink operation when the reception timer reaches the uplink reception
timeout.

NOTE See requirement 6.13.4.1c.

f. The receiving entity of the large packet uplink subservice shall abort the
uplink operation when a discontinuity is detected in the uplink reception
sequence.

235

ECSS-E-ST-70-41C
15 April 2016

g. For each uplink part request that is received, the receiving entity of the
large packet uplink subservice shall include that part in the
reconstruction process of the related large packet.

h. Upon successful completion of the uplink operation, the receiving entity
of the large packet uplink subservice shall:
1. generate that large packet for subsequent routing to its destination.

NOTE The receiving entity is not in charge of checking
the checksum of the reconstructed large packets.

i. For each large packet uplink that is aborted, the receiving entity of the
large packet uplink subservice shall:
1. generate a single large packet uplink abortion notification that

includes the reason of that abortion;
2. discard that large packet and the related uplink part requests.

6.13.4.3.3 Large packet uplink abortion report

a. The receiving entity of the large packet uplink shall provide the
capability to generate large packet uplink abortion reports.

NOTE The corresponding data reports are of message
type "TM[13,16] large packet uplink abortion
report".

b. For each large packet uplink abortion notification that it generates, the
receiving entity of the large packet uplink subservice shall generate a
single large packet uplink abortion report that contains that notification.

c. Each large packet uplink abortion notification shall contain:
1. the large message transaction identifier;
2. the abortion reason.

6.13.4.4 Subservice Observables
a. The following observables shall be defined for the large packet uplink

subservice:
1. the number of on-going uplinks;
2. the list of the large message transaction identifiers associated to the

on-going uplinks in an array of size corresponding to the
maximum number of large packets that can be uplinked
concurrently.
NOTE For item 2, refer to requirements 6.13.4.3.1a.1 and

6.13.4.1a.

236

ECSS-E-ST-70-41C
15 April 2016

6.14 ST[14] real-time forwarding control

6.14.1 Scope

6.14.1.1 General
 The real-time forwarding control service type provides the capability to control

the forwarding to the ground of reports (verification reports, responses and
data) generated by on-board services. The reports are forwarded to ground
within a real-time telemetry channel.

 The real-time forwarding control service type defines a single standardized
subservice type, i.e. the real-time forwarding control subservice type.

6.14.1.2 Real-time forwarding control subservice
 The real-time forwarding control subservice type can be used to control the

forwarding of reports generated by the application process that hosts the
subservice and by other application processes.

 This subservice type provides means to control the forwarding of reports taking
into account their operational use. That control is performed, per application
process, by defining application process related forwarding control conditions
that when met authorize or not the forwarding of related reports.

 This subservice type includes the capability for defining control conditions at
application process related report type level i.e.:

• conditions for all report types of an application process;

• conditions for all report types of a specific service type of an application
process;

• conditions for a specific report type of an application process.

 If no application process forward-control definition is defined for an application
process, this implies that no report from that application process is forwarded
to ground in real-time.

 This subservice type includes optional capabilities for defining control
conditions at:

• housekeeping parameter report structure level;

• diagnostic parameter report structure level;

• event definition level.

 If no housekeeping parameter report structure forwarding control conditions
are defined for an application process, this implies that no housekeeping
parameter report from that application process is forwarded to ground in real-
time. Diagnostic parameter reports are handled in a similar way.

 If no event definition blocking control conditions are defined for an application
process, this implies that all event reports from that application process are
forwarded to ground in real-time.

237

ECSS-E-ST-70-41C
15 April 2016

6.14.2 Service layout

6.14.2.1 Subservice

6.14.2.1.1 Real-time forwarding control subservice

a. Each real-time forwarding control service shall contain at least one real-
time forwarding control subservice.

6.14.2.2 Application process
a. Each application process shall host at most one real-time forwarding

control subservice provider.

6.14.3 Real-time forwarding control subservice

6.14.3.1 Accessibility

6.14.3.1.1 Application process

a. The list of application processes that are controlled by the real-time
forwarding control subservice shall be declared when specifying that
subservice.

NOTE The real-time forwarding control subservice
always controls the report forwarding for reports
generated by the application process that hosts
that subservice.

b. The real-time forwarding control subservice shall be able to handle, at
any time, all reports that are generated by each application process that is
controlled by that subservice.

6.14.3.2 Forward-control definitions

6.14.3.2.1 Capability

a. Whether the real-time forwarding control subservice provides the
capability to control, per housekeeping parameter report structure, the
forwarding of housekeeping parameter reports shall be declared when
specifying that subservice.

NOTE 1 See clause 6.14.3.2.3.
NOTE 2 For the housekeeping parameter reports, refer to

requirement 6.3.3.3a.

b. Whether the real-time forwarding control subservice provides the
capability to control, per diagnostic parameter report structure, the
forwarding of diagnostic parameter reports shall be declared when
specifying that subservice.

NOTE 1 See clause 6.14.3.2.4.
NOTE 2 For the diagnostic parameter reports, refer to

requirement 6.3.4.3a.

238

ECSS-E-ST-70-41C
15 April 2016

c. Whether the real-time forwarding control subservice provides the
capability to control, per event definition, the forwarding of event reports
shall be declared when specifying that subservice.

NOTE 1 See clause 6.14.3.2.5.
NOTE 2 For the event reports, refer to requirement 6.5.4a.

d. If the real-time forwarding control subservice provides the capability to
control, per housekeeping parameter report structure, the forwarding of
housekeeping parameter reports or the capability to control, per
diagnostic parameter report structure, the forwarding of diagnostic
parameter reports, the subservice capability to subsample the forwarding
of the parameter reports shall be declared when specifying that
subservice.

NOTE Refer to requirements 6.14.3.2.1a and 6.14.3.2.1b.

6.14.3.2.2 Application process forward-control configuration

a. The maximum number of application process forward-control definitions
that the real-time forwarding control subservice can contemporaneously
control shall, at any time, correspond to the number of application
processes that are controlled by that subservice.

NOTE 1 See requirement 6.14.3.1.1a.
NOTE 2 The application process forward-control

configuration contains the application process
forward-control definitions of the real-time
forwarding control subservice.

b. Each application process forward-control definition shall contain:
1. the identifier of the application process to control;
2. a list of zero or more application process related "service type

forward-control definitions", each one containing:
(a) the identifier of the service type to control;
(b) a list of zero or more application process and service type

related "report type forward-control definitions", each one
containing the message subtype identifier of a report type.

NOTE 1 The real-time forwarding control subservice has
knowledge about the application processes that it
controls but no knowledge about the service types
and report types that they can generate. This lack
of knowledge results in the possibility for the
subservice to handle on-board, service type
forward-control definitions or report type
forward-control definitions that can be
meaningless. It is of ground operations
responsibility to ensure consistency in this respect.

NOTE 2 An empty application process forward-control
configuration (i.e. no application process forward-
control definition is defined) implies that the
subservice blocks all reports. Blocking means that
these reports are not forwarded to ground.

239

ECSS-E-ST-70-41C
15 April 2016

NOTE 3 If the subservice provides none of the capabilities
specified in requirements 6.14.3.2.1a, 6.14.3.2.1b
and 6.14.3.2.1c, a report is forwarded to ground
only if it fulfils one of the following conditions:
• an application process forward-control

definition with no service type forward-control
definition is defined for the application process
identifier of that report;

• an application process forward-control
definition with a service type forward-control
definition that has no report type forward-
control definition is defined for the application
process identifier and the service type of that
report;

• an application process forward-control
definition with a service type forward-control
definition is defined that has a report type
forward-control definition for the application
process identifier and the service type and the
message subtype identifier of that report.

c. The maximum number of service type forward-control definitions that
can be contained within an application process forward-control
definition shall be declared when specifying the real-time forwarding
control subservice.

d. The maximum number of report type forward-control definitions that
can be contained within a service type forward-control definition shall be
declared when specifying the real-time forwarding control subservice.

6.14.3.2.3 Housekeeping parameter report forward-control
configuration

a. The maximum number of housekeeping parameter report forward-
control definitions that the real-time forwarding control subservice can
contemporaneously control shall, at any time, correspond to the number
of application processes that are controlled by that subservice and that
provide the capability for generating housekeeping parameter reports.

NOTE 1 For the number of application processes, see
requirement 6.14.3.1.1a.

NOTE 2 The housekeeping parameter report forward-
control configuration contains the housekeeping
parameter report forward-control definitions of the
real-time forwarding control subservice.

b. Each housekeeping parameter report forward-control definition shall
contain:
1. the identifier of the application process;
2. a list of zero or more related housekeeping parameter report

structure identifiers.
NOTE 1 An empty housekeeping parameter report

forward-control configuration (i.e. no

240

ECSS-E-ST-70-41C
15 April 2016

housekeeping parameter report forward-control
definition is defined) implies that the subservice
blocks all housekeeping parameter reports.

NOTE 2 A housekeeping parameter report is forwarded to
ground only if the application process forward-
control configuration does not block that report
and one of the following conditions occurs:
• a housekeeping parameter report forward-

control definition with no housekeeping
parameter report structure identifiers is defined
for the application process identifier of that
report;

• a housekeeping parameter report forward-
control definition with a housekeeping
parameter report structure identifier is defined
for the application process identifier and the
housekeeping parameter report structure
identifier of that report.

c. The maximum number of housekeeping parameter report structure
identifiers that can be contained within a housekeeping parameter report
forward-control definition shall be declared when specifying the real-
time forwarding control subservice.

6.14.3.2.4 Diagnostic parameter report forward-control configuration

a. The maximum number of diagnostic parameter report forward-control
definitions that the real-time forwarding control subservice can
contemporaneously control shall, at any time, correspond to the number
of application processes that are controlled by that subservice and that
provide the capability for generating diagnostic parameter reports.

NOTE 1 For the number of application processes, see
requirement 6.14.3.1.1a.

NOTE 2 The diagnostic parameter report forward-control
configuration contains the diagnostic parameter
report forward-control definitions of the real-time
forwarding control subservice.

b. Each diagnostic parameter report forward-control definition shall
contain:
1. the identifier of the application process;
2. a list of zero or more related diagnostic parameter report structure

identifiers.
NOTE 1 An empty diagnostic parameter report forward-

control configuration (i.e. no diagnostic parameter
report forward-control definition is defined)
implies that the subservice blocks all diagnostic
parameter reports.

NOTE 2 A diagnostic parameter report is forwarded to
ground only if the application process forward-

241

ECSS-E-ST-70-41C
15 April 2016

control configuration does not block that report
and one of the following conditions occurs:
• a diagnostic parameter report forward-control

definition with no diagnostic parameter report
structure identifiers is defined for the
application process identifier of that report;

• a diagnostic parameter report forward-control
definition with a diagnostic parameter report
structure identifier is defined for the
application process identifier and the
diagnostic parameter report structure identifier
of that report.

c. The maximum number of diagnostic parameter report structure
identifiers that can be contained within a diagnostic parameter report
forward-control definition shall be declared when specifying that real-
time forwarding control subservice.

6.14.3.2.5 Event report blocking forward-control configuration

a. The maximum number of event report blocking forward-control
definitions that the real-time forwarding control subservice can
contemporaneously control shall, at any time, correspond to the number
of application processes that are controlled by that subservice and that
provide the capability for generating event reports.

NOTE 1 For the number of application processes, see
requirement 6.14.3.1.1a.

NOTE 2 The event report blocking forward-control
configuration contains the event report blocking
forward-control definitions of the real-time
forwarding control subservice.

b. Each event report blocking forward-control definition shall contain:
1. the identifier of the application process;
2. a list of zero or more related event definition identifiers.

NOTE 1 An empty event report blocking forward-control
configuration (i.e. no event report blocking
forward-control definition is defined) implies that
an event report is forwarded to ground if the
application process forward-control configuration
does not block that report.

NOTE 2 The forwarding of an event report to ground is
blocked if any of the following conditions occurs:
• the application process forward-control

configuration blocks that report;

242

ECSS-E-ST-70-41C
15 April 2016

• the application process forward-control
configuration does not block that report and an
event report blocking forward-control
definition with no event definition identifiers is
defined for the application process identifier of
that report;

• the application process forward-control
configuration does not block that report and an
event report blocking forward-control
definition with an event definition identifier is
defined for the application process identifier
and the event definition identifier of that
report.

c. The maximum number of event definition identifiers that can be
contained within an event report blocking forward-control definition
shall be declared when specifying that real-time forwarding control
subservice.

6.14.3.3 Forwarding control processing logic
a. The real-time forwarding control subservice shall block the forwarding to

ground of a report if the application process identifier of that report is not
contained within an application process forward-control definition.

b. The real-time forwarding control subservice shall block the forwarding to
ground of each report that fulfils all of the following conditions:
1. the application process identifier of that report is contained within

an application process forward-control definition, and
2. that application process forward-control definition contains at least

one service type forward-control definition, and
3. that application process forward-control definition does not

contain a service type forward-control definition for the service
type of that report.

c. The real-time forwarding control subservice shall block the forwarding to
ground of each report that fulfils all of the following conditions:
1. the application process identifier of that report is contained within

an application process forward-control definition, and
2. that application process forward-control definition contains a

service type forward-control definition for the service type of that
report, and

3. that service type forward-control definition contains at least one
report type forward-control definition, and

4. that service type forward-control definition does not contain a
report type forward-control definition for the report type of that
report.

d. If the real-time forwarding control subservice provides the capability to
control, per housekeeping parameter report structure, the forwarding of
housekeeping parameter reports, the subservice shall block the
forwarding to ground of a housekeeping report if the application process

243

ECSS-E-ST-70-41C
15 April 2016

identifier of that report is not contained within a housekeeping
parameter report forward-control definition,

e. If the real-time forwarding control subservice provides the capability to
control, per housekeeping parameter report structure, the forwarding of
housekeeping parameter reports, the subservice shall block the
forwarding to ground of each housekeeping report that fulfils all of the
following conditions:
1. the application process identifier of that report is contained within

a housekeeping parameter report forward-control definition and
2. that housekeeping parameter report forward-control definition

contains at least one housekeeping parameter report structure
identifier, and

3. that housekeeping parameter report forward-control definition
does not contain the housekeeping parameter report structure
identifier of that report.
NOTE The real-time forwarding to ground of a

housekeeping parameter report structure of an
application process is enabled if it is blocked
neither by the application process forwarding
control configuration nor by the housekeeping
parameter report forwarding control
configuration.

f. If the real-time forwarding control subservice provides the capability to
control, per diagnostic parameter report structure, the forwarding of
diagnostic parameter reports, the subservice shall block the forwarding
to ground of a diagnostic report if the application process identifier of
that report is not contained within a diagnostic parameter report
forward-control definition,

g. If the real-time forwarding control subservice provides the capability to
control, per diagnostic parameter report structure, the forwarding of
diagnostic parameter reports, the subservice shall block the forwarding
to ground of each diagnostic report that fulfils all of the following
conditions:
1. the application process identifier of that report is contained within

a diagnostic parameter report forward-control definition and
2. that diagnostic parameter report forward-control definition

contains at least one diagnostic parameter report structure
identifier, and

3. that diagnostic parameter report forward-control definition does
not contain the diagnostic parameter report structure identifier of
that report.
NOTE The real-time forwarding to ground of a diagnostic

parameter report structure of an application
process is enabled if it is blocked neither by the
application process forwarding control
configuration nor by the diagnostic parameter
report forwarding control configuration.

244

ECSS-E-ST-70-41C
15 April 2016

h. If the real-time forwarding control subservice provides the capability to
control, per event definition, the forwarding of event reports, the
subservice shall block the forwarding to ground of an event report if that
report fulfils all of the following conditions:
1. the application process identifier of that report is contained within

an event report blocking forward-control definition, and
2. that event report blocking forward-control definition has no event

definition identifier.

i. If the real-time forwarding control subservice provides the capability to
control, per event definition, the forwarding of event reports, the
subservice shall block the forwarding to ground of an event report if that
report fulfils all of the following conditions:
1. the application process identifier of that report is contained within

an event report blocking forward-control definition, and
2. that event report blocking forward-control definition contains the

event definition identifier of that report.
NOTE The real-time forwarding to ground of an event

definition of an application process is enabled if it
is blocked neither by the application process
forwarding control configuration nor by the event
report blocking control configuration.

6.14.3.4 Managing the application process forward-control
configuration

6.14.3.4.1 Add report types to the application process forward-control
configuration

a. The real-time forwarding control subservice shall provide the capability
to add report types to the application process forward-control
configuration.

NOTE 1 The corresponding requests are of message type
"TC[14,1] add report types to the application
process forward-control configuration".

NOTE 2 For the capability to delete report types from the
application process forward-control configuration,
refer to clause 6.14.3.4.2.

b. Each request to add report types to the application process forward-
control configuration shall contain any combination of one or more
instructions:
1. to add a report type to the application process forward-control

configuration,
2. to add all report types of a service type to the application process

forward-control configuration,
3. to add all report types of an application process to the application

process forward-control configuration.

245

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to add a report type to the application process forward-
control configuration shall contain:
1. the application process identifier addressed by that instruction,
2. the message type identifier consisting of:

(a) the service type identifier;
(b) the message subtype identifier.

d. Each instruction to add all report types of a service type to the
application process forward-control configuration shall contain:
1. the application process identifier addressed by that instruction,
2. the service type identifier.

e. Each instruction to add all report types of an application process to the
application process forward-control configuration shall contain:
1. the application process identifier addressed by that instruction.

f. The real-time forwarding control subservice shall reject any instruction to
add a report type to the application process forward-control
configuration if:
1. that instruction implies the addition of a service type forward-

control definition and the maximum number of service type
forward-control definitions for the corresponding application
process forward-control definition is already reached;

2. the maximum number of report type forward-control definitions
that can be contained within the corresponding service type
forward-control definition is already reached;

3. the corresponding service type forward-control definition has no
report type forward-control definition already defined;

4. the corresponding application process forward-control definition
has no service type forward-control definition already defined.
NOTE 1 For item 3, if the forwarding of all report types of a

service type is enabled, it is meaningless to ask for
the addition of a report type for that service type.

NOTE 2 For item 4, if the forwarding of all report types of
an application process is enabled, it is meaningless
to ask for the addition of a report type for that
application process.

g. The real-time forwarding control subservice shall reject any instruction to
add all report types of a service type to the application process forward-
control configuration if:
1. that instruction implies the addition of a service type forward-

control definition and the maximum number of service type
forward-control definition for the corresponding application
process forward-control definition is already reached;

2. the corresponding application process forward-control definition
has no service type forward-control definition already defined.
NOTE For item 2, if the forwarding of all report types of

an application process is enabled, it is meaningless

246

ECSS-E-ST-70-41C
15 April 2016

to ask for the addition of a service type for that
application process.

h. The real-time forwarding control subservice shall reject any instruction
contained within a request to add report types of an application process
to the application process forward-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice.

i. For each instruction contained within a request to add report types to the
application process forward-control configuration that it rejects, the real-
time forwarding control subservice shall generate the failed start of
execution notification for that instruction.

j. The real-time forwarding control subservice shall process any valid
instruction that is contained within a request to add report types to the
application process forward-control configuration regardless of the
presence of faulty instructions.

k. For each valid instruction to add a report type to the application process
forward-control configuration, the real-time forwarding control
subservice shall:
1. add, for the specified application process identifier, an application

process forward-control definition if not already existing;
2. add, for the related application process forward-control definition

and the specified service type identifier, a service type forward-
control definition, if not already existing;

3. add, for the related service type forward-control definition and the
specified message subtype identifier, a report type forward-control
definition, if not already existing.

l. For each valid instruction to add all report types of a service type to the
application process forward-control configuration, the real-time
forwarding control subservice shall:
1. add, for the specified application process identifier, an application

process forward-control definition if not already existing;
2. add, for the related application process forward-control definition

and the specified service type identifier, a service type forward-
control definition to the related application process forward-
control definition, if not already existing;

3. delete, if any, all report type forward-control definitions of the
related service type forward-control definition.

m. For each valid instruction to add all report types of an application
process to the application process forward-control configuration, the real-
time forwarding control subservice shall:
1. add, for the specified application process identifier, an application

process forward-control definition if not already existing;
2. delete, if any, all service type forward-control definitions of the

related application process forward-control definition.

247

ECSS-E-ST-70-41C
15 April 2016

6.14.3.4.2 Delete report types from the application process forward-
control configuration

a. The real-time forwarding control subservice shall provide the capability
to delete report types from the application process forward-control
configuration.

NOTE 1 The corresponding requests are of message type
"TC[14,2] delete report types from the application
process forward-control configuration".

NOTE 2 For the capability to add report types to the
application process forward-control configuration,
refer to clause 6.14.3.4.1.

b. Each request to delete report types from the application process forward-
control configuration shall contain exactly one of:
1. any combination of one or more instructions:

(a) to delete a report type from the application process forward-
control configuration,

(b) to delete a service type from the application process
forward-control configuration,

(c) to delete an application process from the application process
forward-control configuration,

2. an instruction to empty the application process forward-control
configuration.
NOTE The instructions to empty the application process

forward-control configuration contain no
argument.

c. Each instruction to delete a report type from the application process
forward-control configuration shall contain:
1. the application process identifier addressed by that instruction,
2. the report type identifier consisting of:

(a) the service type identifier;
(b) the message subtype identifier.

d. The real-time forwarding control subservice shall reject any instruction to
delete a report type from the application process forward-control
configuration if:
1. that instruction refers to a report type identifier that is not in the

application process forward-control configuration.

e. For each instruction to delete a report type from the application process
forward-control configuration that it rejects, the real-time forwarding
control subservice shall generate the failed start of execution notification
for that instruction.

f. Each instruction to delete a service type from the application process
forward-control configuration shall contain:
1. the application process identifier addressed by that instruction,
2. the service type identifier.

248

ECSS-E-ST-70-41C
15 April 2016

g. The real-time forwarding control subservice shall reject any instruction to
delete a service type from the application process forward-control
configuration if:
1. that instruction refers to a service type identifier that is not in the

application process forward-control configuration.

h. For each instruction to delete a service type from the application process
forward-control configuration that it rejects, the real-time forwarding
control subservice shall generate the failed start of execution notification
for that instruction.

i. Each instruction to delete an application process from the application
process forward-control configuration shall contain:
1. the application process identifier addressed by that instruction.

j. The real-time forwarding control subservice shall reject any instruction to
delete an application process from the application process forward-
control configuration if:
1. that instruction refers to an application process identifier that is

not in the application process forward-control configuration.

k. For each instruction to delete an application process from the application
process forward-control configuration that it rejects, the real-time
forwarding control subservice shall generate the failed start of execution
notification for that instruction.

l. The real-time forwarding control subservice shall process any valid
instruction that is contained within a request to delete report types from
the application process forward-control configuration regardless of the
presence of faulty instructions.

m. For each valid instruction to delete a report type from the application
process forward-control configuration, the real-time forwarding control
subservice shall:
1. delete the report type forward-control definition related to that

specified application process identifier, service type identifier and
message subtype identifier;

2. if that report type forward-control definition deletion results in an
emptied service type forward-control definition, delete that service
type forward-control definition;

3. if that service type forward-control definition deletion results in an
emptied application process forward-control definition, delete that
application process forward-control definition.

n. For each valid instruction to delete a service type from the application
process forward-control configuration, the real-time forwarding control
subservice shall:
1. delete the service type forward-control definition related to that

specified application process identifier and service type identifier;
2. if that service type forward-control definition deletion results in an

emptied application process forward-control definition, delete that
application process forward-control definition.

249

ECSS-E-ST-70-41C
15 April 2016

o. For each valid instruction to delete an application process from the
application process forward-control configuration, the real-time
forwarding control subservice shall:
1. delete the application process forward-control definition related to

that specified application process identifier.

p. For each valid instruction to empty the application process forward-
control configuration, the real-time forwarding control subservice shall:
1. delete, if any, all application process forward-control definitions.

6.14.3.4.3 Report the content of the application process forward-control
configuration

a. The real-time forwarding control subservice capability to report the
content of the application process forward-control configuration shall be
declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[14,3] report the content of the application
process forward-control configuration". The
responses are data reports of message type
"TM[14,4] application process forward-control
configuration content report".

NOTE 2 That capability requires the capability for that
subservice to add report types to the application
process forward-control configuration, refer to
clause 6.14.3.4.1.

b. Each request to report the content of the application process forward-
control configuration shall contain exactly one instruction to report the
content of the application process forward-control configuration.

NOTE The instructions to report the content of the
application process forward-control configuration
contain no argument.

c. For each valid instruction to report the content of the application process
forward-control configuration, the real-time forwarding control
subservice shall generate, for each existing application process forward-
control definition, a single application process forward-control definition
notification that includes:
1. the related application process identifier;
2. for each related service type forward-control definition, if any:

(a) the related service type identifier;
(b) for each related report type forward-control definition, if

any, the related message subtype identifier.

d. For each valid request to report the content of the application process
forward-control configuration, the real-time forwarding control
subservice shall generate a single application process forward-control
configuration content report that includes all related application process
forward-control definition notifications.

250

ECSS-E-ST-70-41C
15 April 2016

6.14.3.5 Managing the housekeeping parameter report
forward-control configuration

6.14.3.5.1 Add structure identifiers to the housekeeping parameter
report forward-control configuration

a. The real-time forwarding control subservice shall provide the capability
to add structure identifiers to the housekeeping parameter report
forward-control configuration if that subservice provides the capability
to control, per housekeeping parameter report structure, the forwarding
of housekeeping parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[14,5] add structure identifiers to the
housekeeping parameter report forward-control
configuration".

NOTE 2 For the capability to control, per housekeeping
parameter report structure, the forwarding of
housekeeping parameter reports, refer to
requirement 6.14.3.2.1a.

NOTE 3 For the capability to delete structure identifiers
from the housekeeping parameter report forward-
control configuration, refer to clause 6.14.3.5.2.

b. Each request to add structure identifiers to the housekeeping parameter
report forward-control configuration shall contain exactly one of:
1. one or more instructions to add a structure identifier to the

housekeeping parameter report forward-control configuration,
2. an instruction to add all structure identifiers to the housekeeping

parameter report forward-control configuration.

c. Each instruction to add a structure identifier to the housekeeping
parameter report forward-control configuration shall contain:
1. the application process identifier addressed by that instruction;
2. the housekeeping parameter report structure identifier;
3. if subsampling is supported, the subsampling rate.

NOTE For item 3, refer to requirement 6.14.3.2.1d.

d. Each instruction to add all structure identifiers to the housekeeping
parameter report forward-control configuration shall contain:
1. the application process identifier addressed by that instruction.

e. The real-time forwarding control subservice shall reject any instruction
contained within a request to add structure identifiers to the
housekeeping parameter report forward-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice.

f. The real-time forwarding control subservice shall reject any instruction to
add a structure identifier to the housekeeping parameter report forward-
control configuration if:

251

ECSS-E-ST-70-41C
15 April 2016

1. the maximum number of housekeeping parameter report structure
identifiers that can be contained within a housekeeping parameter
report forward-control definition is already reached;

2. the corresponding housekeeping parameter report forward-control
definition has no structure identifier already defined.

g. For each instruction contained within a request to add structure
identifiers to the housekeeping parameter report forward-control
configuration that it rejects, the real-time forwarding control subservice
shall generate the failed start of execution notification for that instruction.

h. The real-time forwarding control subservice shall process any valid
instruction that is contained within a request to add structure identifiers
to the housekeeping parameter report forward-control configuration
regardless of the presence of faulty instructions.

i. For each valid instruction to add a structure identifier to the
housekeeping parameter report forward-control configuration, the real-
time forwarding control subservice shall:
1. add, for the specified application process identifier, a

housekeeping parameter report forward-control definition if not
already existing;

2. add, to the related housekeeping parameter report forward-control
definition, the specified housekeeping parameter report structure
identifier, if not already existing;

3. if subsampling is supported, set, to the related housekeeping
parameter report forward-control definition and the specified
housekeeping parameter report structure identifier, the specified
subsampling rate.
NOTE For item 3, refer to requirement 6.14.3.2.1d.

j. For each valid instruction to add all structure identifiers to the
housekeeping parameter report forward-control configuration, the real-
time forwarding control subservice shall:
1. add, for the specified application process identifier, a

housekeeping parameter report forward-control definition if not
already existing;

2. delete, if any, all housekeeping parameter report structure
identifiers of the related housekeeping parameter report forward-
control definition.
NOTE For item 2, deleting a housekeeping parameter

report structure identifier implies deleting the
corresponding subsampling rate if any (see also
requirement 6.14.3.2.1d).

6.14.3.5.2 Delete structure identifiers from the housekeeping parameter
report forward-control configuration

a. The real-time forwarding control subservice shall provide the capability
to delete structure identifiers from the housekeeping parameter report
forward-control configuration if that subservice provides the capability

252

ECSS-E-ST-70-41C
15 April 2016

to control, per housekeeping parameter report structure, the forwarding
of housekeeping parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[14,6] delete structure identifiers from the
housekeeping parameter report forward-control
configuration".

NOTE 2 For the capability to control, per housekeeping
parameter report structure, the forwarding of
housekeeping parameter reports, refer to
requirement 6.14.3.2.1a.

NOTE 3 For the capability to add structure identifiers to the
housekeeping parameter report forward-control
configuration, refer to clause 6.14.3.5.1.

b. Each request to delete structure identifiers from the housekeeping
parameter report forward-control configuration shall contain exactly one
of:
1. any combination of one or more instructions:

(a) to delete a structure identifier from the housekeeping
parameter report forward-control configuration,

(b) to delete an application process from the housekeeping
parameter report forward-control configuration;

2. an instruction to empty the housekeeping parameter report
forward-control configuration.
NOTE The instructions to empty the housekeeping

parameter report forward-control configuration
contain no argument.

c. Each instruction to delete a structure identifier from the housekeeping
parameter report forward-control configuration shall contain:
1. the application process identifier addressed by that instruction;
2. the housekeeping parameter report structure identifier;

d. The real-time forwarding control subservice shall reject any instruction to
delete a structure identifier from the housekeeping parameter report
forward-control configuration if:
1. that instruction refers to an application process identifier that is

not in the housekeeping parameter report forward-control
configuration;

2. that instruction refers to a housekeeping parameter report
structure identifier that is not in the housekeeping parameter
report forward-control definition for the specified application
process identifier.

e. For each instruction to delete a structure identifier from the
housekeeping parameter report forward-control configuration that it
rejects, the real-time forwarding control subservice shall generate the
failed start of execution notification for that instruction.

f. Each instruction to delete an application process from the housekeeping
parameter report forward-control configuration shall contain:

253

ECSS-E-ST-70-41C
15 April 2016

1. the application process identifier addressed by that instruction.

g. The real-time forwarding control subservice shall reject any instruction to
delete an application process from the housekeeping parameter report
forward-control configuration if:
1. that instruction refers to an application process identifier that is

not in the housekeeping parameter report forward-control
configuration.

h. For each instruction to delete an application process from the
housekeeping parameter report forward-control configuration that it
rejects, the real-time forwarding control subservice shall generate the
failed start of execution notification for that instruction.

i. The real-time forwarding control subservice shall process any valid
instruction that is contained within a request to delete structure
identifiers from the housekeeping parameter report forward-control
configuration regardless of the presence of faulty instructions.

j. For each valid instruction to delete a structure identifier from the
housekeeping parameter report forward-control configuration , the real-
time forwarding control subservice shall:
1. delete the housekeeping parameter report structure identifier

related to the specified application process identifier;
2. if that housekeeping parameter report structure identifier deletion

results in an emptied housekeeping parameter report forward-
control definition, delete that housekeeping parameter report
forward-control definition.
NOTE Deleting a housekeeping parameter report

structure identifier implies deleting the
corresponding subsampling rate if any (see also
requirement 6.14.3.2.1d).

k. For each valid instruction to delete an application process from the
housekeeping parameter report forward-control configuration, the real-
time forwarding control subservice shall:
1. delete the housekeeping parameter report forward-control

definition for the specified application process identifier.

l. For each valid instruction to empty the housekeeping parameter report
forward-control configuration, the real-time forwarding control
subservice shall:
1. delete all housekeeping parameter report forward-control

definitions.

6.14.3.5.3 Report the content of the housekeeping parameter report
forward-control configuration

a. The real-time forwarding control subservice capability to report the
content of the housekeeping parameter report forward-control
configuration shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[14,7] report the content of the housekeeping
parameter report forward-control configuration".

254

ECSS-E-ST-70-41C
15 April 2016

The responses are data reports of message type
"TM[14,8] housekeeping parameter report
forward-control configuration content report".

NOTE 2 That capability requires the capability for that
subservice to control, per housekeeping parameter
report structure, the forwarding of housekeeping
parameter reports (refer to requirement
6.14.3.2.1a).

b. Each request to report the content of the housekeeping parameter report
forward-control configuration shall contain exactly one instruction to
report the content of the housekeeping parameter report forward-control
configuration.

NOTE The instructions to report the content of the
housekeeping parameter report forward-control
configuration contain no argument.

c. For each valid instruction to report the content of the housekeeping
parameter report forward-control configuration, the real-time forwarding
control subservice shall generate, for each existing housekeeping
parameter report forward-control definition, a single housekeeping
parameter report forward-control definition notification that includes:
1. the related application process identifier;
2. for each housekeeping parameter report structure identifier entry:

(a) the housekeeping parameter report structure identifier;
(b) if subsampling is supported, the subsampling rate.
NOTE For item 2(b), refer to requirement 6.14.3.2.1d.

d. For each valid request to report the content of the housekeeping
parameter report forward-control configuration, the real-time forwarding
control subservice shall generate a single housekeeping parameter report
forward-control configuration content report that includes all related
housekeeping parameter report forward-control definition notifications.

6.14.3.6 Managing the diagnostic parameter report forward-
control configuration

6.14.3.6.1 Add structure identifiers to the diagnostic parameter report
forward-control configuration

a. The real-time forwarding control subservice shall provide the capability
to add structure identifiers to the diagnostic parameter report forward-
control configuration if that subservice provides the capability to control,
per diagnostic parameter report structure, the forwarding of diagnostic
parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[14,9] add structure identifiers to the diagnostic
parameter report forward-control configuration".

NOTE 2 For the capability to control, per diagnostic
parameter report structure, the forwarding of

255

ECSS-E-ST-70-41C
15 April 2016

diagnostic parameter reports, refer to requirement
6.14.3.2.1b.

NOTE 3 For the capability to delete structure identifiers
from the diagnostic parameter report forward-
control configuration, refer to clause 6.14.3.6.2.

b. Each request to add structure identifiers to the diagnostic parameter
report forward-control configuration shall contain exactly one of:
1. one or more instructions to add a structure identifier to the

diagnostic parameter report forward-control configuration,
2. an instruction to add all structure identifiers to the diagnostic

parameter report forward-control configuration.

c. Each instruction to add a structure identifier to the diagnostic parameter
report forward-control configuration shall contain:
1. the application process identifier addressed by that instruction;
2. the diagnostic parameter report structure identifier;
3. if subsampling is supported, the subsampling rate.

NOTE For item 3, refer to requirement 6.14.3.2.1d.

d. Each instruction to add all structure identifiers to the diagnostic
parameter report forward-control configuration shall contain:
1. the application process identifier addressed by that instruction.

e. The real-time forwarding control subservice shall reject any instruction
contained within a request to add structure identifiers to the diagnostic
parameter report forward-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice.

f. The real-time forwarding control subservice shall reject any instruction to
add a structure identifier to the diagnostic parameter report forward-
control configuration if:
1. the maximum number of diagnostic parameter report structure

identifiers that can be contained within a diagnostic parameter
report forward-control definition is already reached;

2. the corresponding diagnostic parameter report forward-control
definition has no structure identifier already defined.

g. For each instruction contained within a request to add structure
identifiers to the diagnostic parameter report forward-control
configuration that it rejects, the real-time forwarding control subservice
shall generate the failed start of execution notification for that instruction.

h. The real-time forwarding control subservice shall process any valid
instruction that is contained within a request to add structure identifiers
to the diagnostic parameter report forward-control configuration
regardless of the presence of faulty instructions.

i. For each valid instruction to add a structure identifier to the diagnostic
parameter report forward-control configuration, the real-time forwarding
control subservice shall:

256

ECSS-E-ST-70-41C
15 April 2016

1. add, for the specified application process identifier, a diagnostic
parameter report forward-control definition if not already existing;

2. add, to the related diagnostic parameter report forward-control
definition, the specified diagnostic parameter report structure
identifier, if not already existing;

3. if subsampling is supported, set, to the related diagnostic
parameter report forward-control definition and the specified
diagnostic parameter report structure identifier, the specified
subsampling rate.
NOTE For item 3, refer to requirement 6.14.3.2.1d.

j. For each valid instruction to add all structure identifiers to the diagnostic
parameter report forward-control configuration, the real-time forwarding
control subservice shall:
1. add, for the specified application process identifier, a diagnostic

parameter report forward-control definition if not already existing;
2. delete, if any, all diagnostic parameter report structure identifiers

of the related diagnostic parameter report forward-control
definition.
NOTE For item 2, deleting a diagnostic parameter report

structure identifier implies deleting the
corresponding subsampling rate if any (see also
requirement 6.14.3.2.1d).

6.14.3.6.2 Delete structure identifiers from the diagnostic parameter
report forward-control configuration

a. The real-time forwarding control subservice shall provide the capability
to delete structure identifiers from the diagnostic parameter report
forward-control configuration if that subservice provides the capability
to control, per diagnostic parameter report structure, the forwarding of
diagnostic parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[14,10] delete structure identifiers from the
diagnostic parameter report forward-control
configuration".

NOTE 2 For the capability to control, per diagnostic
parameter report structure, the forwarding of
diagnostic parameter reports, refer to requirement
6.14.3.2.1b.

NOTE 3 For the capability to add structure identifiers to the
diagnostic parameter report forward-control
configuration, refer to clause 6.14.3.6.1.

b. Each request to delete structure identifiers from the diagnostic parameter
report forward-control configuration shall include exactly one of:
1. any combination of one or more instructions:

(a) to delete a structure identifier from the diagnostic parameter
report forward-control configuration,

257

ECSS-E-ST-70-41C
15 April 2016

(b) to delete an application process from the diagnostic
parameter report forward-control configuration,

2. an instruction to empty the diagnostic parameter report forward-
control configuration.
NOTE The instructions to empty the diagnostic

parameter report forward-control configuration
contain no argument.

c. Each instruction to delete a structure identifier from the diagnostic
parameter report forward-control configuration shall contain:
1. the application process identifier addressed by that instruction;
2. the diagnostic parameter report structure identifier;

d. The real-time forwarding control subservice shall reject any instruction to
delete a structure identifier from the diagnostic parameter report
forward-control configuration if:
1. that instruction refers to an application process identifier that is

not in the diagnostic parameter report forward-control
configuration;

2. that instruction refers to a diagnostic parameter report structure
identifier that is not in the diagnostic parameter report forward-
control definition for the specified application process identifier.

e. For each instruction to delete a structure identifier from the diagnostic
parameter report forward-control configuration that it rejects, the real-
time forwarding control subservice shall generate the failed start of
execution notification for that instruction.

f. Each instruction to delete an application process from the diagnostic
parameter report forward-control configuration shall contain:
1. the application process identifier addressed by that instruction.

g. The real-time forwarding control subservice shall reject any instruction to
delete an application process from the diagnostic parameter report
forward-control configuration if:
1. that instruction refers to an application process identifier that is

not in the diagnostic parameter report forward-control
configuration.

h. For each instruction to delete an application process from the diagnostic
parameter report forward-control configuration that it rejects, the real-
time forwarding control subservice shall generate the failed start of
execution notification for that instruction.

i. The real-time forwarding control subservice shall process any valid
instruction that is contained within a request to delete structure
identifiers from the diagnostic parameter report forward-control
configuration regardless of the presence of faulty instructions.

j. For each valid instruction to delete a structure identifier from the
diagnostic parameter report forward-control configuration , the real-time
forwarding control subservice shall:
1. delete the diagnostic parameter report structure identifier related

to the specified application process identifier;

258

ECSS-E-ST-70-41C
15 April 2016

2. if that diagnostic parameter report structure identifier deletion
results in an emptied diagnostic parameter report forward-control
definition, delete that diagnostic parameter report forward-control
definition.
NOTE Deleting a diagnostic parameter report structure

identifier implies deleting the corresponding
subsampling rate if any (see also requirement
6.14.3.2.1d).

k. For each valid instruction to delete an application process from the
diagnostic parameter report forward-control configuration, the real-time
forwarding control subservice shall:
1. delete the diagnostic parameter report forward-control definition

for the specified application process identifier.

l. For each valid instruction to empty the diagnostic parameter report
forward-control configuration, the real-time forwarding control
subservice shall:
1. delete all diagnostic parameter report forward-control definitions.

6.14.3.6.3 Report the content of the diagnostic parameter report
forward-control configuration

a. The real-time forwarding control subservice capability to report the
content of the diagnostic parameter report forward-control configuration
shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[14,11] report the content of the diagnostic
parameter report forward-control configuration".
The responses are data reports of message type
"TM[14,12] diagnostic parameter report forward-
control configuration content report".

NOTE 2 That capability requires the capability for that
subservice to control, per diagnostic parameter
report structure, the forwarding of diagnostic
parameter reports (refer to requirement
6.14.3.2.1b).

b. Each request to report the content of the diagnostic parameter report
forward-control configuration shall contain exactly one instruction to
report the content of the diagnostic parameter report forward-control
configuration.

NOTE The instructions to report the content of the
diagnostic parameter report forward-control
configuration contain no argument.

c. For each valid instruction to report the content of the diagnostic
parameter report forward-control configuration, the real-time forwarding
control subservice shall generate, for each existing diagnostic parameter
report forward-control definition, a single diagnostic parameter report
forward-control definition notification that includes:
1. the related application process identifier;

259

ECSS-E-ST-70-41C
15 April 2016

2. for each diagnostic parameter report structure identifier entry:
(a) the diagnostic parameter report structure identifier;
(b) if subsampling is supported, the subsampling rate.
NOTE For item 2(b), refer to requirement 6.14.3.2.1d.

d. For each valid request to report the content of the diagnostic parameter
report forward-control configuration, the real-time forwarding control
subservice shall generate a single diagnostic parameter report forward-
control configuration content report that includes all related diagnostic
parameter report forward-control definition notifications.

6.14.3.7 Managing the event report blocking forward-control
configuration

6.14.3.7.1 Delete event definition identifiers from the event report
blocking forward-control configuration

a. The real-time forwarding control subservice shall provide the capability
to delete event definition identifiers from the event report blocking
forward-control configuration if that subservice provides the capability
to control, per event definition, the forwarding of event reports.

NOTE 1 The corresponding requests are of message type
"TC[14,13] delete event definition identifiers from
the event report blocking forward-control
configuration".

NOTE 2 For the capability to control, per event definition,
the forwarding of event reports, refer to
requirement 6.14.3.2.1c.

NOTE 3 For the capability to add event definition
identifiers to the event report blocking forward-
control configuration, refer to clause 6.14.3.7.2.

b. Each request to delete event definition identifiers from the event report
blocking forward-control configuration shall include exactly one of:
1. any combination of one or more instructions:

(a) to delete an event definition identifier from the event report
blocking forward-control configuration,

(b) to delete an application process from the event report
blocking forward-control configuration;

2. an instruction to empty the event report blocking forward-control
configuration.
NOTE The instructions to empty the event report

blocking forward-control configuration contain no
argument.

c. Each instruction to delete an event definition identifier from the event
report blocking forward-control configuration shall contain:
1. the application process identifier addressed by that instruction;
2. the event definition identifier;

260

ECSS-E-ST-70-41C
15 April 2016

d. The real-time forwarding control subservice shall reject any instruction to
delete an event definition identifier from the event report blocking
forward-control configuration if:
1. that instruction refers to an application process identifier that is

not in the event report blocking forward-control configuration;
2. that instruction refers to an event definition identifier that is not in

the event report blocking forward-control definition for the
specified application process.

e. For each instruction to delete an event definition identifier from the event
report blocking forward-control configuration that it rejects, the real-time
forwarding control subservice shall generate the failed start of execution
notification for that instruction.

f. Each instruction to delete an application process from the event report
blocking forward-control configuration shall contain:
1. the application process identifier addressed by that instruction.

g. The real-time forwarding control subservice shall reject any instruction to
delete an application process from the event report blocking forward-
control configuration if:
1. that instruction refers to an application process identifier that is

not in the event report blocking forward-control configuration.

h. For each instruction to delete an application process from the event
report blocking forward-control configuration that it rejects, the real-time
forwarding control subservice shall generate the failed start of execution
notification for that instruction.

i. The real-time forwarding control subservice shall process any valid
instruction that is contained within a request to delete event definition
identifiers from the event report blocking forward-control configuration
regardless of the presence of faulty instructions.

j. For each valid instruction to delete an event definition identifier from the
event report blocking forward-control configuration, the real-time
forwarding control subservice shall:
1. delete the event definition identifier related to the specified

application process identifier;
2. if that event definition identifier deletion results in an emptied

event report blocking forward-control definition, delete that event
report blocking forward-control definition.

k. For each valid instruction to delete an application process from the event
report blocking forward-control configuration, the real-time forwarding
control subservice shall:
1. delete the event report blocking forward-control definition for the

specified application process identifier.

l. For each valid instruction to empty the event report blocking forward-
control configuration, the real-time forwarding control subservice shall:
1. delete all event report blocking forward-control definitions.

261

ECSS-E-ST-70-41C
15 April 2016

6.14.3.7.2 Add event definition identifiers to the event report blocking
forward-control configuration

a. The real-time forwarding control subservice shall provide the capability
to add event definition identifiers to the event report blocking forward-
control configuration if that subservice provides the capability to control,
per event definition, the forwarding of event reports.

NOTE 1 The corresponding requests are of message type
"TC[14,14] add event definition identifiers to the
event report blocking forward-control
configuration".

NOTE 2 For the capability to control, per event definition,
the forwarding of event reports, refer to
requirement 6.14.3.2.1c.

NOTE 3 For the capability to delete event definition
identifiers from the event report blocking forward-
control configuration, refer to clause 6.14.3.7.1.

b. Each request to add event definition identifiers to the event report
blocking forward-control configuration shall contain exactly one of:
1. one or more instructions to add an event definition identifier to the

event report blocking forward-control configuration,
2. an instruction to add all event definition identifiers to the event

report blocking forward-control configuration.

c. Each instruction to add an event definition identifier to the event report
blocking forward-control configuration shall contain:
1. the application process identifier addressed by that instruction;
2. the event definition identifier.

d. Each instruction to add all event definition identifiers to the event report
blocking forward-control configuration shall contain:
1. the application process identifier addressed by that instruction.

e. The real-time forwarding control subservice shall reject any instruction
contained within a request to add event definition identifiers to the event
report blocking forward-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice.

f. The real-time forwarding control subservice shall reject any instruction to
add an event definition identifier to the event report blocking forward-
control configuration if:
1. the maximum number of event definition identifiers that can be

contained within an event report blocking forward-control
definition is already reached;

2. the corresponding event report blocking forward-control definition
has no event definition identifier already defined.

g. For each instruction contained within a request to add event definition
identifiers to the event report blocking forward-control configuration that
it rejects, the real-time forwarding control subservice shall generate the
failed start of execution notification for that instruction.

262

ECSS-E-ST-70-41C
15 April 2016

h. The real-time forwarding control subservice shall process any valid
instruction that is contained within a request to add event definition
identifiers to the event report blocking forward-control configuration
regardless of the presence of faulty instructions.

i. For each valid instruction to add an event definition identifier to the
event report blocking forward-control configuration, the real-time
forwarding control subservice shall:
1. add, for the specified application process identifier, an event report

blocking forward-control definition if not already existing;
2. add, to the related event report blocking forward-control

definition, the specified event definition identifier, if not already
existing.

j. For each valid instruction to add all event definition identifiers to the
event report blocking forward-control configuration, the real-time
forwarding control subservice shall:
1. add, for the specified application process identifier, an event report

blocking forward-control definition if not already existing;
2. delete, if any, all event definition identifiers of the related event

report blocking forward-control definition.

6.14.3.7.3 Report the content of the event report blocking forward-
control configuration

a. The real-time forwarding control subservice capability to report the
content of the event report blocking forward-control configuration shall
be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[14,15] report the content of the event report
blocking forward-control configuration". The
responses are data reports of message type
"TM[14,16] event report blocking forward-control
configuration content report".

NOTE 2 That capability requires the capability for that
subservice to control, per event definition, the
forwarding of event reports, refer to requirement
6.14.3.2.1c.

b. Each request to report the content of the event report blocking forward-
control configuration shall contain exactly one instruction to report the
content of the event report blocking forward-control configuration.

NOTE The instructions to report the content of the event
report blocking forward-control configuration
contain no argument.

c. For each valid instruction to report the content of the event report
blocking forward-control configuration, the real-time forwarding control
subservice shall generate, for each existing event report blocking
forward-control definition, a single event report blocking forward-
control definition notification that includes:
1. the related application process identifier;

263

ECSS-E-ST-70-41C
15 April 2016

2. for each event definition identifier entry:
(a) the event definition identifier.

d. For each valid request to report the content of the event report blocking
forward-control configuration, the real-time forwarding control
subservice shall generate a single event report blocking forward-control
configuration content report that includes all related event report
blocking forward-control definition notifications.

6.14.4 Subservice observables
 This Standard does not define any observables for the real-time forwarding

control subservice.

264

ECSS-E-ST-70-41C
15 April 2016

6.15 ST[15] on-board storage and retrieval

6.15.1 Scope

6.15.1.1 General
 The on-board storage and retrieval service type provides the capability:

• to select reports generated by other on-board services and store them in
packet stores;

• to allow the ground system to manage the reports in the packet stores
and request their downlink.

 The capability to store telemetry packets on-board and dump them, on request,
to the ground is especially appropriate under the following circumstances:

• When ground station coverage is intermittent or when real-time
telemetry bandwidth is limited. In this case, the on-board storage
capacity is sized to store all packets generated on-board for spacecraft
monitoring and control purposes, for a duration at least equal to the
longest non-coverage period plus a mission-dependent margin. These
packets are then retrieved during subsequent ground station passes
according to a selection strategy based upon the operational significance
of the stored packets.

• To recover lost packets. For missions with continuous ground coverage,
the loss of packets can be solved by retaining on-board the set of the most
recent packets. The size of the set is a mission-specific configuration
parameter.

 The on-board storage and retrieval service type defines two standardized
subservice types, i.e.:

• the storage and retrieval subservice type;

• the packet selection subservice type.

 An on-board storage and retrieval service contains one storage and retrieval
subservice and one or more packet selection subservices. The interaction
between the storage and retrieval subservice and the packet selection
subservices is beyond the scope of this Standard.

6.15.1.2 Storage and retrieval subservice
 The storage and retrieval subservice type provides the capability for storing the

telemetry packets in the packet stores and retrieving them later, on ground
request.

 Each packet store can be managed according to either:

• the ‘circular management’ policy: the oldest packets are overwritten
when the packet store is full, hence the packet store contains the most
recently generated packets, or

265

ECSS-E-ST-70-41C
15 April 2016

• the ‘bounded management’ policy: storage terminates when the packet
store is full.

 Two retrieval modes are provided by the storage and retrieval subservice type:

• the "open retrieval mode" that retrieves the packets that are newer than
the date of the last transmitted packet before the retrieval stopped;

• the "by-time-range mode" that retrieves the packets that are time
stamped within two dates. This retrieval model is used to recover from
packet loss during the downlink.

6.15.1.3 Packet selection subservice
 The packet selection subservice type can be used to control the storage into

packet stores of reports generated by any application process.

 This subservice type provides means to control the storage of reports taking
into account their operational use. That control is performed, per packet store,
by defining application process related storage control conditions that when
met authorize or not the storage of related reports to the corresponding packet
store.

 This subservice type includes the capability for defining packet store control
conditions at application process related report type level i.e.:

• conditions for all report types of an application process;

• conditions for all report types of a specific service type of an application
process;

• conditions for a specific report type of an application process.

 If no application process storage-control definition is defined for an application
process, this implies that no report from that application process is stored in the
packet stores.

 This subservice type includes optional capabilities for defining control
conditions at:

• housekeeping parameter report structure level;

• diagnostic parameter report structure level;

• event definition level.

 For a packet store, if no housekeeping parameter report structure storage
control conditions are defined for an application process, this implies that no
housekeeping parameter report from that application process is stored in that
packet store. Diagnostic parameter reports are handled in a similar way.

 For a packet store, if no event definition blocking control conditions are defined
for an application process, this implies that all event reports from that
application process are stored in that packet store.

 The packet selection subservice can be implemented by the application
processes that generate the reports, by any application processes that route
these reports, or by the application process that implements the storage and
retrieval subservice.

266

ECSS-E-ST-70-41C
15 April 2016

6.15.2 Service layout

6.15.2.1 Subservice

6.15.2.1.1 Storage and retrieval subservice

a. Each on-board storage and retrieval service shall contain exactly one
storage and retrieval subservice.

6.15.2.1.2 Packet selection subservice

a. Each on-board storage and retrieval service shall contain at least one
packet selection subservice.

6.15.2.2 Application process

6.15.2.2.1 Storage and retrieval subservice

a. Each application process shall host at most one storage and retrieval
subservice provider.

6.15.2.2.2 Packet selection subservice

a. Each application process shall host at most one packet selection
subservice provider.

6.15.3 Storage and retrieval subservice

6.15.3.1 Packet store
a. The maximum number of packet stores that the storage and retrieval

subservice can contemporaneously maintain at any time shall be declared
when specifying that subservice.

b. The list of pre-defined packet stores maintained by the storage and
retrieval subservice shall be declared when specifying that subservice.

c. Each packet store shall be managed by exactly one storage and retrieval
subservice.

NOTE Within a subservice, each packet store is uniquely
identified by a packet store identifier. The meaning
and internal structure of that packet store
identifier are beyond the scope of this Standard. A
packet store identifier can for example be the name
of an object in memory.

d. Whether the storage and retrieval subservice supports the capability to
manage the packet stores of circular type shall be declared when
specifying that subservice.

e. Whether the storage and retrieval subservice supports the capability to
manage the packet stores of bounded type shall be declared when
specifying that subservice.

267

ECSS-E-ST-70-41C
15 April 2016

f. For each packet store, the circular or bounded type of that packet store
shall be declared when specifying that packet store.

NOTE The packet store type is either circular or bounded.
A circular packet store implies that when a packet
store is full, the new packets are stored by
overwriting the oldest packets. A bounded packet
store implies that when the packet store is full, the
new packets are discarded.

g. The list of virtual channels that can be used by the storage and retrieval
subservice shall be declared when specifying that subservice.

h. For each packet store, the virtual channel used to transmit the packets
retrieved from that packet store shall be declared when specifying that
packet store.

NOTE Refer to clause 6.15.3.9.4 for changing the virtual
channel used by a packet store.

i. Whether the storage and retrieval subservice supports concurrent
retrieval requests executing in parallel shall be declared when specifying
that subservice.

j. If the storage and retrieval subservice supports concurrent retrieval
requests executing in parallel, the maximum number of concurrent
retrieval requests supported shall be declared when specifying that
subservice.

NOTE 1 If the subservice provides both the open retrieval
capability and the by-time-range retrieval
capability, that maximum number of concurrent
retrieval requests covers both the open retrieval
requests and the by-time-range retrieval requests.

NOTE 2 For a given packet store, there can only be at most
one open retrieval and one by-time-range retrieval
executing in parallel.

k. Whether the storage and retrieval subservice supports queuing the
retrieval requests pending their execution shall be declared when
specifying that subservice.

l. If the storage and retrieval subservice supports queuing the retrieval
requests pending their execution, the queuing policy shall be declared
when specifying that subservice.

m. Whether the storage and retrieval subservice supports prioritizing the
packet retrievals from packet stores shall be declared when specifying
that subservice.

n. If the storage and retrieval subservice supports prioritizing the packet
retrievals from packet stores, the priority policy shall be declared when
specifying that subservice.

268

ECSS-E-ST-70-41C
15 April 2016

6.15.3.2 Time-stamping
a. For each storage and retrieval subservice, the storage time-stamping

method used by that subservice shall be declared when specifying that
subservice.

NOTE The storage time-stamping method can, for
example, be:
• storage based, meaning that each received

telemetry packet is time-stamped with the
storage time of the telemetry packet;

• packet based, meaning that each received
telemetry packet is time-stamped with the on-
board time already present in the telemetry
packet.

6.15.3.3 Controlling the packet store storage function

6.15.3.3.1 Storage process

a. For each packet store managed by the storage and retrieval subservice,
the subservice shall maintain a status indicating whether the storage into
that packet store is enabled or disabled.

NOTE This status is named "packet store storage status".

b. For each packet that it receives, the storage and retrieval subservice shall:
1. time stamp that packet;
2. store that time-stamped packet into the enabled stores that match

the storage selection criteria for those stores.

6.15.3.3.2 Enable the storage function of packet stores

a. The storage and retrieval subservice shall provide the capability to enable
the storage function of packet stores.

NOTE 1 The corresponding requests are of message type
"TC[15,1] enable the storage function of packet
stores".

NOTE 2 For the capability to disable the storage function of
packet stores, refer to clause 6.15.3.3.3.

b. Each request to enable the storage function of packet stores shall contain:
1. one or more instructions to enable the storage function of a packet

store, or
2. exactly one instruction to enable the storage function of all packet

stores.
NOTE The instructions to enable the storage function of

all packet stores contain no argument.

c. Each instruction to enable the storage function of a packet store shall
contain:
1. the packet store identifier of the packet store to enable for storage.

269

ECSS-E-ST-70-41C
15 April 2016

d. The storage and retrieval subservice shall reject any instruction to enable
the storage function of a packet store if:
1. that instruction refers to a packet store that does not exist.

e. For each instruction to enable the storage function of a packet store that it
rejects, the storage and retrieval subservice shall generate the failed start
of execution notification for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to enable the storage function of packet
stores regardless of the presence of faulty instructions.

g. For each valid instruction to enable the storage function of a packet store,
the storage and retrieval subservice shall:
1. set the packet store storage status of the packet store specified in

that instruction to "enabled".

h. For each valid instruction to enable the storage function of all packet
stores, the storage and retrieval subservice shall:
1. for each packet store maintained by that subservice, set its packet

store storage status to "enabled".

6.15.3.3.3 Disable the storage function of packet stores

a. The storage and retrieval subservice shall provide the capability to
disable the storage function of packet stores.

NOTE 1 The corresponding requests are of message type
"TC[15,2] disable the storage function of packet
stores".

NOTE 2 For the capability to enable the storage function of
packet stores, refer to clause 6.15.3.3.2.

b. Each request to disable the storage function of packet stores shall contain:
1. one or more instructions to disable the storage function of a packet

store, or
2. exactly one instruction to disable the storage function of all packet

stores.
NOTE The instructions to disable the storage function of

all packet stores contain no argument.

c. Each instruction to disable the storage function of a packet store shall
contain:
1. the packet store identifier of the packet store to disable for storage.

d. The storage and retrieval subservice shall reject any instruction to disable
the storage function of a packet store if:
1. that instruction refers to a packet store that does not exist.

e. For each instruction to disable the storage function of a packet store that
it rejects, the storage and retrieval subservice shall generate the failed
start of execution notification for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to disable the storage function of
packet stores regardless of the presence of faulty instructions.

270

ECSS-E-ST-70-41C
15 April 2016

g. For each valid instruction to disable the storage function of a packet
store, the storage and retrieval subservice shall:
1. set the packet store storage status of the packet store specified in

that instruction to "disabled".

h. For each valid instruction to disable the storage function of all packet
stores, the storage and retrieval subservice shall:
1. for each packet store maintained by that subservice, set its packet

store storage status to "disabled".

6.15.3.4 Controlling the open retrieval function

6.15.3.4.1 Open retrieval process

a. For each packet store managed by the storage and retrieval subservice,
that subservice shall maintain a status indicating whether the open
retrieval function of that packet store is in-progress or suspended.

NOTE This status is named "packet store open retrieval
status".

b. For each packet store whose packet store open retrieval status is "in-
progress", the storage and retrieval subservice shall:
1. retrieve the stored packets chronologically according to their

storage time tags starting from the open retrieval start time tag of
that packet store;

2. route these packets to the virtual channel associated with that
packet store.
NOTE For item 2, if the subservice supports prioritizing

the packet retrievals from packet stores, the
routing is done according to the retrieval policy,
refer to requirements 6.15.3.1m and 6.15.3.1n.

c. The open retrieval function shall ensure that consecutive suspend and
resume open retrieval operations do not cause any gap or overlap in the
packet retrieval process.

NOTE Suspending the open retrieval process can result
from a request to suspend the open retrieval of
packet stores (refer to clause 6.15.3.4.4). This
Standard does not elaborate on any other
autonomous mechanism that can exist on-board.

6.15.3.4.2 Change the open retrieval start time tag of packet stores

a. The storage and retrieval subservice shall provide the capability to
change the open retrieval start time tag of packet stores.

NOTE The corresponding requests are of message type
"TC[15,14] change the open retrieval start time tag
of packet stores".

b. Each request to change the open retrieval start time tag of packet stores
shall contain:
1. an open retrieval start time tag,

271

ECSS-E-ST-70-41C
15 April 2016

2. exactly one of:
(a) one or more instructions to change the open retrieval start

time tag of a packet store,
(b) exactly one instruction to change the open retrieval start

time tag of all packet stores.
NOTE The instructions to change the open retrieval start

time tag of all packet stores contain no argument.

c. The storage and retrieval subservice shall reject any request to change the
open retrieval start time tag of packet stores if:
1. that request refers to an open retrieval start time tag that is in the

future.

d. For each request to change the open retrieval start time tag of packet
stores that is rejected, the storage and retrieval subservice shall generate a
failed start of execution notification.

e. Each instruction to change the open retrieval start time tag of a packet
store shall contain:
1. the packet store identifier of the packet store to modify.

f. The storage and retrieval subservice shall reject any instruction to change
the open retrieval start time tag of a packet store if any of the following
conditions occurs:
1. that instruction refers to a packet store that does not exist;
2. the packet store open retrieval status of that packet store is in-

progress.

g. For each instruction to change the open retrieval start time tag of a packet
store that it rejects, the storage and retrieval subservice shall generate the
failed start of execution notification for that instruction.

h. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to change the open retrieval start time
tag of packet stores regardless of the presence of faulty instructions.

i. For each valid instruction to change the open retrieval start time tag of a
packet store, the storage and retrieval subservice shall:
1. set the open retrieval start time tag of the specified packet store to

the value specified in the request.

j. For each valid instruction to change the open retrieval start time tag of all
packet stores, the storage and retrieval subservice shall:
1. for each packet store maintained by that subservice, if its open

retrieval status is "suspended", set its open retrieval start time tag
to the value specified in that request.

6.15.3.4.3 Resume the open retrieval of packet stores

a. The storage and retrieval subservice shall provide the capability to
resume the open retrieval of packet stores.

NOTE 1 The corresponding requests are of message type
"TC[15,15] resume the open retrieval of packet
stores".

272

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For the capability to suspend the open retrieval of
packet stores, refer to clause 6.15.3.4.4.

b. Each request to resume the open retrieval of packet stores shall contain:
1. one or more instructions to resume the open retrieval of a packet

store, or
2. exactly one instruction to resume the open retrieval of all packet

stores.
NOTE The instructions to resume the open retrieval of all

packet stores contain no argument.

c. Each instruction to resume the open retrieval of a packet store shall
contain:
1. the identifier of the packet store;
2. if the storage and retrieval subservice supports prioritizing the

packet retrievals from packet stores, the retrieval priority.
NOTE For item 2, refer to requirements 6.15.3.1m and

6.15.3.1n.

d. The storage and retrieval subservice shall reject any instruction to resume
the open retrieval of a packet store if any of the following conditions
occurs:
1. that instruction refers to a packet store that does not exist;
2. that subservice does not support concurrent retrieval requests

executing in parallel and the packet store by-time-range retrieval
status of that packet store is enabled.
NOTE For item 2, refer to requirement 6.15.3.1i.

e. For each instruction to resume the open retrieval of a packet store that it
rejects, the storage and retrieval subservice shall generate the failed start
of execution notification for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to resume the open retrieval of packet
stores regardless of the presence of faulty instructions.

g. For each valid instruction to resume the open retrieval of a packet store,
the storage and retrieval subservice shall:
1. set the packet store open retrieval status of that packet store to "in

progress";
2. if that subservice supports prioritizing the packet retrievals from

packet stores, set the retrieval priority accordingly.

h. For each valid instruction to resume the open retrieval of all packet
stores, the storage and retrieval subservice shall:
1. for each packet store maintained by that subservice, set the packet

store open retrieval status of that packet store to "in progress";
2. if that subservice supports prioritizing the packet retrievals from

packet stores, start the retrieval process according to the priority
policy;

273

ECSS-E-ST-70-41C
15 April 2016

3. when the last packet stored before the start of execution of the related
request has been retrieved, set the packet store open retrieval status of
that packet store to "suspended".

6.15.3.4.4 Suspend the open retrieval of packet stores

a. The storage and retrieval subservice shall provide the capability to
suspend the open retrieval of packet stores.

NOTE 1 The corresponding requests are of message type
"TC[15,16] suspend the open retrieval of packet
stores".

NOTE 2 For the capability to resume the open retrieval of
packet stores, refer to clause 6.15.3.4.3.

b. Each request to suspend the open retrieval of packet stores shall contain:
1. one or more instructions to suspend the open retrieval of a packet

store, or
2. exactly one instruction to suspend the open retrieval of all packet

stores.
NOTE The instructions to suspend the open retrieval of

all packet stores contain no argument.

c. Each instruction to suspend the open retrieval of a packet store shall
contain:
1. the identifier of the packet store.

d. The storage and retrieval subservice shall reject any instruction to
suspend the open retrieval of a packet store if:
1. that instruction refers to packet store that is unknown.

e. For each instruction to suspend the open retrieval of a packet store that it
rejects, the storage and retrieval subservice shall generate the failed start
of execution notification for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to suspend the open retrieval of packet
stores regardless of the presence of faulty instructions.

g. For each valid instruction to suspend the open retrieval of a packet store,
the storage and retrieval subservice shall:
1. set the packet store open retrieval status of that packet store to

"suspended".

h. For each valid instruction to suspend the open retrieval of all packet
stores, the storage and retrieval subservice shall:
1. for each packet store maintained by that subservice, set the packet

store open retrieval status of that packet store to "suspended".

6.15.3.5 Controlling the by-time-range retrieval function

6.15.3.5.1 By-time-range retrieval process

a. Whether the storage and retrieval subservice supports the by-time-range
retrieval function shall be declared when specifying that subservice.

274

ECSS-E-ST-70-41C
15 April 2016

b. For each packet store managed by the storage and retrieval subservice,
that subservice shall maintain a status indicating whether the by-time-
range retrieval function of that packet store is enabled or disabled.

NOTE This status is named "packet store by-time-range
retrieval status".

c. For each packet store whose packet store by-time-range retrieval status is
"enabled", the storage and retrieval subservice shall:
1. retrieve the stored packets chronologically according to their

storage time tag, starting from the start retrieval time up to the end
retrieval time;

2. route these packets to the virtual channel associated with that
packet store;

3. when the end retrieval is reached, set the packet store by-time-
range retrieval status to "disabled".
NOTE For item 2, if the subservice supports prioritizing

the packet retrievals from packet stores, the
routing is done according to the retrieval policy,
refer to requirement 6.15.3.1n.

6.15.3.5.2 Start the by-time-range retrieval of packet stores

a. The storage and retrieval subservice shall provide the capability to start
the by-time-range retrieval of packet stores if that subservice supports the
by-time-range retrieval function.

NOTE 1 The corresponding requests are of message type
"TC[15,9] start the by-time-range retrieval of
packet stores".

NOTE 2 For the by-time-range retrieval function support,
refer to requirement 6.15.3.5.1a.

NOTE 3 For the capability to abort the by-time-range
retrieval of packet stores, refer to clause 6.15.3.5.3.

b. Each request to start the by-time-range retrieval of packet stores shall
contain one or more instructions to start the by-time-range retrieval of a
packet store.

c. Each instruction to start the by-time-range retrieval of a packet store shall
contain:
1. the packet store identifier of the packet store;
2. if the storage and retrieval subservice supports prioritizing the

packet retrievals from packet stores, the retrieval priority to use;
3. the retrieval time window, expressed as:

(a) a retrieval start time, and
(b) a retrieval end time.
NOTE For item 2, refer to requirements 6.15.3.1m and

6.15.3.1n.

d. The storage and retrieval subservice shall reject any instruction to start
the by-time-range retrieval of a packet store if any of the following
conditions occurs:

275

ECSS-E-ST-70-41C
15 April 2016

1. that instruction refers to a packet store that does not exist;
2. that subservice does not support concurrent retrieval requests

executing in parallel and the packet store open retrieval status of
that packet store is in-progress;

3. the retrieval start time in that instruction is later than the retrieval
end time;

4. the storage time period of that instruction is fully in the past and
the packet store contains no packet with a time stamp in that time
period;

5. that instruction refers to a packet store whose by-time-range
retrieval status is "enabled".
NOTE For item 2, refer to requirement 6.15.3.1i.

e. For each instruction to start the by-time-range retrieval of a packet store
that it rejects, the storage and retrieval subservice shall generate the
failed start of execution notification for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to start the by-time-range retrieval of
packet stores regardless of the presence of faulty instructions.

g. For each valid instruction to start the by-time-range retrieval of a packet
store, the storage and retrieval subservice shall:
1. set the packet store by-time-range retrieval status of that packet

store to "enabled";
2. set the retrieval start time to the start time specified in the request;
3. set the retrieval end time to the end time specified in the request;
4. start the by-time-range retrieval process.

NOTE For item 4, if that subservice supports prioritizing
the packet retrievals from packet stores, the
retrieval process is performed according the
priority policy, refer to requirement 6.15.3.1n.

6.15.3.5.3 Abort the by-time-range retrieval of packet stores

a. The storage and retrieval subservice shall provide the capability to abort
the by-time-range retrieval of packet stores if that subservice supports the
by-time-range retrieval function.

NOTE 1 The corresponding requests are of message type
"TC[15,17] abort the by-time-range retrieval of
packet stores".

NOTE 2 For the by-time-range retrieval function support,
refer to requirement 6.15.3.5.1a.

NOTE 3 For the capability to start the by-time-range
retrieval of packet stores, refer to clause 6.15.3.5.2.

b. Each request to abort the by-time-range retrieval of packet stores shall
contain:
1. one or more instructions to abort the by-time-range retrieval of a

packet store, or

276

ECSS-E-ST-70-41C
15 April 2016

2. exactly one instruction to abort the by-time-range retrieval of all
packet stores.
NOTE The instructions to abort the by-time-range

retrieval of all packet stores contain no argument.

c. Each instruction to abort the by-time-range retrieval of a packet store
shall contain:
1. the identifier of a packet store.

d. The storage and retrieval subservice shall reject any instruction to abort
the by-time-range retrieval of a packet store if:
1. that instruction refers to a packet store that does not exist.

e. For each instruction to abort the by-time-range retrieval of a packet store
that it rejects, the storage and retrieval subservice shall generate the
failed start of execution notification for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to abort the by-time-range retrieval of
packet stores regardless of the presence of faulty instructions.

g. For each valid instruction to abort the by-time-range retrieval of a packet
store, the storage and retrieval subservice shall:
1. set the packet store by-time-range retrieval status of that packet

store to "disabled".

h. For each valid instruction to abort the by-time-range retrieval of all
packet stores, the storage and retrieval subservice shall:
1. for each packet store maintained by that subservice:

(a) set its packet store by-time-ranged retrieval status to
"disabled".

6.15.3.6 Report the status of each packet store
a. The storage and retrieval subservice capability to report the status of each

packet store shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[15,18] report the status of each packet store".
The responses are data reports of message type
"TM[15,19] packet store status report".

b. Each request to report the status of each packet store shall contain exactly
one instruction to report the status of each packet store.

NOTE The instructions to report the status of each packet
store contain no argument.

c. For each valid instruction to report the status of each packet store, the
storage and retrieval subservice shall:
1. generate, for each packet store maintained by that subservice, a

single packet store status notification that includes:
(a) the packet store identifier;
(b) its packet store storage status;
(c) its packet store open retrieval status;

277

ECSS-E-ST-70-41C
15 April 2016

(d) its packet store by-time-range retrieval status, if the by-time-
range retrieval function is supported by that subservice.

NOTE For item 1(d), refer to requirement 6.15.3.5.1a.

d. For each valid request to report the status of each packet store, the
storage and retrieval subservice shall generate a single packet store status
report that includes the corresponding packet store status notifications.

6.15.3.7 Deleting the packet store contents

6.15.3.7.1 Delete the content of packet stores up to the specified time

a. The storage and retrieval subservice capability to delete the content of
packet stores up to the specified time shall be declared when specifying
that subservice.

NOTE The corresponding requests are of message type
"TC[15,11] delete the content of packet stores up to
the specified time".

b. Each request to delete the content of packet stores up to the specified
time shall contain:
1. the storage time that is the limit of the deletion;
2. one or more instructions to delete the content of a packet store up

to the specified time, or
3. exactly one instruction to delete the content of all packet stores up

to the specified time.
NOTE The instructions to delete the content of all packet

stores up to the specified time contain no
argument.

c. Each instruction to delete the content of a packet store up to the specified
time shall contain:
1. the identifier of the packet store.

d. The storage and retrieval subservice shall reject any instruction to delete
the content of a packet store up to the specified time if any of the
following conditions occurs:
1. that instruction refers to a packet store that does not exist;
2. that instruction refers to a packet store whose packet store by-time-

range retrieval status is "enabled";
3. that instruction refers to a packet store whose packet store open

retrieval status is "in-progress".

e. For each instruction to delete the content of a packet store up to the
specified time that it rejects, the storage and retrieval subservice shall
generate the failed start of execution notification for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to delete the content of packet stores up
to the specified time regardless of the presence of faulty instructions.

g. For each valid instruction to delete the content of a packet store up to the
specified time, the storage and retrieval subservice shall:

278

ECSS-E-ST-70-41C
15 April 2016

1. delete the contents of the packet store specified in that instruction,
from the earliest packet in that store up to and including the last
packet with a time stamp less than or equal to the time specified in
that request.

h. For each valid instruction to delete the content of all packet stores up to
the specified time, the storage and retrieval subservice shall:
1. for each packet store maintained by that subservice, delete the

contents of that packet store from the earliest packet in that store
up to and including the last packet with a storage time less than or
equal to the time specified in that request.

6.15.3.8 Managing the packet stores

6.15.3.8.1 Create packet stores

a. The storage and retrieval subservice capability to create packet stores
shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,20] create packet stores".

NOTE 2 For the capability to delete packet stores, refer to
clause 6.15.3.8.2.

b. Each request to create packet stores shall contain one or more
instructions to create a packet store.

c. Each instruction to create a packet store shall contain:
1. the packet store identifier;
2. the packet store size in bytes;
3. if more than one packet store type is supported, the packet store

type;
4. if more than one packet store virtual channel is supported, the

packet store virtual channel.
NOTE 1 For item 3, refer to requirement 6.15.3.1f.
NOTE 2 For item 4, refer to requirement 6.15.3.1g.

d. The storage and retrieval subservice shall reject any request to create
packet stores if any of the following conditions occurs:
1. that request contains an instruction that refers to an already

existing packet store;
2. that request contains more than one instruction that refers to the

same packet store.

e. For each request to create packet stores that is rejected, the storage and
retrieval subservice shall generate a failed start of execution notification.

f. The storage and retrieval subservice shall reject any instruction to create
a packet store if any of the following conditions occurs:
1. the maximum number of packet stores that the subservice

supports is already reached;
2. that instruction specifies a packet store size that is not compatible

with the current memory availability;

279

ECSS-E-ST-70-41C
15 April 2016

3. that instruction specifies an invalid virtual channel.
NOTE 1 For item 1, refer to requirement 6.15.3.1a.
NOTE 2 For item 2, the criteria used to establish whether

memory availability is sufficient to allocate the
new packet store are not specified in this Standard.

g. For each instruction to create a packet store that it rejects, the storage and
retrieval subservice shall generate the failed start of execution notification
for that instruction.

h. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to create packet stores regardless of the
presence of faulty instructions.

i. For each valid instruction to create a packet store, the storage and
retrieval subservice shall:
1. create a new packet store with the properties specified in that

instruction;
2. set the packet store storage status of the new packet store to

"disabled".
3. set the packet store by-time-range retrieval status of the new

packet store to "disabled";
4. set the packet store open retrieval status of the new packet store to

"suspended".

6.15.3.8.2 Delete packet stores

a. The storage and retrieval subservice shall provide the capability to delete
packet stores if the capability to create packet stores is provided by that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,21] delete packet stores".

NOTE 2 For the capability to create packet stores, refer to
clause 6.15.3.8.1.

b. Each request to delete packet stores shall contain:
1. one or more instructions to delete a packet store, or
2. exactly one instruction to delete all packet stores.

NOTE The instructions to delete all packet stores contain
no argument.

c. Each instruction to delete a packet store shall contain:
1. the packet store identifier of the packet store to delete.

d. The storage and retrieval subservice shall reject any instruction to delete
a packet store if any of the following conditions occurs:
1. that instruction refers to a packet store that does not exist;
2. that instruction refers to a packet store whose packet store storage

status is "enabled";
3. that instruction refers to a packet store whose packet store by-time-

range retrieval status is "enabled";

280

ECSS-E-ST-70-41C
15 April 2016

4. that instruction refers to a packet store whose packet store open
retrieval status is "in-progress".

e. For each instruction to delete a packet store that it rejects, the storage and
retrieval subservice shall generate the failed start of execution notification
for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to delete packet stores regardless of the
presence of faulty instructions.

g. For each valid instruction to delete a packet store, the storage and
retrieval subservice shall:
1. delete the packet store specified in that instruction.

h. For each valid instruction to delete all packet stores, the storage and
retrieval subservice shall, for each packet store maintained by that
subservice:
1. delete that packet store if it satisfies all of the following conditions:

(a) its packet store storage status is "disabled";
(b) its packet store by-time-range retrieval status is "disabled";
(c) its packet store open retrieval status is "suspended".

6.15.3.8.3 Report the configuration of each packet store

a. The storage and retrieval subservice capability to report the configuration
of each packet store shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,22] report the configuration of each packet
store". The responses are data reports of message
type "TM[15,23] packet store configuration report".

NOTE 2 That capability requires the capability for that
subservice to create packet stores, refer to clause
6.15.3.8.1.

b. Each request to report the configuration of each packet store shall contain
exactly one instruction to report the configuration of each packet store.

NOTE The instructions to report the configuration of each
packet store contain no argument.

c. For each valid instruction to report the configuration of each packet store,
the storage and retrieval subservice shall:
1. generate, for each managed packet store, a single packet store

configuration notification that includes:
(a) the packet store identifier;
(b) the packet store size in bytes;
(c) if more than one packet store type is supported, the packet

store type (bounded or circular);
(d) if more than one packet store virtual channel is supported,

the virtual channel identifier.
NOTE 1 For item 1(c), refer to requirement 6.15.3.1f.
NOTE 2 For item 1(d), refer to requirement 6.15.3.1g.

281

ECSS-E-ST-70-41C
15 April 2016

d. For each valid request to report the configuration of each packet store,
the storage and retrieval subservice shall generate a single packet store
configuration report that includes all related packet store configuration
notifications.

6.15.3.8.4 Copy the packets contained in a packet store selected by
time window

a. The storage and retrieval subservice capability to copy the packets
contained in a packet store selected by time window shall be declared
when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,24] copy the packets contained in a packet
store selected by time window".

NOTE 2 That capability requires the capability for that
subservice to create packet stores, refer to clause
6.15.3.8.1.

b. Each request to copy the packets contained in a packet store selected by
time window shall contain exactly one instruction to copy the packets
contained in a packet store selected by time window.

c. Each instruction to copy the packets contained in a packet store selected
by time window shall contain:
1. the time window;
2. the source packet store identifier;
3. the destination packet store identifier.

d. The time window filtering function shall support the following
mechanisms:
1. "select all packets stored from time tag to time tag";
2. "select all packets stored after time tag";
3. "select all packets stored before time tag".

e. The set of packets identified by the "select all packets stored from time
tag to time tag" filtering mechanism shall be all packets that are stored
between and including the specified "from time tag" and "to time tag".

f. The set of packets identified by the "select all packets stored after time
tag" filtering mechanism shall be all packets that are stored at and after
that specified "from time tag".

g. The set of packets identified by the "select all packets stored before time
tag" filtering mechanism shall be all packets that are scheduled before
and at that specified "to time tag".

h. The storage and retrieval subservice shall reject any request to copy the
packets contained in a packet store selected by time window if any of the
following conditions occurs:
1. that request contains an instruction that refers to an unknown

source packet store;
2. that request contains an instruction that refers to an unknown

destination packet store;

282

ECSS-E-ST-70-41C
15 April 2016

3. that request contains an instruction that contains an invalid time
window;

4. that request contains an instruction that refers to a destination
packet store that is not empty.

i. For each request to copy the packets contained in a packet store selected
by time window that is rejected, the storage and retrieval subservice shall
generate a failed start of execution notification.

j. For each valid instruction to copy the packets contained in a packet store
selected by time window, the storage and retrieval subservice shall:
1. copy all packets from the source packet store that are in the

specified time window to the destination packet store.

6.15.3.9 Changing packet store properties

6.15.3.9.1 Resize packet stores

a. The storage and retrieval subservice capability to resize packet stores
shall be declared when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[15,25] resize packet stores".

b. Each request to resize packet stores shall contain one or more instructions
to resize a packet store.

c. Each instruction to resize a packet store shall contain:
1. the packet store identifier of the packet store to resize;
2. the new packet store size in bytes.

d. The storage and retrieval subservice shall reject any instruction to resize a
packet store if any of the following conditions occurs:
1. that instruction refers to a packet store that does not exist;
2. that instruction specifies a packet store size that is not compatible

with the current memory availability;
3. that instruction refers to a packet store whose packet store storage

status is "enabled";
4. that instruction refers to a packet store whose packet store open

retrieval status is "in-progress";
5. that instruction refers to a packet store that packet store by-time-

range retrieval status is "enabled".

e. For each instruction to resize a packet store that it rejects, the storage and
retrieval subservice shall generate the failed start of execution notification
for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to resize packet stores regardless of the
presence of faulty instructions.

g. For each valid instruction to resize a packet store, the storage and
retrieval subservice shall:
1. change the size of the packet store to the size specified in that

instruction.

283

ECSS-E-ST-70-41C
15 April 2016

NOTE The time and conditions needed for this request to
take effect is implementation-dependent.

6.15.3.9.2 Change a packet store type to circular

a. The storage and retrieval subservice shall provide the capability to
change a packet store type to circular if the capability to resize packet
stores is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,26] change a packet store type to circular".

NOTE 2 For the capability to resize packet stores, refer to
clause 6.15.3.9.1.

b. Each request to change a packet store type to circular shall contain
exactly one instruction to change a packet store type to circular.

c. Each instruction to change a packet store type to circular shall contain:
1. the packet store identifier of the packet store whose type is

changed.

d. The storage and retrieval subservice shall reject any request to change a
packet store type to circular if any of the following conditions occurs:
1. that request contains an instruction that refers to a packet store

that does not exist;
2. that request contains an instruction that refers to a packet store

whose packet store storage status is "enabled";
3. that request contains an instruction that refers to a packet store

whose packet store by-time-range retrieval status is "enabled";
4. that request contains an instruction that refers to a packet store

whose packet store open retrieval status is "in-progress".

e. For each request to change a packet store type to circular that is rejected,
the storage and retrieval subservice shall generate a failed start of
execution notification.

f. For each valid instruction to change a packet store type to circular, the
storage and retrieval subservice shall:
1. change the packet store type of the packet store specified in that

instruction to "circular".
NOTE This Standard does not elaborate on how the

content of the packet store is managed when its
type is changed.

6.15.3.9.3 Change a packet store type to bounded

a. The storage and retrieval subservice shall provide the capability to
change a packet store type to bounded if the capability to resize packet
stores is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,27] change a packet store type to bounded".

NOTE 2 For the capability to resize packet stores, refer to
clause 6.15.3.9.1.

284

ECSS-E-ST-70-41C
15 April 2016

b. Each request to change a packet store type to bounded shall contain
exactly one instruction to change a packet store type to bounded.

c. Each instruction to change a packet store type to bounded shall contain:
1. the packet store identifier of the packet store whose type is to

change.

d. The storage and retrieval subservice shall reject any request to change a
packet store type to bounded if any of the following conditions occurs:
1. that request contains an instruction that refers to a packet store

that does not exist;
2. that request contains an instruction that refers to a packet store

whose packet store storage status is "enabled";
3. that request contains an instruction that refers to a packet store

whose packet store by-time-range retrieval status is "enabled";
4. that request contains an instruction that refers to a packet store

whose packet store open retrieval status is "in-progress".

e. For each request to change a packet store type to bounded that is rejected,
the storage and retrieval subservice shall generate a failed start of
execution notification.

f. For each valid instruction to change a packet store type to bounded, the
storage and retrieval subservice shall:
1. change the packet store type of the packet store specified in that

instruction to "bounded".
NOTE This Standard does not elaborate on how the

content of the packet store is managed when its
type is changed.

6.15.3.9.4 Change the virtual channel used by a packet store

a. The storage and retrieval subservice shall provide the capability to
change the virtual channel used by a packet store if the capability to
resize packet stores is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,28] change the virtual channel used by a
packet store".

NOTE 2 For the capability to resize packet stores, refer to
clause 6.15.3.9.1.

b. Each request to change the virtual channel used by a packet store shall
contain exactly one instruction to change the virtual channel used by a
packet store.

c. Each instruction to change the virtual channel used by a packet store
shall contain:
1. the packet store identifier of the packet store whose virtual channel

is to change.
2. the identifier of the new virtual channel for that packet store.

285

ECSS-E-ST-70-41C
15 April 2016

d. The storage and retrieval subservice shall reject any request to change the
virtual channel used by a packet store if any of the following conditions
occurs:
1. that request contains an instruction that refers to a packet store

that does not exist;
2. that request contains an instruction that refers to a virtual channel

that is not valid;
3. that request contains an instruction that refers to a packet store

whose packet store by-time-range retrieval status is "enabled";
4. that request contains an instruction that refers to a packet store

whose packet store open retrieval status is "in-progress".

e. For each request to change the virtual channel used by a packet store that
is rejected, the storage and retrieval subservice shall generate a failed
start of execution notification.

f. For each valid instruction to change the virtual channel used by a packet
store, the storage and retrieval subservice shall:
1. change the virtual channel of the packet store specified in that

instruction to the specified virtual channel.

6.15.3.10 Reporting the content of the packet stores

6.15.3.10.1 Summary-report the content of packet stores

a. The storage and retrieval subservice capability to summary-report the
content of packet stores shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[15,12] summary-report the content of packet
stores". The responses are data reports of message
type "TM[15,13] packet store content summary
report".

b. Each request to summary-report the content of packet stores shall
contain:
1. one or more instructions to summary-report the content of a packet

store, or
2. exactly one instruction to summary-report the content of each

packet store.
NOTE The instructions to summary-report the content of

each packet store contain no argument.

c. Each instruction to summary-report the content of a packet store shall
contain:
1. the packet store identifier of the packet store to report.

d. The storage and retrieval subservice shall reject any instruction to
summary-report the content of a packet store if:
1. that instruction refers to a packet store that does not exist.

286

ECSS-E-ST-70-41C
15 April 2016

e. For each instruction to summary-report the content of a packet store that
it rejects, the storage and retrieval subservice shall generate the failed
start of execution notification for that instruction.

f. The storage and retrieval subservice shall process any valid instruction
that is contained within a request to summary-report the content of
packet stores regardless of the presence of faulty instructions.

g. For each valid instruction to summary-report the content of a packet
store, the storage and retrieval subservice shall generate a single packet
store content summary notification that includes:
1. the packet store identifier;
2. the storage time tag of the oldest packet in the packet store:
3. the storage time tag of the packet information for the newest

packet in the packet store;
4. the current start time for open retrieval;
5. the packet store filling percentage;
6. the packet store filling percentage for packets between the current

open retrieval start time tag and the newest packet in that store.
NOTE For item 6, this value gives the amount of data still

to transfer to ground.

h. For each valid instruction to summary-report the content of each packet
store, the storage and retrieval subservice shall generate, for each packet
store maintained by that subservice, a single packet store content
summary notification.

NOTE The content of each packet store content summary
notification is as defined in requirement
6.15.3.10.1g.

i. For each valid request to summary-report the content of packet stores,
the storage and retrieval subservice shall generate a single packet store
content summary report that contains all related packet store content
summary notifications.

6.15.3.11 Subservice observables
a. The following observables shall be defined for the storage and retrieval

subservice:
1. for each packet store,

(a) the packet store open retrieval status;
(b) the packet store by-time-range retrieval status, if the by-

time-range retrieval function is supported by that
subservice;

(c) the current packet store open retrieval start time tag;
(d) the packet store filling percentage;
(e) the time-stamp of the last packet stored;
(f) the packet store filling percentage for packets between the

packet store open retrieval start time tag and the newest
packet in that store.

287

ECSS-E-ST-70-41C
15 April 2016

6.15.4 Packet selection subservice

6.15.4.1 Accessibility

6.15.4.1.1 Application process

a. The list of application processes that are controlled by the packet
selection subservice shall be declared when specifying that subservice.

NOTE The packet selection subservice always controls
the storage of reports generated by the application
process that hosts that subservice.

b. The packet selection subservice shall be able to handle, at any time, all
reports that are generated by each application process that is controlled
by that subservice.

6.15.4.1.2 Packet store

a. The packet selection subservice shall, at any time, have access to the
packet stores maintained by the storage and retrieval subservice of the
parent on-board storage and retrieval service.

6.15.4.2 Storage-control definitions

6.15.4.2.1 Capability

a. Whether the packet selection subservice provides the capability to
control, per housekeeping parameter report structure, the storage of
housekeeping parameter reports shall be declared when specifying that
subservice.

NOTE 1 See clause 6.15.4.2.3.
NOTE 2 For the housekeeping parameter reports, refer to

clause 6.3.3.3.

b. Whether the packet selection subservice provides the capability to
control, per diagnostic parameter report structure, the storage of
diagnostic parameter reports shall be declared when specifying that
subservice.

NOTE 1 See clause 6.15.4.2.4.
NOTE 2 For the diagnostic parameter reports, refer to

clause 6.3.4.3.

c. Whether the packet selection subservice provides the capability to
control, per event definition, the storage of event reports shall be
declared when specifying that subservice.

NOTE 1 See clause 6.15.4.2.5.
NOTE 2 For the event reports, refer to clause 6.5.4.

d. If the packet selection subservice provides the capability to control, per
housekeeping parameter report structure, the storage of housekeeping
parameter reports or the capability to control, per diagnostic parameter
report structure, the storage of diagnostic parameter reports, the

288

ECSS-E-ST-70-41C
15 April 2016

subservice capability to subsample the storage of the parameter reports
shall be declared when specifying that subservice.

NOTE Refer to requirements 6.15.4.2.1a and 6.15.4.2.1b.

6.15.4.2.2 Application process storage-control configuration

a. For each packet store, the maximum number of application process
storage-control definitions that the packet selection subservice can
contemporaneously control shall, at any time, correspond to the number
of application processes that are controlled by that subservice.

NOTE 1 See requirement 6.15.4.1.1a.
NOTE 2 The application process storage control

configuration for a packet store contains the
application process storage control definitions that
the packet selection subservice maintains for that
packet store.

b. Each application process storage-control definition shall contain:
1. the packet store identifier;
2. the identifier of the application process to control;
3. a list of zero or more application process related "service type

storage-control definitions", each one containing:
(a) the identifier of the service type to control;
(b) a list of zero or more application process and service type

related "report type storage-control definitions", each one
containing the message subtype identifier of a report type.

NOTE 1 The packet selection subservice has knowledge
about the application processes that it controls but
no knowledge about the service types and report
types that they can generate. This lack of
knowledge results in the possibility for the
subservice to handle on-board, service type
storage-control definitions or report type storage-
control definitions that can be meaningless. It is of
ground operations responsibility to ensure
consistency in this respect.

NOTE 2 An empty application process storage-control
configuration (i.e. no application process storage-
control definition is defined) implies that the
subservice blocks all reports. Blocking means that
these reports are not stored in the corresponding
packet store.

NOTE 3 If the subservice provides none of the capabilities
specified in requirements 6.15.4.2.1a, 6.15.4.2.1b
and 6.15.4.2.1c, a report is stored only if it fulfils
one of the following conditions:
• an application process storage-control

definition with no service type storage-control
definition is defined for the application process
identifier of that report;

289

ECSS-E-ST-70-41C
15 April 2016

• an application process storage-control
definition with a service type storage-control
definition that has no report type storage-
control definition is defined for the application
process identifier and the service type of that
report;

• an application process storage-control
definition with a service type storage-control
definition is defined that has a report type
storage-control definition for the application
process identifier and the service type and the
message subtype identifier of that report.

c. The maximum number of service type storage control definitions that can
be contained within an application process storage control definition
shall be declared when specifying the packet selection subservice.

d. The maximum number of report type storage control definitions that can
be contained within a service type storage control definition shall be
declared when specifying the packet selection subservice.

6.15.4.2.3 Housekeeping parameter report storage-control
configuration

a. For each packet store, the maximum number of housekeeping parameter
report storage-control definitions that the packet selection subservice can
contemporaneously control shall, at any time, correspond to the number
of application processes that are controlled by that subservice and that
provide the capability for generating housekeeping parameter reports.

NOTE 1 For the number of application processes, see
requirement 6.15.4.1.1a.

NOTE 2 The housekeeping parameter report storage
configuration for a packet store contains the
housekeeping parameter report storage definitions
that the packet selection subservice maintains for
that packet store.

NOTE 3 The housekeeping parameter report storage-
control configuration contains the housekeeping
parameter report storage-control definitions of the
packet selection subservice.

b. Each housekeeping parameter report storage-control definition shall
contain:
1. the packet store identifier;
2. the identifier of the application process;
3. a list of zero or more related housekeeping parameter report

structure identifiers.
NOTE 1 An empty housekeeping parameter report storage-

control configuration (i.e. no housekeeping
parameter report storage-control definition is
defined) implies that the subservice blocks all
housekeeping parameter reports. Blocking means

290

ECSS-E-ST-70-41C
15 April 2016

that these reports are not stored in the
corresponding packet store.

NOTE 2 A housekeeping parameter report is stored in the
corresponding packet store only if the application
process storage-control configuration does not
block that report and one of the following
conditions occurs:
• a housekeeping parameter report storage-

control definition with no housekeeping
parameter report structure identifiers is defined
for the application process identifier of that
report;

• a housekeeping parameter report storage-
control definition with a housekeeping
parameter report structure identifier is defined
for the application process identifier and the
housekeeping parameter report structure
identifier of that report.

c. The maximum number of housekeeping parameter report structure
identifiers that can be contained within a housekeeping parameter report
storage-control definition shall be declared when specifying the packet
selection subservice.

6.15.4.2.4 Diagnostic parameter report storage-control configuration

a. For each packet store, the maximum number of diagnostic parameter
report storage-control definitions that the packet selection subservice can
contemporaneously control shall, at any time, correspond to the number
of application processes that are controlled by that subservice and that
provide the capability for generating diagnostic parameter reports.

NOTE 1 For the number of application processes, see
requirement 6.15.4.1.1a.

NOTE 2 The diagnostic parameter report storage
configuration for a packet store contains the
diagnostic parameter report storage definitions
that the packet selection subservice maintains for
that packet store.

b. Each diagnostic parameter report storage-control definition shall contain:
1. the packet store identifier;
2. the identifier of the application process;
3. a list of zero or more related diagnostic parameter report structure

identifiers.
NOTE 1 An empty diagnostic parameter report storage-

control configuration (i.e. no diagnostic parameter
report storage-control definition is defined)
implies that the subservice blocks all diagnostic
parameter reports. Blocking means that these
reports are not stored in the corresponding packet
store.

291

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 A diagnostic parameter report is stored in the
corresponding packet store only if the application
process storage-control configuration does not
block that report and one of the following
conditions occurs:
• a diagnostic parameter report storage-control

definition with no diagnostic parameter report
structure identifiers is defined for the
application process identifier of that report;

• a diagnostic parameter report storage-control
definition with a diagnostic parameter report
structure identifier is defined for the
application process identifier and the
diagnostic parameter report structure identifier
of that report.

c. The maximum number of diagnostic parameter report structure
identifiers that can be contained within a diagnostic parameter report
storage-control definition shall be declared when specifying the packet
selection subservice.

6.15.4.2.5 Event report blocking storage-control configuration

a. For each packet store, the maximum number of event report blocking
storage-control definitions that the packet selection subservice can
contemporaneously control shall, at any time, correspond to the number
of application processes that are controlled by that subservice and that
provide the capability for generating event reports.

NOTE 1 For the number of application processes, see
requirement 6.15.4.1.1a.

NOTE 2 The event report blocking storage-control
configuration contains the event report blocking
storage-control definitions of the packet selection
subservice.

b. Each event report blocking storage-control definition shall contain:
1. the packet store identifier;
2. the identifier of the application process;
3. a list of zero or more related event definition identifiers.

NOTE 1 An empty event report blocking storage-control
configuration (i.e. no event report blocking
storage-control definition is defined) implies that
an event report is stored in the corresponding
packet store if the application process storage-
control configuration does not block that report.

NOTE 2 The packet selection subservice blocks the storage
of an event report in the corresponding packet
store if any of the following conditions occurs:
• the application process storage-control

configuration blocks that report;

292

ECSS-E-ST-70-41C
15 April 2016

• the application process storage-control
configuration does not block that report and an
event report blocking storage-control definition
with no event definition identifiers is defined
for the application process identifier of that
report;

• the application process storage-control
configuration does not block that report and an
event report blocking storage-control definition
with an event definition identifier is defined for
the application process identifier and the event
definition identifier of that report.

c. The maximum number of event definition identifiers that can be
contained within an event report blocking storage-control definition shall
be declared when specifying the packet selection subservice.

6.15.4.3 Storage control processing logic
a. The packet selection subservice shall block the storage of a report to a

packet store if the application process identifier of that report is not
contained within an application process storage definition for that packet
store.

b. The packet selection subservice shall block the storage of a report to a
packet store if that report fulfils all of the following conditions:
1. the application process identifier of that report is contained within

an application process storage definition for that packet store, and
2. that application process storage definition contains at least one

service type storage definition, and
3. that application process storage definition does not contain a

service type storage definition for the service type of that report.

c. The packet selection subservice shall block the storage of a report to a
packet store if that report fulfils all of the following conditions:
1. the application process identifier of that report is contained within

an application process storage definition for that packet store, and
2. that application process storage definition contains a service type

storage definition for the service type of that report, and
3. that service type storage definition contains at least one report type

storage definition, and
4. that service type storage definition does not contain a report type

storage definition for the report type of that report.

d. If the packet selection subservice provides the capability to control, per
housekeeping parameter report structure, the storage of housekeeping
parameter reports, the subservice shall block the storage of a
housekeeping parameter report to a packet store if the application
process identifier of that report is not contained within a housekeeping
parameter report storage definition for that packet store,

293

ECSS-E-ST-70-41C
15 April 2016

e. If the packet selection subservice provides the capability to control, per
housekeeping parameter report structure, the storage of housekeeping
parameter reports, the subservice shall block the storage of a
housekeeping parameter report to a packet store if that report fulfils all of
the following conditions:
1. the application process identifier of that report is contained within

a housekeeping parameter report storage definition for that packet
store, and

2. that housekeeping parameter report storage definition contains at
least one housekeeping parameter report structure identifier, and

3. that housekeeping parameter report storage definition does not
contain the housekeeping parameter report structure identifier of
that report.
NOTE The storage of a housekeeping parameter report

structure of an application process is enabled if it
is blocked neither by the application process
storage control configuration nor by the
housekeeping parameter report storage
configuration.

f. If the packet selection subservice provides the capability to control, per
diagnostic parameter report structure, the storage of diagnostic
parameter reports, the subservice shall block the storage of a diagnostic
parameter report to a packet store if the application process identifier of
that report is not contained within a diagnostic parameter report storage
definition for that packet store,

g. If the packet selection subservice provides the capability to control, per
diagnostic parameter report structure, the storage of diagnostic
parameter reports, the subservice shall block the storage of a diagnostic
parameter report to a packet store if that report fulfils all of the following
conditions:
1. the application process identifier of that report is contained within

a diagnostic parameter report storage definition for that packet
store, and

2. that diagnostic parameter report storage definition contains at least
one diagnostic parameter report structure identifier, and

3. that diagnostic parameter report storage definition does not
contain the diagnostic parameter report structure identifier of that
report.
NOTE The storage of a diagnostic parameter report

structure of an application process is enabled if it
is blocked neither by the application process
storage control configuration nor by the diagnostic
parameter report storage configuration.

h. If the packet selection subservice provides the capability to control, per
event definition, the storage of event reports, the subservice shall block
the storage of an event report to a packet store if that report fulfils all of
the following conditions:

294

ECSS-E-ST-70-41C
15 April 2016

1. the application process identifier of that report is contained within
an event report blocking storage-control definition for that packet
store, and

2. that event report blocking storage-control definition has no event
definition identifier.

i. If the packet selection subservice provides the capability to control, per
event definition, the storage of event reports, the subservice shall block
the storage of an event report to a packet store if that report fulfils all of
the following conditions:
1. the application process identifier of that report is contained within

an event report blocking storage-control definition for that packet
store, and

2. that event report blocking storage-control definition contains the
event definition identifier of that report.
NOTE The storage of an event definition of an application

process is enabled if it is blocked neither by the
application process storage control configuration
nor by the event report blocking control
configuration.

6.15.4.4 Managing the application process storage-control
configuration

6.15.4.4.1 Add report types to the application process storage-control
configuration

a. The packet selection subservice shall provide the capability to add report
types to the application process storage-control configuration of a packet
store.

NOTE 1 The corresponding requests are of message type
"TC[15,3] add report types to the application
process storage-control configuration".

NOTE 2 For the capability to delete report types from the
application process storage-control configuration,
refer to clause 6.15.4.4.2.

b. Each request to add report types to the application process storage-
control configuration shall contain:
1. the packet store identifier of the packet store whose application

process storage-control configuration is to change;
2. at least one of:

(a) one or more instructions to add a report type to the
application process storage-control configuration,

(b) one or more instructions to add all report types of a service
type to the application process storage-control
configuration,

(c) if the packet selection subservice only controls the
application process that hosts it, exactly one instruction to

295

ECSS-E-ST-70-41C
15 April 2016

add all report types of an application process to the
application process storage-control configuration,

(d) if the packet selection subservice controls more than one
application process, one or more instructions to add all
report types of an application process to the application
process storage-control configuration.

c. The packet selection subservice shall reject any request to add report
types to the application process storage-control configuration if:
1. that request refers to a packet store that does not exist.

d. For each request to add report types to the application process storage-
control configuration that is rejected, the packet selection subservice shall
generate a failed start of execution notification.

e. Each instruction to add a report type to the application process storage-
control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction,

2. the report type identifier consisting of:
(a) the service type identifier;
(b) the message subtype identifier.
NOTE For item 1, refer to requirement 6.15.4.1.1a.

f. Each instruction to add all report types of a service type to the
application process storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction,

2. the service type identifier.

g. Each instruction to add all report types of an application process to the
application process storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction.

h. The packet selection subservice shall reject any instruction to add a report
type to the application process storage-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice;
2. that instruction implies the addition of a service type storage

definition and the maximum number of service type storage
definitions for the corresponding application process storage
definition is already reached;

3. the maximum number of report type storage-control definitions
that can be contained within the corresponding service type
storage-control definition is already reached;

4. the corresponding service type storage-control definition has no
report type storage-control definition already defined;

296

ECSS-E-ST-70-41C
15 April 2016

5. the corresponding application process storage-control definition
has no service type storage-control definition already defined.
NOTE 1 For item 4, if the storage of all report types of a

service type is enabled, it is meaningless to ask for
the addition of a report type for that service type.

NOTE 2 For item 5, if the storage of all report types of an
application process is enabled, it is meaningless to
ask for the addition of a report type for that
application process.

i. The packet selection subservice shall reject any instruction to add all
report types of a service type to the application process storage-control
configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice;
2. that instruction implies the addition of a service type storage

definition and the maximum number of service type storage
definitions for the corresponding application process storage
definition is already reached;

3. the corresponding application process storage-control definition
has no service type storage-control definition already defined.
NOTE For item 3, if the storage of all report types of an

application process is enabled, it is meaningless to
ask for the addition of a service type for that
application process.

j. The packet selection subservice shall reject any instruction contained
within a request to add all report types of an application process to the
application process storage-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice.

k. For each instruction contained within a request to add report types to the
application process storage-control configuration that it rejects, the
packet selection subservice shall generate the failed start of execution
notification for that instruction.

l. The packet selection subservice shall process any valid instruction that is
contained within a request to add report types to the application process
storage-control configuration regardless of the presence of faulty
instructions.

m. For each valid instruction to add a report type to the application process
storage-control configuration, the packet selection subservice shall, for
the related packet store:
1. add, for the specified application process identifier, an application

process storage-control definition if not already existing;
2. add, for the related application process storage-control definition

and the specified service type identifier, a service type storage-
control definition, if not already existing;

297

ECSS-E-ST-70-41C
15 April 2016

3. add, for the related service type storage-control definition and the
specified message subtype identifier, a report type storage-control
definition, if not already existing.

n. For each valid instruction to add all report types of a service type to the
application process storage-control configuration, the packet selection
subservice shall, for the related packet store:
1. add, for the specified application process identifier, an application

process storage-control definition if not already existing;
2. add, for the related application process storage-control definition

and the specified service type identifier, a service type storage-
control definition to the related application process storage-control
definition, if not already existing;

3. delete, if any, all report type storage-control definitions of the
related service type storage-control definition.

o. For each valid instruction to add all report types of an application
process to the application process storage-control configuration, the
packet selection subservice shall, for the related packet store:
1. add, for the specified application process identifier, an application

process storage-control definition if not already existing;
2. delete, if any, all service type storage-control definitions of the

related application process storage-control definition.

6.15.4.4.2 Delete report types from the application process storage-
control configuration

a. The packet selection subservice shall provide the capability to delete
report types from the application process storage-control configuration of
a packet store.

NOTE 1 The corresponding requests are of message type
"TC[15,4] delete report types from the application
process storage-control configuration of a packet
store".

NOTE 2 For the capability to add report types to the
application process storage-control configuration,
refer to clause 6.15.4.4.1.

b. Each request to delete report types from the application process storage-
control configuration shall contain the packet store identifier of the
packet store whose application process storage-control configuration is to
change and exactly one of:
1. at least one of:

(a) one or more instructions to delete a report type from the
application process storage-control configuration,

(b) one or more instructions to delete a service type from the
application process storage-control configuration,

(c) if the packet selection subservice controls more than one
application process, one or more instructions to delete an
application process from the application process storage-
control configuration,

298

ECSS-E-ST-70-41C
15 April 2016

2. an instruction to empty the application process storage-control
configuration.
NOTE The instructions to empty the application process

storage-control configuration contain no
argument.

c. The packet selection subservice shall reject any request to delete report
types from the application process storage-control configuration if:
1. that request refers to a packet store that does not exist.

d. For each request to delete report types from the application process
storage-control configuration that is rejected, the packet selection
subservice shall generate a failed start of execution notification.

e. Each instruction to delete a report type from the application process
storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction,

2. the report type identifier consisting of:
(a) the service type identifier;
(b) the message subtype identifier.
NOTE For item 1, refer to requirement 6.15.4.1.1a.

f. The packet selection subservice shall reject any instruction to delete a
report type from the application process storage-control configuration if:
1. that instruction refers to a report type identifier that is not in the

application process storage-control configuration.

g. For each instruction to delete a report type from the application process
storage-control configuration that it rejects, the packet selection
subservice shall generate the failed start of execution notification for that
instruction.

h. Each instruction to delete a service type from the application process
storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction,

2. the service type identifier.

i. The packet selection subservice shall reject any instruction to delete a
service type from the application process storage-control configuration if:
1. that instruction refers to a service type identifier that is not in the

application process storage-control configuration.

j. For each instruction to delete a service type from the application process
storage-control configuration that it rejects, the packet selection
subservice shall generate the failed start of execution notification for that
instruction.

k. Each instruction to delete an application process from the application
process storage-control configuration shall contain:

299

ECSS-E-ST-70-41C
15 April 2016

1. if the packet selection subservice controls more than one
application process, the application process identifier addressed by
that instruction.

l. The packet selection subservice shall reject any instruction to delete an
application process from the application process storage-control
configuration if:
1. that instruction refers to an application process identifier that is

not in the application process storage-control configuration.

m. For each instruction to delete an application process from the application
process storage-control configuration that it rejects, the packet selection
subservice shall generate the failed start of execution notification for that
instruction.

n. The packet selection subservice shall process any valid instruction that is
contained within a request to delete report types from the application
process storage-control configuration regardless of the presence of faulty
instructions.

o. For each valid instruction to delete a report type from the application
process storage-control configuration, the packet selection subservice
shall, for the related packet store:
1. delete the report type storage-control definition related to that

specified application process identifier, service type identifier and
message subtype identifier;

2. if that report type storage-control definition deletion results in an
emptied service type storage-control definition, delete that service
type storage-control definition;

3. if that service type storage-control definition deletion results in an
emptied application process storage-control definition, delete that
application process storage-control definition.

p. For each valid instruction to delete a service type from the application
process storage-control configuration, the packet selection subservice
shall, for the related packet store:
1. delete the service type storage-control definitions related to that

specified application process identifier and service type identifier;
2. if that service type storage-control definition deletion results in an

emptied application process storage-control definition, delete that
application process storage-control definition.

q. For each valid instruction to delete an application process from the
application process storage-control configuration, the packet selection
subservice shall, for the related packet store:
1. delete the application process storage-control definition related to

that specified application process identifier.

r. For each valid instruction to empty the application process storage-
control configuration, the packet selection subservice shall, for the related
packet store:
1. delete, if any, all application process storage-control definitions.

300

ECSS-E-ST-70-41C
15 April 2016

6.15.4.4.3 Report the content of the application process storage-control
configuration

a. The packet selection subservice capability to report the content of the
application process storage-control configuration of a packet store shall
be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,5] report the content of the application
process storage-control configuration". The
responses are data reports of message type
"TM[15,6] application process storage-control
configuration content report".

NOTE 2 That capability requires the capability for that
subservice to add report types to the application
process storage-control configuration, refer to
clause 6.15.4.4.1.

b. Each request to report the content of the application process storage-
control configuration shall contain exactly one instruction to report the
content of the application process storage-control configuration.

c. Each instruction to report the content of the application process storage-
control configuration shall contain:
1. the packet store identifier of the packet store.

d. The packet selection subservice shall reject any instruction to report the
content of the application process storage-control configuration if:
1. that instruction refers to a packet store that does not exist.

e. For each instruction to report the content of the application process
storage-control configuration that is rejected, the packet selection
subservice shall generate a failed start of execution notification.

f. For each valid instruction to report the content of the application process
storage-control configuration, the packet selection subservice shall
generate, for each existing application process storage-control definition
of the related packet store, a single application process storage-control
definition notification that includes:
1. if the packet selection subservice controls more than one

application process, the related application process identifier;
2. for each related service type storage-control definition, if any:

(a) the related service type identifier;
(b) for each related report type storage-control definition, if any,

the related message subtype identifier.
NOTE For item 1, refer to requirement 6.15.4.1.1a.

g. For each valid request to report the content of the application process
storage-control configuration, the packet selection subservice shall
generate a single application process storage-control configuration
content report that includes:
1. the packet store identifier of the related packet store;
2. all related application process storage-control definition

notifications.

301

ECSS-E-ST-70-41C
15 April 2016

6.15.4.5 Managing the housekeeping parameter report
storage-control configuration

6.15.4.5.1 Add structure identifiers to the housekeeping parameter
report storage-control configuration

a. The packet selection subservice shall provide the capability to add
structure identifiers to the housekeeping parameter report storage-
control configuration of a packet store if that subservice provides the
capability to control, per housekeeping parameter report structure, the
storage of housekeeping parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[15,29] add structure identifiers to the
housekeeping parameter report storage-control
configuration".

NOTE 2 For the capability to control, per housekeeping
parameter report structure, the storage of
housekeeping parameter reports, refer to
requirement 6.15.4.2.1a.

NOTE 3 For the capability to delete structure identifiers
from the housekeeping parameter report storage-
control configuration, refer to clause 6.15.4.5.2.

b. Each request to add structure identifiers to the housekeeping parameter
report storage-control configuration shall contain:
1. the packet store identifier of the packet store whose housekeeping

parameter report storage-control configuration is to change;
2. exactly one of:

(a) one or more instructions to add a structure identifier to the
housekeeping parameter report storage-control
configuration,

(b) an instruction to add all structure identifiers to the
housekeeping parameter report storage-control
configuration.

c. The packet selection subservice shall reject any request to add structure
identifiers to the housekeeping parameter report storage configuration if:
1. that request refers to a packet store that does not exist.

d. Each instruction to add a structure identifier to the housekeeping
parameter report storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction;

2. the housekeeping parameter report structure identifier;
3. if subsampling is supported, the subsampling rate.

NOTE 1 For item 1, refer to requirement 6.15.4.1.1a.
NOTE 2 For item 3, refer to requirement 6.15.4.2.1d.

302

ECSS-E-ST-70-41C
15 April 2016

e. Each instruction to add all structure identifiers to the housekeeping
parameter report storage-control configuration shall contain:
1. the application process identifier addressed by that instruction.

f. The packet selection subservice shall reject any instruction contained
within a request to add structure identifiers to the housekeeping
parameter report storage-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice.

g. The packet selection subservice shall reject any instruction to add a
structure identifier to the housekeeping parameter report storage-control
configuration if:
1. the maximum number of housekeeping parameter report structure

identifiers that can be contained within a housekeeping parameter
report storage-control definition is already reached;

2. the corresponding housekeeping parameter report storage-control
definition has no structure identifier already defined.

h. For each instruction contained within a request to add structure
identifiers to the housekeeping parameter report storage-control
configuration that it rejects, the packet selection subservice shall generate
the failed start of execution notification for that instruction.

i. The packet selection subservice shall process any valid instruction that is
contained within a request to add structure identifiers to the
housekeeping parameter report storage-control configuration regardless
of the presence of faulty instructions.

j. For each valid instruction to add a structure identifier to the
housekeeping parameter report storage-control configuration, the packet
selection subservice shall, for the related packet store:
1. add, for the specified application process identifier, a

housekeeping parameter report storage-control definition if not
already existing;

2. add, to the related housekeeping parameter report storage-control
definition, the specified housekeeping parameter report structure
identifier, if not already existing;

3. if subsampling is supported, set, to the related housekeeping
parameter report storage-control definition and the specified
housekeeping parameter report structure identifier, the specified
subsampling rate.
NOTE For item 3, refer to requirement 6.15.4.2.1d.

k. For each valid instruction to add all structure identifiers to the
housekeeping parameter report storage-control configuration, the packet
selection subservice shall, for the related packet store:
1. add, for the specified application process identifier, a

housekeeping parameter report storage-control definition if not
already existing;

303

ECSS-E-ST-70-41C
15 April 2016

2. delete, if any, all housekeeping parameter report structure
identifiers of the related housekeeping parameter report storage-
control definition.
NOTE For item 2, deleting a housekeeping parameter

report structure identifier implies deleting the
corresponding subsampling rate if any (see also
requirement 6.15.4.2.1d).

6.15.4.5.2 Delete structure identifiers from the housekeeping parameter
report storage-control configuration

a. The packet selection subservice shall provide the capability to delete
structure identifiers from the housekeeping parameter report storage-
control configuration of a packet store if that subservice provides the
capability to control, per housekeeping parameter report structure, the
storage of housekeeping parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[15,30] delete structure identifiers from the
housekeeping parameter report storage-control
configuration".

NOTE 2 For the capability to control, per housekeeping
parameter report structure, the storage of
housekeeping parameter reports, refer to
requirement 6.15.4.2.1a.

NOTE 3 For the capability to add structure identifiers to the
housekeeping parameter report storage-control
configuration, refer to clause 6.15.4.5.1.

b. Each request to delete structure identifiers from the housekeeping
parameter report storage-control configuration shall contain the packet
store identifier of the packet store whose housekeeping parameter report
storage-control configuration is to change and exactly one of:
1. any combination of one or more instructions:

(a) to delete a structure identifier from the housekeeping
parameter report storage-control configuration,

(b) to delete an application process from the housekeeping
parameter report storage-control configuration;

2. an instruction to empty the housekeeping parameter report
storage-control configuration.
NOTE The instructions to empty the housekeeping

parameter report storage-control configuration
contain no argument.

c. Each instruction to delete a structure identifier from the housekeeping
parameter report storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction;

2. the housekeeping parameter report structure identifier.
NOTE For item 1, refer to requirement 6.15.4.1.1a.

304

ECSS-E-ST-70-41C
15 April 2016

d. The packet selection subservice shall reject any instruction to delete a
structure identifier from the housekeeping parameter report storage-
control configuration if:
1. that instruction refers to an application process identifier that is

not in the housekeeping parameter report storage configuration of
the related packet store;

2. that instruction refers to a housekeeping parameter report
structure identifier that is not in the housekeeping parameter
report storage definition for the specified application process
identifier.

e. For each instruction to delete a structure identifier from the
housekeeping parameter report storage-control configuration that it
rejects, the packet selection subservice shall generate the failed start of
execution notification for that instruction.

f. Each instruction to delete an application process from the housekeeping
parameter report storage-control configuration shall contain:
1. the application process identifier addressed by that instruction.

g. The packet selection subservice shall reject any instruction to delete an
application process from the housekeeping parameter report storage-
control configuration if:
1. that instruction refers to an application process identifier that is

not in the housekeeping parameter report storage configuration of
the related packet store.

h. For each instruction to delete an application process from the
housekeeping parameter report storage-control configuration that it
rejects, the packet selection subservice shall generate the failed start of
execution notification for that instruction.

i. The packet selection subservice shall process any valid instruction that is
contained within a request to delete structure identifiers from the
housekeeping parameter report storage-control configuration regardless
of the presence of faulty instructions.

j. For each valid instruction to delete a structure identifier from the
housekeeping parameter report storage-control configuration , the packet
selection subservice shall, for the related packet store:
1. delete the housekeeping parameter report structure identifier

related to the specified application process identifier;
2. if that housekeeping parameter report structure identifier deletion

results in an emptied housekeeping parameter report storage-
control definition, delete that housekeeping parameter report
storage-control definition.
NOTE Deleting a housekeeping parameter report

structure identifier implies deleting the
corresponding subsampling rate if any (see also
requirement 6.15.4.2.1d).

k. For each valid instruction to delete an application process from the
housekeeping parameter report storage-control configuration, the packet
selection subservice shall, for the related packet store:

305

ECSS-E-ST-70-41C
15 April 2016

1. delete the housekeeping parameter report storage definition that is
defined for that specified application process identifier.

l. For each valid instruction to empty the housekeeping parameter report
storage-control configuration, the packet selection subservice shall, for
the related packet store:
1. delete all housekeeping parameter report storage definitions.

6.15.4.5.3 Report the content of the housekeeping parameter report
storage-control configuration

a. The packet selection subservice capability to report the content of the
housekeeping parameter report storage-control configuration of a packet
store shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,35] report the content of the housekeeping
parameter report storage-control configuration".
The responses are data reports of message type
"TM[15,36] housekeeping parameter report
storage-control configuration content report".

NOTE 2 That capability requires the capability for that
subservice to control, per housekeeping parameter
report structure, the storage of housekeeping
parameter reports (refer to requirement
6.15.4.2.1a).

b. Each request to report the content of the housekeeping parameter report
storage-control configuration shall contain exactly one instruction to
report the content of the housekeeping parameter report storage-control
configuration.

c. Each instruction to report the content of the housekeeping parameter
report storage configuration shall include:
1. the packet store identifier of the packet store.

d. The packet selection subservice shall reject any instruction to report the
content of the housekeeping parameter report storage configuration if:
1. that instruction refers to a packet store that does not exist.

e. For each valid instruction to report the content of the housekeeping
parameter report storage-control configuration, the packet selection
subservice shall generate, for each existing housekeeping parameter
report storage-control definition of the related packet store, a single
housekeeping parameter report storage-control definition notification
that includes:
1. if the packet selection subservice controls more than one

application process, the related application process identifier;
2. for each housekeeping parameter report structure identifier entry:

(a) the housekeeping parameter report structure identifier;
(b) if subsampling is supported, the subsampling rate.
NOTE 1 For item 1, refer to requirement 6.15.4.1.1a.
NOTE 2 For item 2(b), refer to requirement 6.15.4.2.1d.

306

ECSS-E-ST-70-41C
15 April 2016

f. For each valid request to report the content of the housekeeping
parameter report storage-control configuration, the packet selection
subservice shall generate a single housekeeping parameter report
storage-control configuration content report that includes:
1. the packet store identifier of the related packet store;
2. all related housekeeping parameter report storage-control

definition notifications.

6.15.4.6 Managing the diagnostic parameter report storage-
control configuration

6.15.4.6.1 Add structure identifiers to the diagnostic parameter report
storage-control configuration

a. The packet selection subservice shall provide the capability to add
structure identifiers to the diagnostic parameter report storage-control
configuration of a packet store if that subservice provides the capability
to control, per diagnostic parameter report structure, the storage of
diagnostic parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[15,31] add structure identifiers to the
diagnostic parameter report storage-control
configuration".

NOTE 2 For the capability to control, per diagnostic
parameter report structure, the storage of
diagnostic parameter reports, refer to requirement
6.15.4.2.1b.

NOTE 3 For the capability to delete structure identifiers
from the diagnostic parameter report storage-
control configuration, refer to clause 6.15.4.6.2.

b. Each request to add structure identifiers to the diagnostic parameter
report storage-control configuration shall contain exactly one of:
1. the packet store identifier of the packet store whose diagnostic

parameter report storage-control configuration is to change;
2. exactly one of:

(a) one or more instructions to add a structure identifier to the
diagnostic parameter report storage-control configuration,

(b) an instruction to add all structure identifiers to the
diagnostic parameter report storage-control configuration.

c. The packet selection subservice shall reject any request to add structure
identifiers to the diagnostic parameter report storage configuration if:
1. that request refers to a packet store that does not exist.

d. Each instruction to add a structure identifier to the diagnostic parameter
report storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction;

2. the diagnostic parameter report structure identifier;

307

ECSS-E-ST-70-41C
15 April 2016

3. if subsampling is supported, the subsampling rate.
NOTE 1 For item 1, refer to requirement 6.15.4.1.1a.
NOTE 2 For item 3, refer to requirement 6.15.4.2.1d.

e. Each instruction to add all structure identifiers to the diagnostic
parameter report storage-control configuration shall contain:
1. the application process identifier addressed by that instruction.

f. The packet selection subservice shall reject any instruction contained
within a request to add structure identifiers to the diagnostic parameter
report storage-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice.

g. The packet selection subservice shall reject any instruction to add a
structure identifier to the diagnostic parameter report storage-control
configuration if:
1. the maximum number of diagnostic parameter report structure

identifiers that can be contained within a diagnostic parameter
report storage-control definition is already reached;

2. the corresponding diagnostic parameter report storage-control
definition has no structure identifier already defined.

h. For each instruction contained within a request to add structure
identifiers to the diagnostic parameter report storage-control
configuration that it rejects, the packet selection subservice shall generate
the failed start of execution notification for that instruction.

i. The packet selection subservice shall process any valid instruction that is
contained within a request to add structure identifiers to the diagnostic
parameter report storage-control configuration regardless of the presence
of faulty instructions.

j. For each valid instruction to add a structure identifier to the diagnostic
parameter report storage-control configuration, the packet selection
subservice shall, for the related packet store:
1. add, for the specified application process identifier, a diagnostic

parameter report storage-control definition if not already existing;
2. add, to the related diagnostic parameter report storage-control

definition, the specified diagnostic parameter report structure
identifier, if not already existing;

3. if subsampling is supported, set, to the related diagnostic
parameter report storage-control definition and the specified
diagnostic parameter report structure identifier, the specified
subsampling rate.
NOTE For item 3, refer to requirement 6.15.4.2.1d.

k. For each valid instruction to add all structure identifiers to the diagnostic
parameter report storage-control configuration, the packet selection
subservice shall, for the related packet store:
1. add, for the specified application process identifier, a diagnostic

parameter report storage-control definition if not already existing;

308

ECSS-E-ST-70-41C
15 April 2016

2. delete, if any, all diagnostic parameter report structure identifiers
of the related diagnostic parameter report storage-control
definition.
NOTE For item 2, deleting a diagnostic parameter report

structure identifier implies deleting the
corresponding subsampling rate if any (see also
requirement 6.15.4.2.1d).

6.15.4.6.2 Delete structure identifiers from the diagnostic parameter
report storage-control configuration

a. The packet selection subservice shall provide the capability to delete
structure identifiers from the diagnostic parameter report storage-control
configuration of a packet store if that subservice provides the capability
to control, per diagnostic parameter report structure, the storage of
diagnostic parameter reports.

NOTE 1 The corresponding requests are of message type
"TC[15,32] delete structure identifiers from the
diagnostic parameter report storage-control
configuration".

NOTE 2 For the capability to control, per diagnostic
parameter report structure, the storage of
diagnostic parameter reports, refer to requirement
6.15.4.2.1b.

NOTE 3 For the capability to add structure identifiers to the
diagnostic parameter report storage-control
configuration, refer to clause 6.15.4.6.1.

b. Each request to delete structure identifiers from the diagnostic parameter
report storage-control configuration shall contain the packet store
identifier of the packet store whose diagnostic parameter report storage-
control configuration is to change and exactly one of:
1. any combination of one or more instructions:

(a) to delete a structure identifier from the diagnostic parameter
report storage-control configuration,

(b) to delete an application process from the diagnostic
parameter report storage-control configuration,

2. an instruction to empty the diagnostic parameter report storage-
control configuration.
NOTE The instructions to empty the diagnostic

parameter report storage-control configuration
contain no argument.

c. Each instruction to delete a structure identifier from the diagnostic
parameter report storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction;

2. the diagnostic parameter report structure identifier.
NOTE 1 For item 1, refer to requirement 6.15.4.1.1a.

309

ECSS-E-ST-70-41C
15 April 2016

d. The packet selection subservice shall reject any instruction to delete a
structure identifier from the diagnostic parameter report storage-control
configuration if:
1. that instruction refers to an application process identifier that is

not in the diagnostic parameter report storage configuration of the
related packet store;

2. that instruction refers to a diagnostic parameter report structure
identifier that is not in the diagnostic parameter report storage
definition for the specified application process identifier.

e. For each instruction to delete a structure identifier from the diagnostic
parameter report storage-control configuration that it rejects, the packet
selection subservice shall generate the failed start of execution
notification for that instruction.

f. Each instruction to delete an application process from the diagnostic
parameter report storage-control configuration shall contain:
1. the application process identifier addressed by that instruction.

g. The packet selection subservice shall reject any instruction to delete an
application process from the diagnostic parameter report storage-control
configuration if:
1. that instruction refers to an application process identifier that is

not in the diagnostic parameter report storage configuration of the
related packet store.

h. For each instruction to delete an application process from the diagnostic
parameter report storage-control configuration that it rejects, the packet
selection subservice shall generate the failed start of execution
notification for that instruction.

i. The packet selection subservice shall process any valid instruction that is
contained within a request to delete structure identifiers from the
diagnostic parameter report storage-control configuration regardless of
the presence of faulty instructions.

j. For each valid instruction to delete a structure identifier from the
diagnostic parameter report storage-control configuration , the packet
selection subservice shall, for the related packet store:
1. delete the diagnostic parameter report structure identifier related

to the specified application process identifier;
2. if that diagnostic parameter report structure identifier deletion

results in an emptied diagnostic parameter report storage-control
definition, delete that diagnostic parameter report storage-control
definition.
NOTE Deleting a diagnostic parameter report structure

identifier implies deleting the corresponding
subsampling rate if any (see also requirement
6.15.4.2.1d).

k. For each valid instruction to delete an application process from the
diagnostic parameter report storage-control configuration, the packet
selection subservice shall, for the related packet store:

310

ECSS-E-ST-70-41C
15 April 2016

1. delete the diagnostic parameter report storage definition for the
specified application process identifier.

l. For each valid instruction to empty the diagnostic parameter report
storage-control configuration, the packet selection subservice shall, for
the related packet store:
1. delete all diagnostic parameter report storage definitions.

6.15.4.6.3 Report the content of the diagnostic parameter report
storage-control configuration

a. The packet selection subservice capability to report the content of the
diagnostic parameter report storage-control configuration of a packet
store shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,37] report the content of the diagnostic
parameter report storage-control configuration".
The responses are data reports of message type
"TM[15,38] diagnostic parameter report storage-
control configuration content report".

NOTE 2 That capability requires the capability for that
subservice to control, per diagnostic parameter
report structure, the storage of diagnostic
parameter reports (refer to requirement
6.15.4.2.1b).

b. Each request to report the content of the diagnostic parameter report
storage-control configuration shall contain exactly one instruction to
report the content of the diagnostic parameter report storage-control
configuration.

c. Each instruction to report the content of the diagnostic parameter report
storage configuration shall contain:
1. the packet store identifier of the packet store.

d. The packet selection subservice shall reject any instruction to report the
content of the diagnostic parameter report storage configuration if:
1. that instruction refers to a packet store that does not exist.

e. For each valid instruction to report the content of the diagnostic
parameter report storage configuration, the packet selection subservice
shall generate, for each existing diagnostic parameter report storage
definition of the related packet store, a single diagnostic parameter report
storage definition notification that includes:
1. if the packet selection subservice controls more than one

application process, the related application process identifier;
2. for each diagnostic parameter report structure identifier entry:

(a) the diagnostic parameter report structure identifier;
(b) if subsampling is supported, the subsampling rate.
NOTE 1 For item 1, refer to requirement 6.15.4.1.1a.
NOTE 2 For item 2(b), refer to requirement 6.15.4.2.1d.

311

ECSS-E-ST-70-41C
15 April 2016

f. For each valid request to report the content of the diagnostic parameter
report storage-control configuration, the packet selection subservice shall
generate a single diagnostic parameter report storage-control
configuration content report that includes:
1. the packet store identifier of the related packet store ;
2. all related diagnostic parameter report storage-control definition

notifications.

6.15.4.7 Managing the event report blocking storage-control
configuration

6.15.4.7.1 Add event definition identifiers to the event report blocking
storage-control configuration

a. The packet selection subservice shall provide the capability to add event
definition identifiers to the event report blocking storage-control
configuration of a packet store if that subservice provides the capability
to control, per event definition, the storage of event reports.

NOTE 1 The corresponding requests are of message type
"TC[15,34] add event definition identifiers to the
event report blocking storage-control
configuration".

NOTE 2 For the capability to control, per event definition,
the storage of event reports, refer to requirement
6.15.4.2.1c.

NOTE 3 For the capability to delete event definition
identifiers from the event report blocking storage-
control configuration, refer to clause 6.15.4.7.2.

b. Each request to add event definition identifiers to the event report
blocking storage-control configuration shall contain:
1. the packet store identifier of the packet store whose event report

blocking storage-control configuration is to change;
2. exactly one of:

(a) one or more instructions to add an event definition identifier
to the event report blocking storage-control configuration,

(b) an instruction to add all event definition identifiers to the
event report blocking storage-control configuration.

c. The packet selection subservice shall reject any request to add event
definition identifiers to the event report blocking-control configuration if:
1. that request refers to a packet store that does not exist.

d. Each instruction to add an event definition identifier to the event report
blocking storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction;

2. the event definition identifier.
NOTE For item 1, refer to requirement 6.15.4.1.1a.

312

ECSS-E-ST-70-41C
15 April 2016

e. Each instruction to add all event definition identifiers to the event report
blocking storage-control configuration shall contain:
1. the application process identifier addressed by that instruction.

f. The packet selection subservice shall reject any instruction contained
within a request to add event definition identifiers to the event report
blocking storage-control configuration if:
1. that instruction refers to an application process that is not

controlled by that subservice.

g. The packet selection subservice shall reject any instruction to add an
event definition identifier to the event report blocking storage-control
configuration if:
1. the maximum number of event definition identifiers that can be

contained within an event report blocking storage-control
definition is already reached;

2. the corresponding event report blocking storage-control definition
has no event definition identifier already defined.

h. For each instruction contained within a request to add event definition
identifiers to the event report blocking storage-control configuration that
it rejects, the packet selection subservice shall generate the failed start of
execution notification for that instruction.

i. The packet selection subservice shall process any valid instruction that is
contained within a request to add event definition identifiers to the event
report blocking storage-control configuration regardless of the presence
of faulty instructions.

j. For each valid instruction to add an event definition identifier to the
event report blocking storage-control configuration, the packet selection
subservice shall, for the related packet store:
1. add, for the specified application process identifier, an event report

blocking storage-control definition if not already existing;
2. add, to the related event report blocking storage-control definition,

the specified event definition identifier, if not already existing.

k. For each valid instruction to add all event definition identifiers to the
event report blocking storage-control configuration, the packet selection
subservice shall, for the related packet store:
1. add, for the specified application process identifier, an event report

blocking storage-control definition if not already existing;
2. delete, if any, all event definition identifiers of the related event

report blocking storage-control definition.

6.15.4.7.2 Delete event definition identifiers from the event report
blocking storage-control configuration

a. The packet selection subservice shall provide the capability to delete
event definition identifiers from the event report blocking storage-control
configuration of a packet store if that subservice provides the capability
to control, per event definition, the storage of event reports.

313

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 The corresponding requests are of message type
"TC[15,33] delete event definition identifiers from
the event report blocking storage-control
configuration".

NOTE 2 For the capability to control, per event definition,
the storage of event reports, refer to requirement
6.15.4.2.1c.

NOTE 3 For the capability to add event definition
identifiers to the event report blocking storage-
control configuration, refer to clause 6.15.4.7.1.

b. Each request to delete event definition identifiers from the event report
blocking storage-control configuration shall contain the packet store
identifier of the packet store whose event report blocking storage-control
configuration is to change and exactly one of:
1. any combination of one or more instructions:

(a) to delete an event definition identifier from the event report
blocking storage-control configuration,

(b) to delete an application process from the event report
blocking storage-control configuration;

2. an instruction to empty the event report blocking storage-control
configuration.
NOTE The instructions to empty the event report

blocking storage-control configuration contain no
argument.

c. Each instruction to delete an event definition identifier from the event
report blocking storage-control configuration shall contain:
1. if the packet selection subservice controls more than one

application process, the application process identifier addressed by
that instruction;

2. the event definition identifier.
NOTE For item 1, refer to requirement 6.15.4.1.1a.

d. The packet selection subservice shall reject any instruction to delete an
event definition identifier from the event report blocking storage-control
configuration if:
1. that instruction refers to an application process identifier that is

not in the event report blocking control configuration of the related
packet store;

2. that instruction refers to an event definition identifier that is not in
the event report blocking control definition for the specified
application process identifier.

e. For each instruction to delete an event definition identifier from the event
report blocking storage-control configuration that it rejects, the packet
selection subservice shall generate the failed start of execution
notification for that instruction.

f. Each instruction to delete an application process from the event report
blocking storage-control configuration shall contain:

314

ECSS-E-ST-70-41C
15 April 2016

1. the application process identifier addressed by that instruction.

g. The packet selection subservice shall reject any instruction to delete an
application process from the event report blocking storage-control
configuration if:
1. that instruction refers to an application process identifier that is

not in the event report blocking control configuration of the related
packet store.

h. For each instruction to delete an application process from the event
report blocking storage-control configuration that it rejects, the packet
selection subservice shall generate the failed start of execution
notification for that instruction.

i. The packet selection subservice shall process any valid instruction that is
contained within a request to delete event definition identifiers from the
event report blocking storage-control configuration regardless of the
presence of faulty instructions.

j. For each valid instruction to delete an event definition identifier from the
event report blocking storage-control configuration, the packet selection
subservice shall, for the related packet store:
1. delete the event definition identifier related to the specified

application process identifier;
2. if that event definition identifier deletion results in an emptied

event report blocking storage-control definition, delete that event
report blocking storage-control definition.

k. For each valid instruction to delete an application process from the event
report blocking storage-control configuration, the packet selection
subservice shall, for the related packet store:
1. delete the event report blocking control definition for the specified

application process identifier.

l. For each valid instruction to empty the event report blocking storage-
control configuration, the packet selection subservice shall, for the related
packet store:
1. delete all event report blocking storage-control definitions.

6.15.4.7.3 Report the content of the event report blocking storage-
control configuration

a. The packet selection subservice capability to report the content of the
event report blocking storage-control configuration of a packet store shall
be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[15,39] report the content of the event report
blocking storage-control configuration". The
responses are data reports of message type
"TM[15,40] event report blocking storage-control
configuration content report".

NOTE 2 That capability requires the capability for that
subservice to control, per event definition, the

315

ECSS-E-ST-70-41C
15 April 2016

storage of event reports, refer to requirement
6.15.4.2.1c.

b. Each request to report the content of the event report blocking storage-
control configuration shall contain exactly one instruction to report the
content of the event report blocking storage-control configuration.

c. Each instruction to report the content of the event report blocking control
configuration shall include:
1. the packet store identifier of the packet store.

d. The packet selection subservice shall reject any instruction to report the
content of the event report blocking control configuration if:
1. that instruction refers to a packet store that does not exist.

e. For each valid instruction to report the content of the event report
blocking storage-control configuration, the packet selection subservice
shall generate, for each existing event report blocking storage-control
definition of the related packet store, a single event report blocking
storage-control definition notification that includes:
1. if the packet selection subservice controls more than one

application process, the related application process identifier;
2. for each event definition identifier entry:

(a) the event definition identifier.
NOTE For item 1, refer to requirement 6.15.4.1.1a.

f. For each valid request to report the content of the event report blocking
storage-control configuration, the packet selection subservice shall
generate a single event report blocking storage-control configuration
content report that includes:
1. the packet store identifier of the related packet store;
2. all related event report blocking storage-control definition

notifications.

6.15.4.8 Subservice observables
 This Standard does not define any observables for the packet selection

subservice.

316

ECSS-E-ST-70-41C
15 April 2016

6.16 ST[16] (reserved)

317

ECSS-E-ST-70-41C
15 April 2016

6.17 ST[17] test

6.17.1 Scope

6.17.1.1 General
 The test service type provides the capability to activate test functions

implemented on-board and to report the results of such tests.

 The test service type defines a single standardized subservice type, i.e. the test
subservice type.

6.17.1.2 Test subservice
 The test subservice type provides the capability to perform a set of end-to-end

test functions that can be exercised under ground control. These include, for
example, an are-you-alive function.

6.17.2 Service layout

6.17.2.1 Subservice

6.17.2.1.1 Test subservice

a. Each test service shall contain at least one test subservice.

6.17.2.2 Application process
a. Each application process shall host at most one test subservice provider.

6.17.3 Perform an are-you-alive connection test
a. The test subservice shall provide the capability to perform an are-you-

alive connection test.
NOTE 1 The corresponding requests are of message type

"TC[17,1] perform an are-you-alive connection
test". The responses are data reports of message
type "TM[17,2] are-you-alive connection test
report".

NOTE 2 The end-to-end connection is achieved when the
application process is alive and the communication
to the application process is active.

b. Each request to perform an are-you-alive connection test shall contain
exactly one instruction to perform an are-you-alive connection test.

NOTE The instructions to perform an are-you-alive
connection test contain no argument.

318

ECSS-E-ST-70-41C
15 April 2016

c. For each valid instruction to perform an are-you-alive connection test, the
test subservice shall generate a single are-you-alive connection test
notification that notifies that the application process that hosts the test
subservice is alive and has successfully received the request.

NOTE The are-you-alive connection test notifications
contain no parameter.

d. For each valid request to perform an are-you-alive connection test, the
test subservice shall generate a single are-you-alive connection test report
that includes the related are-you-alive connection test notification.

NOTE The reception on the ground of the report confirms
that the communication routes (uplink and
downlink) between the ground and the application
process are operational and that the application
process itself is performing a minimum set of
functions.

6.17.4 End-to-end is-application-process-alive
connection testing

6.17.4.1 Application process accessibility
a. The list of application processes for which the test subservice can perform

an on-board connection testing shall be declared when specifying that
subservice.

NOTE The application process that hosts the test
subservice is not included in this list.

b. For each application process for which the test subservice can perform an
on-board connection testing, the criteria for a successful on-board
connection test between that application process and that service shall be
declared when specifying that subservice.

6.17.4.2 Perform an on-board connection test
a. The test subservice capability to perform an on-board connection test

shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[17,3] perform an on-board connection test".
The responses are data reports of message type
"TM[17,4] on-board connection test report".

NOTE 2 The on-board connection test is between two on-
board application processes, i.e. the one executing
the request and the one addressed by the
argument of the related instruction.

b. Each request to perform an on-board connection test shall contain exactly
one instruction to perform an on-board connection test.

c. Each instruction to perform an on-board connection test shall contain:

319

ECSS-E-ST-70-41C
15 April 2016

1. the identifier of the application process that connection test is
requested.

d. The test subservice shall reject any request to perform an on-board
connection test if:
1. that request contains an instruction that refers to an application

process that is not in the list of application processes for which the
test subservice can perform an on-board connection testing.

e. For each request to perform an on-board connection test that is rejected,
the test subservice shall generate a failed start of execution notification.

f. For each valid instruction to perform an on-board connection test, the test
subservice shall:
1. perform a connection test with the application process referred to

by that instruction;
2. if the criteria for a successful on-board connection test with that

application process are satisfied, generate a single on-board
connection test notification that includes the identifier of the
application process that connection has been tested.

3. if the criteria for a successful on-board connection test with that
application process are not satisfied, generate a failed completion
of execution verification report.

g. For each valid request to perform an on-board connection test, the test
subservice shall generate a single on-board connection test report that
includes the related on-board connection test notification.

6.17.5 Subservice observables
 This Standard does not define any observables for the test subservice.

320

ECSS-E-ST-70-41C
15 April 2016

6.18 ST[18] on-board control procedure

6.18.1 Scope

6.18.1.1 General
 The on-board control procedure service type is compliant with and

complements the spacecraft on-board control procedures standard (refer to
ECSS-E-ST-70-01).

 The on-board control procedure service type defines two standardized
subservice types, i.e.:

• the OBCP management subservice type;

• the OBCP engine management subservice type.

6.18.1.2 OBCP management subservice
 The OBCP management subservice type provides an interface to the OBCP

engine that executes OBCPs. The subservice type therefore provides the
capability to control, from ground, the on-board execution of OBCPs.

 The OBCP code represents the form of the procedure that can be loaded within
the OBCP engine for subsequent execution.

 A list of OBCP arguments can be associated to an OBCP, corresponding to the
values that it expects to receive at execution initiation time. A list of OBCP
parameters can also be associated to an OBCP, corresponding to the values that
it expects to receive during execution. Refer to ECSS-E-ST-70-31 for OBCP
arguments and parameters. The validity of arguments and parameters supplied
to an OBCP is checked by the OBCP itself, not by the OBCP management
subservice.

 ECSS-E-ST-70-01 specifies that the procedures can contain steps that are
sequences of OBCP source code statements constituting the smallest operational
units within an OBCP. The OBCP management subservice type supports the
use of steps in accordance with ECSS-E-ST-70-01. Within the OBCP code, each
ECSS-E-ST-70-01 step is represented by exactly one step identifier.

6.18.1.3 OBCP engine management subservice
 The OBCP engine management subservice type provides the capability to

control the OBCP engine that is responsible for executing the OBCPs.

321

ECSS-E-ST-70-41C
15 April 2016

6.18.2 Service layout

6.18.2.1 Subservice

6.18.2.1.1 OBCP management subservice

a. Each on-board control procedure service shall contain exactly one OBCP
management subservice.

6.18.2.1.2 OBCP engine management subservice

a. Each on-board control procedure service shall contain at most one OBCP
engine management subservice.

6.18.2.2 Application process
a. For each on-board control procedure service that contains both, an OBCP

management subservice and an OBCP engine management subservice,
the two subservice providers shall be hosted by the same application
process.

b. Each application process shall host at most one OBCP subservice
provider.

c. Each application process shall host at most one OBCP engine
management subservice provider.

6.18.2.3 OBCP engine
a. Each on-board control procedure service shall be associated to exactly

one OBCP engine.

b. The on-board control procedure service shall maintain a status that
reflects whether the OBCP engine is running or not.

NOTE 1 This status is called the "OBCP engine status".
NOTE 2 This status exists regardless of the presence of an

OBCP engine management subservice to start or
stop the OBCP engine.

6.18.3 Accessibility

6.18.3.1 Application process
a. The list of application processes that can be addressed by the on-board

control procedure service shall be declared when specifying that service.
NOTE 1 The application process that hosts the on-board

control procedure service is always part of that list.
NOTE 2 This Standard assumes that all requests of

addressable application processes can be used by
the on-board control procedure service.

NOTE 3 When the on-board control procedure service
releases a request, the request is processed by an

322

ECSS-E-ST-70-41C
15 April 2016

executing service, indicated by the service type
and the application process identifier within the
request. The generation of verification reports for
the request is the responsibility of the executing
service. The destination of the generated
verification reports is the application process that
hosts that on-board control procedure service.

6.18.3.2 Parameter
a. The on-board control procedure service shall be able to collect the values

of each on-board parameter that is accessible to the application processes
that can be addressed by the on-board control procedure service.

NOTE The accessible application processes are those
specified by requirement 6.18.3.1a.

6.18.4 OBCP management subservice

6.18.4.1 OBCP definition

6.18.4.1.1 Resources

a. The maximum number of OBCPs that the OBCP management subservice
can contemporaneously process at any time shall be declared when
specifying that subservice

b. The total resources available to the OBCP engine for storage of OBCPs
shall be declared when specifying the OBCP management subservice.

6.18.4.1.2 OBCP checksum

a. Whether the OBCP management subservice verifies the checksum of the
OBCP code when loading an OBCPs into the engine shall be declared
when specifying that subservice.

NOTE 1 For the checksum algorithm, refer to clause 5.4.4.
NOTE 2 In a request to direct-load an OBCP, the OBCP

checksum is contained directly within the request,
see clause 6.18.4.4.2.

NOTE 3 In a request to load an OBCP by reference (see
clause 6.18.4.4.3) or a request to load by reference
and activate an OBCP (see clause 6.18.4.4.6), the
OBCP checksum is contained within the file or as a
file attribute.

6.18.4.1.3 OBCP identifier

a. Each OBCP shall have a unique OBCP identifier.
NOTE If the OBCP is loaded from a file, the OBCP

identifier can be used by the loading policy as
described in clause 6.18.4.4.3. See also E-ST-70-01,
requirement 5.1a.

323

ECSS-E-ST-70-41C
15 April 2016

6.18.4.2 OBCP execution observability level

6.18.4.2.1 General

a. For each of the following OBCP execution observability levels, whether
the OBCP management subservice supports that observability level shall
be declared when specifying that subservice:
1. at-procedure-level observability;
2. at-step-level observability;
3. at-detailed-level observability;
4. no-observability.

b. If the OBCP management subservice does not support the capability for
configuring the OBCP execution observability level, the observability
level implemented for that subservice shall be declared when specifying
that subservice.

c. If the at-procedure-level OBCP execution observability is selected, the
OBCP management subservice shall raise an OBCP execution
observability event for each OBCP whose execution status changes to:
1. "active and running" due to:

(a) a request to activate that OBCP;
(b) a request to resume that OBCP;

2. "active and held" due to:
(a) a request to suspend that OBCP;
(b) the completion of execution of a step of that OBCP;

3. "inactive" due to:
(a) the successful or failed completion of execution of that

OBCP;
(b) a request to abort the execution of that OBCP;
(c) a request to stop the execution of that OBCP.
NOTE 1 The activation, suspending, resuming, stopping

and aborting of OBCP execution initiated from
ground can also be reported as verification reports
of the requests provided by the OBCP
management subservice.

NOTE 2 This observability level is especially useful to
report the execution of OBCPs autonomously
initiated from within an OBCP.

NOTE 3 Refer to clause 6.5.3 for additional requirements
related to these events. The auxiliary data
provided by the event include the OBCP identifier
and the conditions that caused the event to occur.

d. If the at-step-level OBCP execution observability is selected, in addition
to the "at-procedure-level" OBCP execution events, the OBCP
management subservice shall raise an OBCP execution observability
event:
1. for each step of the OBCP that has been reached.

324

ECSS-E-ST-70-41C
15 April 2016

NOTE Refer to clause 6.5.3 for additional requirements
related to these events.

e. If the at-detailed-level OBCP execution observability is selected, in
addition to the "at-procedure-level" and "at-step-level" OBCP execution
events, the list of OBCP execution observability events used for that
observability level together with their raising conditions shall be declared
when specifying the OBCP management subservice.

NOTE 1 For example, an at-detailed-level event can be
associated to the initiation of an activity, the
execution of a branch (e.g. an IF statement, a loop
statement), the execution of a statement.

NOTE 2 Refer to clause 6.5.3 for additional requirements
related to these events.

6.18.4.2.2 Accessibility

a. If the OBCP management subservice provides the capability to raise
OBCP execution observability related events, the associated event
reporting subservice shall be declared when specifying that OBCP
management subservice.

NOTE 1 This event reporting subservice is responsible for
catching the events generated by the OBCP
management subservice and issuing the
corresponding event reports.

NOTE 2 The event reporting subservice is specified in
clause 6.5.

6.18.4.3 Execution status
a. For each OBCP that is loaded within the OBCP engine, the OBCP

management subservice shall maintain the OBCP execution status
indicating whether that OBCP is:
1. inactive,
2. active and running;
3. active and held.

NOTE 1 The "active and held" execution status means that
the OBCP execution is suspended.

NOTE 2 If an OBCP is waiting for an event, the OBCP
execution status is "active and running".

NOTE 3 An OBCP is described as active if it has execution
status "active and running" or "active and held". It
is described as running if it has execution status
"active and running". It is described as held if it
has execution status "active and held".

325

ECSS-E-ST-70-41C
15 April 2016

6.18.4.4 Loading, activating and deleting

6.18.4.4.1 Capability

a. The OBCP management subservice shall provide at least one of the
following capabilities to load an OBCP into the OBCP engine:
1. the capability to direct-load an OBCP specified in clause 6.18.4.4.2;
2. the capability to load an OBCP by reference specified in clause

6.18.4.4.3;
3. the capability to load by reference and activate an OBCP specified

in clause 6.18.4.4.6.
NOTE 1 Direct loading an OBCP means the corresponding

request contains the OBCP code.
NOTE 2 Loading an OBCP by reference means that the

OBCP code is already defined on-board within a
file. The request to load that OBCP refers to that
file and is in accordance with the loading policy
defined in E-ST-70-01 clauses 5.4.4.4a, 5.4.4.4b and
5.4.4.4c.

b. If the capability to load an OBCP by reference is provided, whether the
OBCP management subservice supports the loading policy defined in E-
ST-70-01 shall be declared when specifying that subservice.

6.18.4.4.2 Direct-load an OBCP

a. The OBCP management subservice capability to direct-load an OBCP
shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[18,1] direct-load an OBCP".

NOTE 2 For that declaration, refer to requirement
6.18.4.4.1a.

NOTE 3 For the capability to unload an OBCP, refer to
clause 6.18.4.4.4.

b. Each request to direct-load an OBCP shall contain exactly one instruction
to direct-load an OBCP.

c. Each instruction to direct-load an OBCP shall contain:
1. the identifier of the OBCP;
2. the OBCP code to load into the OBCP engine;
3. if the OBCP management subservice verifies the checksum of the

OBCP code, the checksum of the OBCP code.
NOTE For item 3, refer to requirement 6.18.4.1.2a.

d. If the OBCP management subservice verifies the checksum of the OBCP
code contained within the requests to direct-load an OBCP, that
subservice shall checksum the OBCP code prior to loading the OBCP
code into the OBCP engine.

e. The OBCP management subservice shall reject any request to direct-load
an OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;

326

ECSS-E-ST-70-41C
15 April 2016

2. that request contains an instruction that refers to an OBCP
identifier that is already in the OBCP engine;

3. the OBCP code in the instruction fails the checksum verification;
4. the OBCP cannot be loaded due to the lack of OBCP engine

available resources.

f. For each request to direct-load an OBCP that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

g. For each valid instruction to direct-load an OBCP, the OBCP
management subservice shall:
1. load the OBCP code in the OBCP engine;
2. set the execution status of the OBCP to "inactive".

NOTE The OBCP identifier and the OBCP checksum (if
used) are also stored in the OBCP engine.

6.18.4.4.3 Load an OBCP by reference

a. The OBCP management subservice capability to load an OBCP by
reference shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[18,13] load an OBCP by reference".

NOTE 2 For that declaration, refer to requirement
6.18.4.4.1a.

NOTE 3 For the capability to unload an OBCP, refer to
clause 6.18.4.4.4.

b. Each request to load an OBCP by reference shall contain exactly one
instruction to load an OBCP by reference.

c. Each instruction to load an OBCP by reference shall contain:
1. the identifier of the OBCP;
2. if the OBCP is not to be loaded according to the loading policy, the

file path of the on-board file that contains the OBCP code to load
into the OBCP engine.
NOTE When the loading policy is used, the policy

determines which on-board file contains the OBCP
code to load into the OBCP engine, refer to
requirement 6.18.4.4.1b.

d. If the OBCP management subservice verifies the checksum of OBCP
code, the subservice shall checksum the OBCP code in the on-board file
prior to loading the OBCP code into the OBCP engine.

e. The OBCP management subservice shall reject any request to load an
OBCP by reference if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is already in the OBCP engine;
3. that request contains an instruction that refers to a file that does

not exist;

327

ECSS-E-ST-70-41C
15 April 2016

4. that request contains an instruction that refers to a file that is not
recognized as an OBCP file;

5. the on-board file determined by the loading policy does not exist;
6. the OBCP code in the file fails the checksum verification;
7. the OBCP cannot be loaded due to the lack of OBCP engine

available resources.

f. For each request to load an OBCP by reference that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

g. For each valid instruction to load an OBCP by reference, the OBCP
management subservice shall:
1. load the OBCP code contained in the file into the OBCP engine;
2. set the execution status of the OBCP to "inactive".

NOTE The OBCP identifier and the OBCP checksum (if
used) are also stored in the OBCP engine.

6.18.4.4.4 Unload an OBCP

a. The OBCP management subservice shall provide the capability to unload
an OBCP if the capability to direct-load an OBCP or the capability to load
an OBCP by reference is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[18,2] unload an OBCP".

NOTE 2 For the capability to direct-load an OBCP, refer to
clause 6.18.4.4.2.

NOTE 3 For the capability to load an OBCP by reference,
refer to clause 6.18.4.4.3.

b. Each request to unload an OBCP shall contain exactly one instruction to
unload an OBCP.

c. Each instruction to unload an OBCP shall contain:
1. the identifier of the OBCP.

d. The OBCP management subservice shall reject any request to unload an
OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine;
3. that request contains an instruction that refers to an OBCP that is

active.
NOTE The unload request can only be used for an OBCP

with execution status "inactive".

e. For each request to unload an OBCP that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

f. For each valid instruction to unload an OBCP, the OBCP management
subservice shall:
1. unload the OBCP from the engine;

328

ECSS-E-ST-70-41C
15 April 2016

2. clean the engine from any information related to that OBCP.
NOTE Item 2 implies that, after removal of the OBCP from

the engine, the identifier of that OBCP can be reused.

6.18.4.4.5 Activate an OBCP

a. The OBCP management subservice shall provide the capability to
activate an OBCP.

NOTE 1 The corresponding requests are of message type
"TC[18,3] activate an OBCP".

NOTE 2 For the capability to stop an OBCP, refer to clause
6.18.4.4.7.

b. Each request to activate an OBCP shall contain exactly one instruction to
activate an OBCP.

c. Each instruction to activate an OBCP shall contain:
1. the identifier of the OBCP;
2. if selecting the OBCP execution observability level is supported,

the observability level to use during the execution of the OBCP;
3. if the OBCP uses arguments, the argument values.

NOTE For item 2, refer to requirement 6.18.4.2.1a.

d. The OBCP management subservice shall reject any request to activate an
OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine;
3. that request contains an instruction that refers to an observability

level that is invalid;
4. that request contains an instruction that refers to an OBCP that is

active;
5. that OBCP cannot be activated due to the lack of OBCP engine

availability resources.

e. For each request to activate an OBCP that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

f. For each valid instruction to activate an OBCP, the OBCP management
subservice shall:
1. remove the execution trace of the previous execution of that OBCP,

if any;
2. enable the raising of OBCP execution observability events

according to the OBCP execution observability level of that OBCP;
3. set the execution status of the OBCP to "active and running";
4. initiate the execution of the OBCP with the related argument

values.
NOTE At the end of execution of the OBCP, the OBCP

status is "inactive" and remains loaded in the
OBCP engine.

329

ECSS-E-ST-70-41C
15 April 2016

6.18.4.4.6 Load by reference and activate an OBCP

a. The OBCP management subservice capability to load by reference and
activate an OBCP shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[18,19] load by reference and activate an
OBCP".

NOTE 2 For that declaration, refer to requirement
6.18.4.4.1a.

NOTE 3 For the capability to stop an OBCP, refer to clause
6.18.4.4.7.

NOTE 4 For the capability to stop and unload an OBCP,
refer to clause 6.18.4.4.8.

b. Each request to load by reference and activate an OBCP shall contain
exactly one instruction to load by reference and activate an OBCP.

c. Each instruction to load by reference and activate an OBCP shall contain:
1. the identifier of the OBCP;
2. if the OBCP is not loaded according to the loading policy, the file

path of the on-board file that contains the OBCP code to load into
the OBCP engine;

3. if selecting the OBCP execution observability level is supported,
the observability level to use during the execution of the OBCP;

4. if the OBCP uses arguments, the argument values.
NOTE 1 For item 2, refer to requirement 6.18.4.4.1b. When

the loading policy is used, the policy determines
which on-board file contains the OBCP code to
load into the OBCP engine.

NOTE 2 For item 3, refer to requirement 6.18.4.2.1a.

d. If the OBCP management subservice verifies the checksum of OBCP
code, the subservice shall checksum the OBCP code in the on-board file
prior to loading the OBCP code into the OBCP engine.

e. The OBCP management subservice shall reject any request to load by
reference and activate an OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is already in the OBCP engine;
3. that request contains an instruction that refers to a file that does

not exist;
4. that request contains an instruction that refers to a file that is not

recognized as an OBCP file;
5. the on-board file determined by the loading policy does not exist;
6. the OBCP code in the file fails the checksum verification;
7. that request contains an instruction that refers to an observability

level that is invalid;
8. that OBCP cannot be loaded and activated due to the lack of OBCP

engine available resources.

330

ECSS-E-ST-70-41C
15 April 2016

NOTE Item 8 implies that insufficient resources to
activate the OBCP prevents the loading of the
OBCP.

f. For each request to load by reference and activate an OBCP that is
rejected, the OBCP management subservice shall generate a failed start of
execution notification.

g. For each valid instruction to load by reference and activate an OBCP, the
OBCP management subservice shall:
1. load the OBCP code contained in the file into the OBCP engine;
2. enable the raising of OBCP execution observability events

according to the OBCP execution observability level of that OBCP;
3. set the execution status of the OBCP to "active and running";
4. initiate the execution of the OBCP with the related argument

values.
5. at the end of execution of the OBCP:

(a) remove the OBCP from the engine;
(b) clean the engine from any information related to that OBCP.
NOTE 1 The OBCP identifier and the OBCP checksum (if

used) are also stored in the OBCP engine.
NOTE 2 Item 5 implies that, after removal of the OBCP

from the engine, the identifier of that OBCP can be
reused.

6.18.4.4.7 Stop an OBCP

a. The OBCP management subservice shall provide the capability to stop an
OBCP.

NOTE 1 The corresponding requests are of message type
"TC [18,4] stop an OBCP".

NOTE 2 If several requests to stop an OBCP are received,
the OBCP execution stops at the first step reached.

b. Each request to stop an OBCP shall contain exactly one of:
1. exactly one instruction to stop an OBCP at the end of current step;
2. exactly one instruction to stop an OBCP at the end of a step.

c. Each instruction to stop an OBCP at the end of current step shall contain:
1. the identifier of the OBCP.

d. Each instruction to stop an OBCP at the end of a step shall contain:
1. the identifier of the OBCP;
2. the identifier of that step.

e. The OBCP management subservice shall reject any request to stop an
OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine.

331

ECSS-E-ST-70-41C
15 April 2016

f. For each request to stop an OBCP that is rejected, the OBCP management
subservice shall generate a failed start of execution notification.

g. For each valid instruction to stop an OBCP at the end of current step, the
OBCP management subservice shall:
1. if the OBCP is running, wait until the OBCP execution ends the

execution of the running step;
2. freeze the execution of any remaining OBCP statements;
3. remove the "stop at step" configuration properties resulting from

the received requests to stop that OBCP;
4. set the execution status of the OBCP to "inactive".

h. For each valid instruction to stop an OBCP at the end of a step, the OBCP
management subservice shall:
1. if the OBCP is running, wait until the OBCP execution reaches the

execution step referred to in the instruction;
2. freeze the execution of any remaining OBCP statements;
3. remove the "stop at step" configuration properties resulting from

the received requests to stop that OBCP;
4. set the execution status of the OBCP to "inactive".

6.18.4.4.8 Stop and unload an OBCP

a. The OBCP management subservice capability to stop and unload an
OBCP shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[18,20] stop and unload an OBCP".

NOTE 2 If several requests to stop and unload an OBCP are
received, the OBCP execution stops at the first step
reached.

b. Each request to stop and unload an OBCP shall contain exactly one of:
1. exactly one instruction to stop and unload an OBCP at the end of

current step;
2. exactly one instruction to stop and unload an OBCP at the end of a

step.

c. Each instruction to stop and unload an OBCP at the end of current step
shall contain:
1. the identifier of the OBCP.

d. Each instruction to stop and unload an OBCP at the end of a step shall
contain:
1. the identifier of the OBCP;
2. the identifier of that step.

e. The OBCP management subservice shall reject any request to stop and
unload an OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine.

332

ECSS-E-ST-70-41C
15 April 2016

f. For each request to stop and unload an OBCP that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

g. For each valid instruction to stop and unload an OBCP at the end of
current step, the OBCP management subservice shall:
1. if the OBCP is active:

(a) if the OBCP is running, wait until the OBCP execution ends
the execution of the running step;

(b) freeze the execution of any remaining OBCP statements;
2. unload the OBCP from the OBCP engine;
3. clean the engine from any remaining information related to that

OBCP.

h. For each valid instruction to stop and unload an OBCP at the end of a
step, the OBCP management subservice shall:
1. if the OBCP is active:

(a) if the OBCP is running, wait until the OBCP execution
reaches the execution step referred to in the instruction;

(b) freeze the execution of any remaining OBCP statements;
2. unload the OBCP from the OBCP engine;
3. clean the engine from any remaining information related to that

OBCP.

6.18.4.4.9 Abort an OBCP

a. The OBCP management subservice shall provide the capability to abort
an OBCP.

NOTE The corresponding requests are of message type
"TC[18,12] abort an OBCP".

b. Each request to abort an OBCP shall contain exactly one instruction to
abort an OBCP.

c. Each instruction to abort an OBCP shall contain:
1. the identifier of the OBCP.

d. The OBCP management subservice shall reject any request to abort an
OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine.

e. For each request to abort an OBCP that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

f. For each valid instruction to abort an OBCP, the OBCP management
subservice shall:
1. if the OBCP is active, freeze the execution of any remaining OBCP

statements;
2. set the status of the OBCP to "inactive".

333

ECSS-E-ST-70-41C
15 April 2016

6.18.4.4.10 Abort all OBCPs and report

a. The OBCP management subservice capability to abort all OBCPs and
report shall be declared when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[18,17] abort all OBCPs and report". The
responses are data reports of message type
"TM[18,18] aborted OBCP report".

b. Each request to abort all OBCPs and report shall contain exactly one
instruction to abort all OBCPs and report.

NOTE The instructions to abort all OBCPs and report
contain no argument.

c. The OBCP management subservice shall reject any request to abort all
OBCPs and report if:
1. the OBCP engine is not running.

d. For each request to abort all OBCPs and report that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

e. For each valid instruction to abort all OBCPs and report, the OBCP
management subservice shall:
1. freeze the execution of all OBCP statements;
2. for each active OBCP, set the execution status of that OBCP to

"inactive".
3. generate, for each aborted OBCP, a single aborted OBCP

notification that includes:
(a) the identifier of that aborted OBCP.

f. For each valid request to abort all OBCPs and report, the OBCP
management subservice shall generate a single aborted OBCP report that
includes all related aborted OBCP notifications.

6.18.4.5 Execution status reporting

6.18.4.5.1 Report the execution status of each OBCP

a. The OBCP management subservice capability to report the execution
status of each OBCP shall be declared when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[18,8] report the execution status of each
OBCP". The responses are data reports of message
type "TM[18,9] OBCP execution status report".

b. Each request to report the execution status of each OBCP shall contain
exactly one instruction to report the execution status of each OBCP.

NOTE The instructions to report the execution status of
each OBCP contain no argument.

c. The OBCP management subservice shall reject any request to report the
execution status of each OBCP if:
1. the OBCP engine is not running.

334

ECSS-E-ST-70-41C
15 April 2016

d. For each request to report the execution status of each OBCP that is
rejected, the OBCP management subservice shall generate a failed start of
execution notification.

e. For each valid instruction to report the execution status of each OBCP,
the OBCP management subservice shall:
1. generate, for each OBCP that is loaded within the engine, a single

OBCP execution status notification that includes:
(a) the identifier of that OBCP;
(b) if the OBCP management subservice verifies the checksum

of the OBCP code, the OBCP checksum;
(c) the execution status of that OBCP.

f. For each valid request to report the execution status of each OBCP, the
OBCP management subservice shall generate a single OBCP execution
status report that includes all related OBCP execution status notifications.

6.18.4.6 Suspending and resuming

6.18.4.6.1 Suspend an OBCP

a. The OBCP management subservice capability to suspend an OBCP shall
be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[18,5] suspend an OBCP".

NOTE 2 If several requests to suspend an OBCP are
received, the OBCP execution suspends at the first
step reached.

NOTE 3 For the capability to resume an OBCP, refer to
clause 6.18.4.6.2.

b. Each request to suspend an OBCP shall contain exactly one of:
1. exactly one instruction to suspend an OBCP at the end of current

step;
2. exactly one instruction to suspend an OBCP at the end of a step.

c. Each instruction to suspend an OBCP at the end of current step shall
contain:
1. the identifier of the OBCP.

d. Each instruction to suspend an OBCP at the end of a step shall contain:
1. the identifier of the OBCP;
2. the identifier of that step.

e. The OBCP management subservice shall reject any request to suspend an
OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine;
3. that request contains an instruction that refers to an OBCP that is

not active.

335

ECSS-E-ST-70-41C
15 April 2016

f. For each request to suspend an OBCP that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

g. For each valid instruction to suspend an OBCP at the end of current step,
the OBCP management subservice shall:
1. if the OBCP is running, wait until the OBCP execution ends the

execution of the running step;
2. freeze the execution of any remaining OBCP statements;
3. set the execution status of the OBCP to "active and held ".

h. For each valid instruction to suspend an OBCP at the end of a step, the
OBCP management subservice shall:
1. if the OBCP is running, wait until the OBCP execution reaches the

execution step referred to in the instruction;
2. freeze the execution of any remaining OBCP statements;
3. set the execution status of the OBCP to "active and held ".

6.18.4.6.2 Resume an OBCP

a. The OBCP management subservice shall provide the capability to resume
an OBCP if the capability to suspend an OBCP is provided by that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[18,6] resume an OBCP".

NOTE 2 For the capability to suspend an OBCP, refer to
clause 6.18.4.6.1.

b. Each request to resume an OBCP shall contain exactly one instruction to
resume an OBCP.

c. Each instruction to resume an OBCP shall contain:
1. the identifier of the OBCP.

d. The OBCP management subservice shall reject any request to resume an
OBCP if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine;
3. that request contains an instruction that refers to an OBCP that is

not active.

e. For each request to resume an OBCP that is rejected, the OBCP
management subservice shall generate a failed start of execution
notification.

f. For each valid instruction to resume an OBCP, the OBCP management
subservice shall:
1. if the execution status of the OBCP is "active and held", unfreeze

the execution of the OBCP at the position where it was frozen;
2. set the execution status of the OBCP to "active and running".

336

ECSS-E-ST-70-41C
15 April 2016

6.18.4.6.3 Activate and execute one OBCP step

a. The OBCP management subservice capability to activate and execute one
OBCP step shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[18,14] activate and execute one OBCP step".

NOTE 2 For the capability to resume and execute one
OBCP step, refer to clause 6.18.4.6.4.

b. Each request to activate and execute one OBCP step shall contain exactly
one instruction to activate and execute one OBCP step.

c. Each instruction to activate and execute one OBCP step shall contain:
1. the identifier of the OBCP;
2. if selecting the OBCP execution observability level is supported,

the observability level to use during the execution of the OBCP;
3. if the OBCP uses arguments, the argument values.

NOTE For item 2, refer to requirement 6.18.4.2.1a.

d. The OBCP management subservice shall reject any request to activate
and execute one OBCP step if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine;
3. that request contains an instruction that refers to an observability

level that is invalid;
4. that request contains an instruction that refers to an OBCP that is

active.

e. For each request to activate and execute one OBCP step that is rejected,
the OBCP management subservice shall generate a failed start of
execution notification.

f. For each valid instruction to activate and execute one OBCP step, the
OBCP management subservice shall:
1. remove the execution trace of the previous execution of that OBCP,

if any;
2. enable the raising of OBCP execution observability events

according to the OBCP execution observability level of that OBCP;
3. set the execution status of the OBCP to "active and running";
4. initiate the execution of the OBCP with the related argument

values;
5. wait until the raising of the first step identifier event;
6. freeze the execution of any remaining statements;
7. set the execution status of the OBCP to "active and held".

6.18.4.6.4 Resume and execute one OBCP step

a. The OBCP management subservice shall provide the capability to resume
and execute one OBCP step if the capability to activate and execute one
OBCP step is provided by that subservice.

337

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 The corresponding requests are of message type
"TC[18,15] resume and execute one OBCP step".

NOTE 2 For the capability to activate and execute one
OBCP step, refer to clause 6.18.4.6.3.

b. Each request to resume and execute one OBCP step shall contain exactly
one instruction to resume and execute one OBCP step.

c. Each instruction to resume and execute one OBCP step shall contain:
1. the identifier of the OBCP.

d. The OBCP management subservice shall reject any request to resume and
execute one OBCP step if any of the following conditions occurs:
1. the OBCP engine is not running;
2. that request contains an instruction that refers to an OBCP

identifier that is not loaded in the OBCP engine;
3. that request contains an instruction that refers to an OBCP that is

not held.

e. For each request to resume and execute one OBCP step that is rejected,
the OBCP management subservice shall generate a failed start of
execution notification.

f. For each valid instruction to resume and execute one OBCP step, the
OBCP management subservice shall:
1. set the execution status of the OBCP to "active and running";
2. unfreeze the execution of the OBCP at the position where it was

frozen when the OBCP was previously held;
3. wait until the raising of the next step identifier event;
4. freeze the execution of any remaining statements;
5. set the execution status of the OBCP to "active and held".

6.18.4.7 Communicating parameters

6.18.4.7.1 Communicate parameters to an OBCP

a. The OBCP management subservice capability to communicate
parameters to an OBCP shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[18,7] communicate parameters to an OBCP".

b. Each request to communicate parameters to an OBCP shall contain
exactly one instruction to communicate parameters to an OBCP.

c. Each instruction to communicate parameters to an OBCP shall contain:
1. the identifier of the OBCP;
2. the parameter values.

d. The OBCP management subservice shall reject any request to
communicate parameters to an OBCP if any of the following conditions
occurs:
1. the OBCP engine is not running;

338

ECSS-E-ST-70-41C
15 April 2016

2. that request contains an instruction that refers to an OBCP
identifier that is not loaded in the OBCP engine;

3. that request contains an instruction that refers to an OBCP
identifier that is not active.

e. For each request to communicate parameters to an OBCP that is rejected,
the OBCP management subservice shall generate a failed start of
execution notification.

f. For each valid instruction to communicate parameters to an OBCP, the
OBCP management subservice shall:
1. provide the parameter values to the OBCP.

6.18.4.8 Tracing

6.18.4.8.1 Set the observability level of OBCPs

a. The OBCP management subservice capability to set the observability
level of OBCPs shall be declared when specifying that subservice.

NOTE The corresponding requests are of message type
"TC[18,16] set the observability level of OBCPs".

b. Each request to set the observability level of OBCPs shall contain one or
more instructions to set the observability level of an OBCP.

c. Each instruction to set the observability level of an OBCP shall contain:
1. the identifier of an OBCP;
2. the observability level to set for that OBCP.

d. The OBCP management subservice shall reject any request to set the
observability level of OBCPs if:
1. the OBCP engine is not running.

e. For each request to set the observability level of OBCPs that is rejected,
the OBCP management subservice shall generate a failed start of
execution notification.

f. The OBCP management subservice shall reject any instruction to set the
observability level of an OBCP if any of the following conditions occurs:
1. that instruction refers to an OBCP identifier that is not loaded in

the OBCP engine;
2. that instruction refers to an observability level that is invalid;
3. that instruction refers to an OBCP that is not active.

g. For each instruction to set the observability level of an OBCP that it
rejects, the OBCP management subservice shall generate the failed start
of execution notification for that instruction.

h. The OBCP management subservice shall process any valid instruction
that is contained within a request to set the observability level of OBCPs
regardless of the presence of faulty instructions.

339

ECSS-E-ST-70-41C
15 April 2016

i. For each valid instruction to set the observability level of an OBCP, the
OBCP management subservice shall:
1. immediately enable the raising of OBCP execution observability

events associated to the new observability level;
2. disable the raising of OBCP execution observability events

associated to the previous observability level.

6.18.4.9 Subservice observables
a. The following observables shall be defined for the OBCP management

subservice:
1. the OBCP engine running status;
2. For each OBCP loaded in the OBCP engine:

(a) its identifier;
(b) its execution status;
(c) if the execution status is "running" or suspended, the

identifier of the current step.

6.18.5 OBCP engine management subservice

6.18.5.1 Controlling the OBCP engine

6.18.5.1.1 Start the OBCP engine

a. The OBCP engine management subservice shall provide the capability to
start the OBCP engine.

NOTE 1 The corresponding requests are of message type
"TC[18,21] start the OBCP engine".

NOTE 2 For the capability to stop the OBCP engine, refer to
clause 6.18.5.1.2.

b. Each request to start the OBCP engine shall contain exactly one
instruction to start the OBCP engine.

NOTE The instructions to start the OBCP engine contain
no argument.

c. The OBCP engine management subservice shall reject any request to start
the OBCP engine if:
1. the OBCP engine status is "running".

d. For each request to start the OBCP engine that is rejected, the OBCP
engine management subservice shall generate a failed start of execution
notification.

e. For each valid instruction to start the OBCP engine, the OBCP engine
management subservice shall:
1. run the OBCP engine initialization procedure.

f. The OBCP engine initialization procedure shall be declared when
specifying the OBCP engine management subservice.

340

ECSS-E-ST-70-41C
15 April 2016

6.18.5.1.2 Stop the OBCP engine

a. The OBCP engine management subservice shall provide the capability to
stop an OBCP engine.

NOTE 1 The corresponding requests are of message type
"TC[18,22] stop the OBCP engine".

NOTE 2 For the capability to start the OBCP engine, refer to
clause 6.18.5.1.1.

b. Each request to stop the OBCP engine shall contain exactly one
instruction to stop an OBCP engine.

NOTE The instructions to stop the OBCP engine contain
no argument.

c. The OBCP engine management subservice shall reject any request to stop
the OBCP engine if:
1. the OBCP engine is not running.

d. For each request to stop the OBCP engine that is rejected, the OBCP
engine management subservice shall generate a failed start of execution
notification.

e. For each valid instruction to stop the OBCP engine, the OBCP engine
management subservice shall:
1. abort the execution of all OBCPs;
2. unload all OBCPs from the engine;
3. set the OBCP engine status to "not running".

6.18.5.2 Subservice observables
 This Standard does not define any observables for the OBCP engine

management subservice.

341

ECSS-E-ST-70-41C
15 April 2016

6.19 ST[19] event-action

6.19.1 Scope

6.19.1.1 General
 The event-action service type provides the capability to define on-board actions

that can be autonomously executed when specific on-board events occur.

 This service is associated to one or more event reporting subservices and has
the visibility of all event reports generated by these services.

 The event-action service type defines a single standardized subservice type, i.e.
the event-action subservice type.

6.19.1.2 Event-action subservice
 The event-action subservice type includes the capability to maintain a list of

event-action definitions. Each event-action definition relates to an event (by
means of the corresponding event definition identifier) and the corresponding
request (i.e. the action). The subservice reacts to any event occurrence by
initiating the execution of the associated request. Such requests can, for
example, directly reconfigure hardware, start an on-board control procedure or
start a request sequence.

 The event-action subservice is an extension of the ground monitoring and
control. As such, the application process that executes a request released by the
subservice directly sends the request verification reports, if any, to the source
identified by the source identifier specified in the request.

6.19.2 Service layout

6.19.2.1 Subservice

6.19.2.1.1 Event-action subservice

a. Each event-action service shall contain at least one event-action
subservice.

6.19.2.2 Application process
a. Each application process shall host at most one event-action subservice

provider.

342

ECSS-E-ST-70-41C
15 April 2016

6.19.3 Accessibility

6.19.3.1 Event reporting
a. The list of event reporting subservices that generate the event reports

used by the event-action subservice shall be declared when specifying
that event-action subservice.

NOTE The event reporting subservice is specified in
clause 6.5

b. The event-action subservice shall be associated to at least one event
reporting subservice.

c. The event-action subservice shall be able to detect and react to all event
reports generated by the associated event reporting subservices.

6.19.3.2 Application process
a. The list of application processes that can be addressed by the event-

action subservice when releasing requests shall be declared when
specifying that subservice.

NOTE 1 The application process that hosts the event-action
subservice is always part of that list.

NOTE 2 This Standard assumes that all requests of
addressable application processes can be used by
the event-action subservice.

NOTE 3 When the event-action subservice releases a
request, the request is processed by an executing
service, indicated by the service type and the
application process identifier within the request.
The generation of the execution verification reports
for that request is the responsibility of the
executing service.

NOTE 4 Requests released by the event-action subservice
are not generated by that subservice but by the
source that initiated the add event-action
definition request, i.e. the original source.

6.19.4 Event-action definition
a. The maximum number of event-action definitions that the event-action

subservice can contemporaneously evaluate at any time shall be declared
when specifying that subservice.

b. Each event-action definition shall contain:
1. the system identifier of the event definition associated to an event,

that is the combination of:
(a) if the event-action subservice is associated to more than one

event reporting subservice, the identifier of the application
process that hosts the event reporting subservice;

(b) the event definition identifier;

343

ECSS-E-ST-70-41C
15 April 2016

2. the action consisting of the request to release when the event
report is detected.
NOTE For item 1(a), refer to requirement 6.19.3.2a.

6.19.5 Processing logic

6.19.5.1 Statuses
a. The event-action subservice shall maintain a status indicating whether

the overall event-action function is enabled or disabled.
NOTE This status is named "event-action function status".

b. For each event-action definition, the event-action subservice shall
maintain a status indicating whether the event-action definition is
enabled or disabled.

NOTE This status is named "event-action status".

6.19.5.2 Action initiation
a. If the event-action function is disabled, the event-action subservice shall

not trigger the action for any event-action definition.
NOTE When the event-action function is disabled, the

service does not react to any event reports.

b. When the enabled event-action function detects the occurrence of an
event that is used by an enabled event-action definition, the event-action
subservice shall immediately trigger the related action.

NOTE 1 Triggering an action implies releasing the
associated request.

NOTE 2 Once the action has been triggered and the request
released, no change is made to the event-action
status of that event-action definition, i.e. it remains
enabled.

6.19.6 Controlling the event-action function

6.19.6.1 Enable the event-action function
a. The event-action subservice shall provide the capability to enable the

event-action function.
NOTE 1 The corresponding requests are of message type

"TC[19,8] enable the event-action function".
NOTE 2 For the capability to disable the event-action

function, refer to clause 6.19.6.2.

b. Each request to enable the event-action function shall contain exactly one
instruction to enable the event-action function.

NOTE The instructions to enable the event-action
function contain no argument.

344

ECSS-E-ST-70-41C
15 April 2016

c. For each valid instruction to enable the event-action function, the event-
action subservice shall:
1. set the event-action function status to "enabled".

NOTE 1 When the event-action function status is "enabled",
the event-action subservice reacts to event reports
as specified in requirement 6.19.5.2b.

NOTE 2 Enabling the event-action function has no impact
on the event-action status of the event-action
definitions.

6.19.6.2 Disable the event-action function
a. The event-action subservice shall provide the capability to disable the

event-action function.
NOTE 1 The corresponding requests are of message type

"TC[19,9] disable the event-action function".
NOTE 2 For the capability to enable the event-action

function, refer to clause 6.19.6.1.

b. Each request to disable the event-action function shall contain exactly one
instruction to disable the event-action function.

NOTE The instructions to disable the event-action
function contain no argument.

c. For each valid instruction to disable the event-action function, the event-
action subservice shall:
1. set the event-action function status to "disabled".

NOTE 1 As specified in requirement 6.19.5.2a, the event-
action subservice does not react to event reports
when the event-action function status is "disabled".

NOTE 2 Disabling the event-action function has no impact
on the event-action status of the event-action
definitions.

6.19.7 Controlling the event-action definitions

6.19.7.1 Enable event-action definitions
a. The event-action subservice shall provide the capability to enable event-

action definitions.
NOTE 1 The corresponding requests are of message type

"TC[19,4] enable event-action definitions".
NOTE 2 For the capability to disable event-action

definitions, refer to clause 6.19.6.2.

b. Each request to enable event-action definitions shall contain:
1. one or more instructions to enable an event-action definition, or
2. exactly one instruction to enable all event-action definitions.

345

ECSS-E-ST-70-41C
15 April 2016

NOTE The instructions to enable all event-action
definitions contain no argument.

c. Each instruction to enable an event-action definition shall contain:
1. the system identifier of the event definition.

NOTE For the system identifier of the event definition,
refer to requirement 6.19.4b.1.

d. The event-action subservice shall reject any instruction to enable an
event-action definition if:
1. that instruction refers to an unknown event-action definition.

e. For each instruction to enable an event-action definition that it rejects, the
event-action subservice shall generate the failed start of execution
notification for that instruction.

f. The event-action subservice shall process any valid instruction that is
contained within a request to enable event-action definitions regardless
of the presence of faulty instructions.

g. For each valid instruction to enable an event-action definition, the event-
action subservice shall:
1. set the event-action status of that event-action definition to

"enabled".

h. For each valid instruction to enable all event-action definitions, the event-
action subservice shall:
1. for each event-action definition maintained by that subservice, set

its event-action status to "enabled".

6.19.7.2 Disable event-action definitions
a. The event-action subservice shall provide the capability to disable event-

action definitions.
NOTE 1 The corresponding requests are of message type

"TC[19,5] disable event-action definitions".
NOTE 2 For the capability to enable event-action

definitions, refer to clause 6.19.7.1.

b. Each request to disable event-action definitions shall contain:
1. one or more instructions to disable an event-action definition, or
2. exactly one instruction to disable all event-action definitions.

NOTE The instructions to disable all event-action
definitions contain no argument.

c. Each instruction to disable an event-action definition shall contain:
1. the system identifier of the event definition.

NOTE For the system identifier of the event definition,
refer to requirement 6.19.4b.1.

d. The event-action subservice shall reject any instruction to disable an
event-action definition if:
1. that instruction refers to an unknown event-action definition.

346

ECSS-E-ST-70-41C
15 April 2016

e. For each instruction to disable an event-action definition that it rejects,
the event-action subservice shall generate the failed start of execution
notification for that instruction.

f. The event-action subservice shall process any valid instruction that is
contained within a request to disable event-action definitions regardless
of the presence of faulty instructions.

g. For each valid instruction to disable an event-action definition, the event-
action subservice shall:
1. set the event-action status of that event-action definition to

"disabled".

h. For each valid instruction to disable all event-action definitions, the
event-action subservice shall:
1. for each event-action definition maintained by that subservice, set

its event-action status to "disabled".

6.19.8 Maintaining event-action definitions

6.19.8.1 Add event-action definitions
a. The event-action subservice shall provide the capability to add event-

action definitions.
NOTE 1 The corresponding requests are of message type

"TC[19,1] add event-action definitions".
NOTE 2 For the capability to delete event-action

definitions, refer to clause 6.19.8.3.
NOTE 3 For the capability to delete all event-action

definitions, refer to clause 6.19.8.4.

b. Each request to add event-action definitions shall contain one or more
instructions to add an event-action definition.

c. Each instruction to add an event-action definition shall contain:
1. the system identifier of the event definition;
2. the action consisting of the request to release when the event

report is detected.
NOTE For the system identifier of the event definition,

refer to requirement 6.19.4b.1.

d. The list of verification checks that the event-action subservice shall
perform on the request contained in the action of an instruction to add an
event-action definition shall be declared when specifying that subservice.

e. The event-action subservice shall reject any instruction to add an event-
action definition if any of the following conditions occurs:
1. that instruction refers to an event-action definition that is enabled;
2. the maximum number of event-action definitions that the service

can contemporaneously evaluate is already reached;
3. the request contained in the action of that instruction fails any of

the specified verification checks.

347

ECSS-E-ST-70-41C
15 April 2016

f. For each instruction to add an event-action definition that it rejects, the
event-action subservice shall generate the failed start of execution
notification for that instruction.

g. The event-action subservice shall process any valid instruction that is
contained within a request to add event-action definitions regardless of
the presence of faulty instructions.

h. For each valid instruction to add an event-action definition, the event-
action subservice shall:
1. if the identifier of the event definition in that instruction does not

refer to an existing event-action definition:
(a) create a new event-action definition with the identifier of the

event definition and the action specified in that instruction;
(b) set the event-action status of the new event-action definition

to "disabled".
2. if the identifier of the event definition in that instruction refers to

an existing event-action definition:
(a) replace the previously specified action of the existing event-

action definition by the action specified in that instruction.

6.19.8.2 Capability
a. The event-action subservice shall provide at least one of the following

capabilities:
1. the capability to delete event-action definitions specified in clause

6.19.8.3;
2. the capability to delete all event-action definitions specified in

clause 6.19.8.4.

6.19.8.3 Delete event-action definitions
a. The event-action subservice capability to delete event-action definitions

shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[19,2] delete event-action definitions".
NOTE 2 For that declaration, refer to requirement 6.19.8.2a.
NOTE 3 For the capability to add event-action definitions,

refer to clause 6.19.8.1.

b. Each request to delete event-action definitions shall contain one or more
instructions to delete an event-action definition.

c. Each instruction to delete an event-action definition shall contain:
1. the system identifier of the event definition.

NOTE For the identifier of the event definition, refer to
requirement 6.19.4b.1.

d. The event-action subservice shall reject any instruction to delete an event-
action definition if any of the following conditions occurs:
1. that instruction refers to an event-action definition that is enabled;

348

ECSS-E-ST-70-41C
15 April 2016

2. that instruction refers to an unknown event-action definition.

e. For each instruction to delete an event-action definition that it rejects, the
event-action subservice shall generate the failed start of execution
notification for that instruction.

f. The event-action subservice shall process any valid instruction that is
contained within a request to delete event-action definitions regardless of
the presence of faulty instructions.

g. For each valid instruction to delete an event-action definition, the event-
action subservice shall:
1. delete the event-action definition specified by that instruction.

6.19.8.4 Delete all event-action definitions
a. The event-action subservice capability to delete all event-action

definitions shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[19,3] delete all event-action definitions".
NOTE 2 For that declaration, refer to requirement 6.19.8.2a.
NOTE 3 For the capability to add event-action definitions,

refer to clause 6.19.8.1.

b. Each request to delete all event-action definitions shall contain exactly
one instruction to delete all event-action definitions.

NOTE The instructions to delete all event-action
definitions contain no argument.

c. For each valid instruction to delete all event-action definitions, the event-
action subservice shall:
1. set the event-action function status to "disabled";
2. delete all event-action definitions.

NOTE Each event-action definition is deleted without
regard to its enabled or disabled event-action
status.

6.19.8.5 Report the status of each event-action definition
a. The event-action subservice capability to report the status of each event-

action definition shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[19,6] report the status of each event-action
definition". The responses are data reports of
message type "TM[19,7] event-action status
report".

b. Each request to report the status of each event-action definition shall
contain exactly one instruction to report the status of each event-action
definition.

NOTE The instructions to report the status of each event-
action definition contain no argument.

349

ECSS-E-ST-70-41C
15 April 2016

c. For each valid instruction to report the status of each event-action
definition, the event-action subservice shall generate, for each event-
action definition, a single event-action status notification that includes:
1. the system identifier of the event definition;
2. the event-action status.

NOTE For the identifier of the event definition, see
requirement 6.19.4b.1.

d. For each valid request to report the status of each event-action definition,
the event-action subservice shall generate a single event-action status
report that includes all related event-action status notifications.

6.19.8.6 Report event-action definitions
a. The event-action subservice capability to report event-action definitions

shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[19,10] report event-action definitions". The
responses are data reports of message type
"TM[19,11] event-action definition report".

NOTE 2 That capability requires the capability for that
subservice to add event-action definitions, refer to
clause 6.19.8.1.

b. Each request to report event-action definitions shall contain:
1. one or more instructions to report an event-action definition, or
2. exactly one instruction to report all event-action definitions.

NOTE The instructions to report all event-action
definitions contain no argument.

c. Each instruction to report an event-action definition shall contain:
1. the system identifier of the event definition.

NOTE For the system identifier of the event definition,
refer to requirement 6.19.4b.1.

d. The event-action subservice shall reject any instruction to report an
event-action definition if:
1. that instruction refers to an unknown event-action definition.

e. For each instruction to report an event-action definition that it rejects, the
event-action subservice shall generate the failed start of execution
notification for that instruction.

f. The event-action subservice shall process any valid instruction that is
contained within a request to report event-action definitions regardless of
the presence of faulty instructions.

g. For each valid instruction to report an event-action definition, the event-
action subservice shall generate a single event-action definition
notification that includes:
1. the system identifier of the event definition;
2. the event-action status;

350

ECSS-E-ST-70-41C
15 April 2016

3. the action consisting of the request to release when the event
report is detected.
NOTE For the system identifier of the event definition,

refer to requirement 6.19.4b.1.

h. For each valid instruction to report all event-action definitions, the event-
action subservice shall generate a single event-action definition
notification for each event-action definition.

NOTE For the content of the event-action definition
notification, see 6.19.8.6g.

i. For each valid request to report event-action definitions, the event-action
subservice shall generate a single event-action definition report that
includes all related event-action definition notifications.

6.19.9 Subservice observables
a. The following observables shall be defined for the event-action

subservice:
1. the event-action function status;
2. the number of event-action definitions.

351

ECSS-E-ST-70-41C
15 April 2016

6.20 ST[20] parameter management

6.20.1 Scope

6.20.1.1 General
 The parameter management service type provides capabilities for managing on-

board parameters, including reading current values, setting new values and
redefining parameter locations and properties.

 The parameter management service type defines a single standardized
subservice type, i.e. the parameter management subservice type.

6.20.1.2 Parameter management subservice
 The parameter management subservice type includes the capability to maintain

a list of parameter definitions, where each definition consists of the parameter
identifier, the mapped on-board memory address and the packet field code. The
parameter identifiers are predefined and unique within the context of the
spacecraft. The packet field code contains a packet field type code (PTC) and
format code (PFC) as specified in 7.3.

 The parameter management subservice type includes optional capability to
create new parameters by associating a new parameter memory location or a
new field code to a predefined parameter identifier. For example, a new
parameter can be used for an OBCP or for exporting an existing internal
variable as a parameter for housekeeping or monitoring.

6.20.2 Service layout

6.20.2.1 Subservice

6.20.2.1.1 Parameter management subservice

a. Each parameter management service shall contain at least one parameter
management subservice.

6.20.2.2 Application process
a. Each application process shall host at most one parameter management

subservice provider.

6.20.3 Parameter definition
a. The list of parameter identifiers for which the parameter management

subservice manages their definition shall be declared when specifying
that subservice.

b. Each parameter definition shall consist of:

352

ECSS-E-ST-70-41C
15 April 2016

1. an on-board parameter identifier that is unique within the context
of the spacecraft;

2. if the parameter management subservice manages more than one
memory, a memory ID;

3. an address that is either:
(a) a base plus offset, if that memory ID refers to a memory that

uses a base plus offset addressing scheme;
(b) a byte offset from the start of the memory if that memory ID

refers to a memory that uses an absolute addressing scheme;
4. the packet field code of the memory field that is used to read

and/or write the values of the parameter.
NOTE 1 For item 2, refer to requirement 6.20.5.1b.
NOTE 2 For item 4, refer to clause 7.3.

6.20.4 Managing parameter values

6.20.4.1 Report parameter values
a. The parameter management subservice shall provide the capability to

report parameter values.
NOTE The corresponding requests are of message type

"TC[20,1] report parameter values". The responses
are data reports of message type "TM[20,2]
parameter value report".

b. Each request to report parameter values shall contain one or more
instructions to report a parameter value.

c. Each instruction to report a parameter value shall contain:
1. the identifier of the parameter.

d. The parameter management subservice shall reject any instruction to
report a parameter value if:
1. that instruction refers to an unknown parameter.

e. For each instruction to report a parameter value that it rejects, the
parameter management subservice shall generate the failed start of
execution notification for that instruction.

f. The parameter management subservice shall process any valid
instruction that is contained within a request to report parameter values
regardless of the presence of faulty instructions.

g. For each valid instruction to report a parameter value, the parameter
management subservice shall generate a single parameter value
notification that includes:

(a) the parameter identifier;
(b) its value.

h. For each valid request to report parameter values, the parameter
management subservice shall generate a single parameter value report
that contains all related parameter value notifications.

353

ECSS-E-ST-70-41C
15 April 2016

6.20.4.2 Set parameter values
a. The parameter management subservice capability to set parameter values

shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[20,3] set parameter values".

b. Each request to set parameter values shall contain one or more
instructions to set a parameter value.

c. Each instruction to set a parameter value shall contain:
1. the identifier of the parameter;
2. the new value for the parameter.

d. The parameter management subservice shall reject any instruction to set
a parameter value if:
1. that instruction refers to an unknown parameter.

e. For each instruction to set a parameter value that it rejects, the parameter
management subservice shall generate the failed start of execution
notification for that instruction.

f. The parameter management subservice shall process any valid
instruction that is contained within a request to set parameter values
regardless of the presence of faulty instructions.

g. For each valid instruction to set a parameter value, the parameter
management subservice shall:
1. set the value of the parameter identified in that instruction to the

new value specified in that instruction.

6.20.5 Managing parameter definitions

6.20.5.1 Accessibility
a. The list of accessible parameters for which the parameter management

subservice can change the parameter definition shall be declared when
specifying that subservice.

NOTE 1 For the accessible parameters, see requirement
6.20.3a.

NOTE 2 Changing the definition of a parameter affects any
service that makes use of that parameter.

b. The list of memories that the parameter management subservice uses for
managing parameter definitions shall be declared when specifying that
subservice.

NOTE This allows restricting the memories on which new
parameters can be mapped.

354

ECSS-E-ST-70-41C
15 April 2016

6.20.5.2 Change raw memory parameter definitions
a. The parameter management subservice capability to change raw memory

parameter definitions shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[20,4] change raw memory parameter
definitions".

b. Each request to change raw memory parameter definitions shall contain
one or more instructions to change a raw memory parameter definition.

c. Each instruction to change a raw memory parameter definition shall
contain:
1. the identifier of the parameter definition that corresponds to the

parameter identifier;
2. if the parameter management subservice manages more than one

memory, the memory identifier of the new parameter;
3. the start address of the new parameter specified as a byte offset;
4. the packet field code of the new parameter made of:

(a) the packet field type code;
(b) the packet field format code.
NOTE 1 For item 2, refer to requirement 6.20.5.1b.
NOTE 2 For item 4, refer to clause 7.3.

d. The parameter management subservice shall reject any instruction to
change a raw memory parameter definition if any of the following
conditions occurs:
1. that instruction refers to a parameter definition identifier that is

unknown;
2. that instruction refers to a memory identifier that is not allowed for

parameter definition;
3. that instruction refers to a memory address that is invalid;
4. that instruction refers to a packet field code is not compatible with

the memory alignment access constraint;
5. that instruction refers to a packet field code that is invalid.

NOTE For item 4, refer to requirement 7.3.1a.

e. For each instruction to change a raw memory parameter definition that it
rejects, the parameter management subservice shall generate the failed
start of execution notification for that instruction.

f. The parameter management subservice shall process any valid
instruction that is contained within a request to change raw memory
parameter definitions regardless of the presence of faulty instructions.

g. For each valid instruction to change a raw memory parameter definition,
the parameter management subservice shall:
1. set the new parameter definition as required.

355

ECSS-E-ST-70-41C
15 April 2016

6.20.5.3 Change object memory parameter definitions
a. The parameter management subservice capability to change object

memory parameter definitions shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[20,5] change object memory parameter
definitions".

b. Each request to change object memory parameter definitions shall contain
one or more instructions to change an object memory parameter definition.

c. Each instruction to change an object memory parameter definition shall
contain:
1. the identifier of the parameter definition that corresponds to the

parameter identifier;
2. if the parameter management subservice manages more than one

memory, the memory identifier of the new object;
3. the memory address of the new object specified as a base plus an

offset;
4. the packet field code of the new object made of:

(a) the packet field type code;
(b) the packet field format code.
NOTE 1 For item 2, refer to requirement 6.20.5.1b.
NOTE 2 For item 3, refer to requirement 5.4.3.3.2c.
NOTE 3 For item 4, refer to clause 7.3.

d. The parameter management subservice shall reject any instruction to
change an object memory parameter definition if any of the following
conditions occurs:
1. that instruction refers to a parameter definition identifier that is

unknown;
2. that instruction refers to a memory identifier that is not allowed for

parameter definition;
3. that instruction refers to a memory address that is invalid;
4. that instruction refers to a packet field code is not compatible with

the memory alignment access constraint;
5. that instruction refers to a packet field code that is invalid.

NOTE For item 4, refer to requirement 7.3.1a.

e. For each instruction to change an object memory parameter definition
that it rejects, the parameter management subservice shall generate the
failed start of execution notification for that instruction.

f. The parameter management subservice shall process any valid
instruction that is contained within a request to change object memory
parameter definitions regardless of the presence of faulty instructions.

g. For each valid instruction to change an object memory parameter
definition, the parameter management subservice shall:
1. set the new parameter definition as required.

356

ECSS-E-ST-70-41C
15 April 2016

6.20.5.4 Report parameter definitions
a. The parameter management subservice capability to report parameter

definitions shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[20,6] report parameter definitions". The
responses are data reports of message type
"TM[20,7] parameter definition report".

NOTE 2 That capability requires the capability for that
subservice to provide at least one of:
• the capability to change raw memory

parameter definitions (refer to clause 6.20.5.2);
• the capability to change object memory

parameter definitions (refer to clause 6.20.5.3).

b. Each request to report parameter definitions shall contain one or more
instructions to report a parameter definition.

c. Each instruction to report a parameter definition shall contain:
1. the identifier of the parameter.

d. The parameter management subservice shall reject any instruction to
report a parameter definition if:
1. that instruction refers to an unknown parameter.

e. For each instruction to report a parameter definition that it rejects, the
parameter management subservice shall generate the failed start of
execution notification for that instruction.

f. The parameter management subservice shall process any valid
instruction that is contained within a request to report parameter
definitions regardless of the presence of faulty instructions.

g. For each valid instruction to report a parameter definition, the parameter
management subservice shall generate a single parameter definition
notification that includes:
1. the parameter identifier;
2. if the parameter management subservice manages more than one

memory, the memory identifier;
3. if a base plus offset addressing scheme is used for accessing any

memory managed by the parameter management subservice, the
memory related addressing scheme;

4. if the addressing scheme is absolute address, the absolute address;
5. if the addressing scheme is base plus offset, the base plus offset;
6. the packet field code of the parameter.

NOTE 1 For item 2, refer to requirement 6.20.5.1b.
NOTE 2 For item 3, refer to requirement 5.4.3.3.2c.

6.20.6 Subservice observables
 This Standard does not define any observables for the parameter management

subservice.

357

ECSS-E-ST-70-41C
15 April 2016

6.21 ST[21] request sequencing

6.21.1 Scope

6.21.1.1 General
 The request sequencing service type provides the capability to manage the

release of an on-board sequence of requests. It also provides capabilities for the
loading, control and reporting of on-board sequences.

 The request sequencing service type defines a single standardized subservice
type, i.e. the request sequencing subservice type.

6.21.1.2 Request sequencing subservice
 The request sequencing subservice type provides the capability to release, one

by one, the requests contained in an on-board sequence of requests. Within a
request sequence, the delay between the release of a request and the release of
the next request can be specified. Several request sequences can be running in
parallel.

 This provides an extension of the ground monitoring and control. As such, the
application process that executes a request released by the request sequencing
subservice directly sends the request verification reports, if any, to the source
identified by the source identifier specified in the request. The release of a
request by the subservice is not conditional on the successful or unsuccessful
execution of earlier requests released by the subservice.

 The subservice type provides the capability to load a request sequence from a
file stored on-board or directly from ground. When loading directly from
ground, the requests that constitute the request sequence are inside the load
request sequence request.

6.21.2 Service layout

6.21.2.1 Subservice

6.21.2.1.1 Request sequencing subservice

a. Each request sequencing service shall contain at least one request
sequencing subservice.

6.21.2.2 Application process
a. Each application process shall host at most one request sequencing

subservice provider.

358

ECSS-E-ST-70-41C
15 April 2016

6.21.3 Accessibility

6.21.3.1 Application process
a. The list of application processes that are addressed by the request

sequencing subservice when releasing requests shall be declared when
specifying that subservice.

NOTE 1 The application process that hosts the request
sequencing subservice is by nature, an addressable
application process.

NOTE 2 This Standard assumes that all requests of
addressable application processes can be used by
the request sequencing subservice.

NOTE 3 When the request sequencing subservice releases a
request, the request is processed by the service,
which is indicated by the service type and hosted
by the application process identified within the
request.

NOTE 4 Requests released by the request sequencing
subservice are not generated by that service but by
the subservice that initiated the request to load the
request sequence, i.e. the original source.

6.21.4 Request sequence
a. The maximum number of request sequences that the request sequencing

subservice can contemporaneously process at any time shall be declared
when specifying that subservice.

b. The total resources available to the request sequencing subservice for
storage of request sequences shall be declared when specifying that
subservice.

c. The list of verification checks that the request sequencing subservice shall
perform on the requests contained within the request sequences shall be
declared when specifying that subservice.

d. Each request sequence shall have a unique request sequence identifier.
NOTE The request sequence identifier is unique within

the context of the request sequencing service. If the
sequence is loaded from a file, the request
sequence identifier can be used by the loading
policy as described in clause 6.21.5.3.

e. For each loaded request sequence, the request sequencing subservice
shall maintain a status indicating whether that request sequence is
inactive or under execution.

NOTE This status is named "request sequence execution
status".

f. Each request sequence shall contain
1. an ordered list of request entries.

359

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 This Standard does not constrain the maximum
number of request entries that a request sequence
can contain.

NOTE 2 This Standard does not constrain the maximum
number of request entries that the service can
handle.

g. Each request entry shall contain:
1. a single request;
2. a time interval that is the delay between the release of this request

and the release of the next request in the request sequence.
NOTE The time interval for the last entry of a request

sequence is the delay between the release of the
last request and the completion of the execution of
the request sequence.

6.21.5 Loading, activating and unloading a request
sequence

6.21.5.1 Capability
a. The request sequencing subservice shall provide at least one of the

following capabilities:
1. the capability to directly load a request sequence specified in

clause 6.21.5.2;
2. the capability to load a request sequence by reference specified in

clause 6.21.5.3;
3. the capability to load by reference and activate a request sequence

specified in clause 6.21.5.6.
NOTE 1 Directly loading a request sequence means the

corresponding load sequence request contains the
requests that constitute the sequence.

NOTE 2 Loading a request sequence by reference means
that the request sequence is already defined on-
board within a file. The request to load that request
sequence refers to that file.

b. If the capability to load a request sequence by reference is provided,
whether the request sequencing subservice supports a loading policy
shall be declared when specifying that subservice.

6.21.5.2 Direct-load a request sequence
a. The request sequencing subservice capability to direct-load a request

sequence shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[21,1] direct-load a request sequence".
NOTE 2 For that declaration, refer to requirement 6.21.5.1a.
NOTE 3 For the capability to unload a request sequence,

refer to clause 6.21.5.4.

360

ECSS-E-ST-70-41C
15 April 2016

b. Each request to direct-load a request sequence shall contain exactly one
instruction to direct-load a request sequence.

c. Each instruction to direct-load a request sequence shall contain:
1. the identifier of the request sequence;
2. the ordered list of request entries for the request sequence.

NOTE The contents of a request entry are defined in
requirement 6.21.4g.

d. The request sequencing subservice shall reject any request to direct-load
a request sequence if any of the following conditions occurs:
1. that request contains an instruction with a request sequence

identifier that refers to a request sequence that is already loaded;
2. the request sequence cannot be loaded due to the lack of resources

available to the request sequencing subservice;
3. any request contained in that request sequence fails any of the

verification checks.
NOTE For the verification checks, see requirement

6.21.4c.

e. For each request to direct-load a request sequence that is rejected, the
request sequencing subservice shall generate a failed start of execution
notification.

f. For each valid instruction to direct-load a request sequence, the request
sequencing subservice shall:
1. load the request sequence;
2. set the execution status of the request sequence to "inactive".

6.21.5.3 Load a request sequence by reference
a. The request sequencing subservice capability to load a request sequence

by reference shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[21,2] load a request sequence by reference".
NOTE 2 For that declaration, refer to requirement 6.21.5.1a.
NOTE 3 For the capability to unload a request sequence,

refer to clause 6.21.5.4.

b. Each request to load a request sequence by reference shall contain exactly
one instruction to load a request sequence by reference.

c. Each instruction to load a request sequence by reference shall contain:
1. the identifier of the request sequence;
2. if the request sequence is not to be loaded according to the loading

policy, the file path of the on-board file that contains the request
sequence to load.
NOTE When the loading policy is used, the policy

determines which on-board file contains the
request sequence to load, refer to requirement
6.21.5.1b.

361

ECSS-E-ST-70-41C
15 April 2016

d. The request sequencing subservice shall reject any request to load a
request sequence by reference if any of the following conditions occurs:
1. that request contains an instruction with a request sequence

identifier that refers to a request sequence that is already loaded;
2. the request sequence cannot be loaded due to the lack of resources

available to the request sequencing subservice;
3. that request contains an instruction that refers to a file that does

not exist;
4. that request contains an instruction that refers to a file that is not

recognized as a request sequence file;
5. any request contained in that request sequence fails any of the

verification checks.
NOTE For the verification checks, see requirement

6.21.4c.

e. For each request to load a request sequence by reference that is rejected,
the request sequencing subservice shall generate a failed start of
execution notification.

f. For each valid instruction to load a request sequence by reference, the
request sequencing subservice shall:
1. load the request sequence;
2. set the execution status of the request sequence to "inactive".

6.21.5.4 Unload a request sequence
a. The request sequencing subservice shall provide the capability to unload

a request sequence if the capability to direct-load a request sequence or
the capability to load a request sequence by reference is provided by that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[21,3] unload a request sequence".

NOTE 2 For the capability to direct-load a request
sequence, refer to clause 6.21.5.2.

NOTE 3 For the capability to load a request sequence by
reference, refer to clause 6.21.5.3.

b. Each request to unload a request sequence shall contain exactly one
instruction to unload a request sequence.

c. Each instruction to unload a request sequence shall contain:
1. the identifier of the request sequence to unload.

d. The request sequencing subservice shall reject any request to unload a
request sequence if any of the following conditions occurs:
1. that request contains an instruction with a request sequence

identifier that refers to a request sequence that is not loaded;
2. that request contains an instruction that refers to a request

sequence whose execution status is "under execution".

362

ECSS-E-ST-70-41C
15 April 2016

e. For each request to unload a request sequence that is rejected, the request
sequencing subservice shall generate a failed start of execution
notification.

f. For each valid instruction to unload a request sequence, the request
sequencing subservice shall:
1. unload the request sequence.

6.21.5.5 Activate a request sequence
a. The request sequencing subservice shall provide the capability to activate

a request sequence.
NOTE The corresponding requests are of message type

"TC[21,4] activate a request sequence".

b. Each request to activate a request sequence shall contain exactly one
instruction to activate a request sequence.

c. Each instruction to activate a request sequence shall contain:
1. the identifier of the request sequence to activate.

d. The request sequencing subservice shall reject any request to activate a
request sequence if any of the following conditions occurs:
1. that request contains an instruction with a request sequence

identifier that refers to a request sequence that is not loaded;
2. the request sequence cannot be activated due to the lack of

resources available to the request sequencing subservice;
3. that request contains an instruction that refers to a request

sequence whose execution status is "under execution".

e. For each request to activate a request sequence that is rejected, the
request sequencing subservice shall generate a failed start of execution
notification.

f. For each valid instruction to activate a request sequence, the request
sequencing subservice shall:
1. set the execution status of the request sequence to "under

execution";
2. start releasing the requests in the request sequence;
3. upon release of the last request and the elapse of its associated time

interval, set the execution status of the request sequence to
"inactive".
NOTE Request sequences are persistent. To unload the

request sequence at the end of execution, the last
request in the sequence can be the request to
unload the request sequence.

363

ECSS-E-ST-70-41C
15 April 2016

6.21.5.6 Load by reference and activate a request sequence
a. The request sequencing subservice capability to load by reference and

activate a request sequence shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[21,8] load by reference and activate a request
sequence".

NOTE 2 For that declaration, refer to requirement 6.21.5.1a.

b. Each request to load by reference and activate a request sequence shall
contain exactly one instruction to load by reference and activate a request
sequence.

c. Each instruction to load by reference and activate a request sequence
shall contain:
1. the identifier of the request sequence;
2. if the request sequence is not to be loaded according to the loading

policy, the file path of the on-board file that contains the request
sequence to load and activate.
NOTE When the loading policy is used, the policy

determines which on-board file contains the
request sequence to load, refer to requirement
6.21.5.1b.

d. The request sequencing subservice shall reject any request to load by
reference and activate a request sequence if any of the following
conditions occurs:
1. that request refers to a request sequence identifier that is already

used;
2. the request sequence cannot be loaded and activated due to the

lack of resources available to the request sequencing subservice;
3. that request contains an instruction that refers to a file that does

not exist;
4. that request contains an instruction that refers to a file that is not

recognized as a request sequence file;
5. the request sequence cannot be loaded and activated due to the

lack of available resources;
6. any request contained in that request sequence fails any of the

verification checks.
NOTE For the verification checks, see requirement

6.21.4c.

e. For each request to load by reference and activate a request sequence that
is rejected, the request sequencing subservice shall generate a failed start
of execution notification.

f. For each valid instruction to load by reference and activate a request
sequence, the request sequencing subservice shall:
1. load the request sequence;

364

ECSS-E-ST-70-41C
15 April 2016

2. set the execution status of the request sequence to "under
execution";

3. start releasing the requests in the request sequence;
4. upon release of the last request and the elapse of its associated time

interval, set the execution status of the request sequence to
"inactive".
NOTE Request sequences are persistent. To unload the

request sequence at the end of execution, the last
request in the sequence can be the request to
unload the request sequence.

6.21.5.7 Abort a request sequence
a. The request sequencing subservice shall provide the capability to abort a

request sequence.
NOTE The corresponding requests are of message type

"TC[21,5] abort a request sequence".

b. Each request to abort a request sequence shall contain exactly one
instruction to abort a request sequence.

c. Each instruction to abort a request sequence shall contain:
1. the identifier of the request sequence to abort.

d. The request sequencing subservice shall reject any request to abort a
request sequence if any of the following conditions occurs:
1. that request contains an instruction with a request sequence

identifier that refers to a request sequence that is not loaded;
2. that request contains an instruction that refers to a request

sequence whose execution status is "inactive".

e. For each request to abort a request sequence that is rejected, the request
sequencing subservice shall generate a failed start of execution
notification.

f. For each valid instruction to abort a request sequence, the request
sequencing subservice shall:
1. set the execution status of the request sequence to "inactive";
2. stop releasing the requests in the request sequence.

6.21.5.8 Abort all request sequences and report
a. The request sequencing subservice capability to abort all request

sequences and report shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[21,13] abort all request sequences and report".
The responses are data reports of message type
"TM[21,14] aborted request sequence report".

b. Each request to abort all request sequences and report shall contain
exactly one instruction to abort all request sequences and report.

NOTE The instructions to abort all request sequences and
report contain no argument.

365

ECSS-E-ST-70-41C
15 April 2016

c. For each valid instruction to abort all request sequences and report, the
request sequencing subservice shall:
1. for each request sequence that is under execution:

(a) stop releasing the requests in that request sequence;
(b) set the execution status of that request sequence to

"inactive";
(c) generate a single aborted request sequence notification that

includes the identifier of that request sequence.

d. For each valid request to abort all request sequences and report, the
request sequencing subservice shall generate a single aborted request
sequence report that includes all related aborted request sequence
notifications.

6.21.6 Report the execution status of each request
sequence

a. The request sequencing subservice capability to report the execution
status of each request sequence shall be declared when specifying that
subservice.

NOTE The corresponding requests are of message type
"TC[21,6] report the execution status of each
request sequence". The responses are data reports
of message type "TM[21,7] request sequence
execution status report".

b. Each request to report the execution status of each request sequence shall
contain exactly one instruction to report the execution status of each
request sequence.

NOTE The instructions to report the execution status of
each request sequence contain no argument.

c. For each valid instruction to report the execution status of each request
sequence, the request sequencing subservice shall:
1. generate, for each request sequence that is currently loaded, a

single request sequence execution status notification that includes:
(a) the request sequence identifier;
(b) the request sequence execution status.

d. For each valid request to report the execution status of each request
sequence, the request sequencing subservice shall generate a single
request sequence execution status report that includes all related request
sequence execution status notifications.

366

ECSS-E-ST-70-41C
15 April 2016

6.21.7 Checksum a request sequence
a. The request sequencing subservice capability to checksum a request

sequence shall be declared when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[21,9] checksum a request sequence". The
responses are data reports of message type
"TM[21,10] request sequence checksum report".

NOTE 2 For the checksum algorithm, refer to clause 5.4.4.

b. Each request to checksum a request sequence shall contain exactly one
instruction to checksum a request sequence.

c. Each instruction to checksum a request sequence shall contain:
1. the identifier of the request sequence to checksum.

d. The request sequencing subservice shall reject any request to checksum a
request sequence if:
1. that request contains an instruction with a request sequence

identifier that refers to a request sequence that is not loaded.

e. For each request to checksum a request sequence that is rejected, the
request sequencing subservice shall generate a failed start of execution
notification.

f. For each valid instruction to checksum a request sequence, the request
sequencing subservice shall generate a single request sequence checksum
notification that includes:

(a) the request sequence identifier;
(b) the calculated checksum value.

g. For each valid request to checksum a request sequence, the request
sequencing subservice shall generate a single request sequence checksum
report that includes the related request sequence checksum notification.

6.21.8 Report the content of a request sequence
a. The request sequencing subservice capability to report the content of a

request sequence shall be declared when specifying that subservice
NOTE The corresponding requests are of message type

"TC[21,11] report the content of a request
sequence". The responses are data reports of
message type "TM[21,12] request sequence content
report".

b. Each request to report the content of a request sequence shall contain
exactly one instruction to report the content of a request sequence.

c. Each instruction to report the content of a request sequence shall contain:
1. the identifier of the request sequence to report.

d. The request sequencing subservice shall reject any request to report the
content of a request sequence if:

367

ECSS-E-ST-70-41C
15 April 2016

1. that request contains an instruction with a request sequence
identifier that refers to a request sequence that is not loaded.

e. For each request to report the content of a request sequence that is
rejected, the request sequencing subservice shall generate a failed start of
execution notification.

f. For each valid instruction to report the content of a request sequence, the
request sequencing subservice shall generate a single request sequence
content notification that includes:

(a) the request sequence identifier;
(b) the ordered list of request entries.

g. For each valid request to report the content of a request sequence, the
request sequencing subservice shall generate a single request sequence
content report that includes the related request sequence content
notification.

6.21.9 Subservice observables
a. The following observables shall be defined for the request sequencing

subservice:
1. the list of request sequence identifiers and associated execution

status of the loaded request sequences, in an array of size
corresponding to the maximum number of request sequences that
can be contemporaneously loaded at any time.

368

ECSS-E-ST-70-41C
15 April 2016

6.22 ST[22] position-based scheduling

6.22.1 Scope

6.22.1.1 General
 The (orbit) position-based scheduling service type provides the capability to

command on-board application processes using requests pre-loaded on-board
the spacecraft and released when the spacecraft reaches the associated position
on the orbit. The service type does not specify how the orbit positions are
determined; this is done when tailoring the service to the mission.

 The position-based scheduling service type defines a single standardized
subservice type, i.e. the position-based scheduling subservice type.

6.22.1.2 Position-based scheduling subservice
 The position-based scheduling subservice type includes the capability to

maintain an on-board position-based schedule of requests and to ensure the
release of those requests at the associated orbit positions.

 This provides an extension of the ground monitoring and control. As such, the
application process that executes a request released by the position-based
scheduling subservice directly sends the request verification reports, if any, to
the source identified by the source identifier specified in the request. The
release of a request by the subservice is not conditional on the successful or
unsuccessful execution of earlier requests released by the subservice.

 An entry in the position-based schedule is usually deleted once the related
request is released. However, the position-based scheduling subservice type
provides the optional concept of persistent scheduling, which can be used to
retain an entry in the schedule so that it can be reused on a later orbit.

 The position-based scheduling subservice type provides the optional concept of
sub-schedules. If the position-based scheduling subservice supports sub-
schedules, each request in the position-based schedule is associated to a sub-
schedule. Each sub-schedule consists of a sequence of position-tagged requests
that perform a coherent on-board operation. If a sub-schedule has no requests
with persistent scheduling status, then once the operation is completed, the sub-
schedule has no further reason to exist. Therefore, sub-schedules are
automatically created when used and deleted when empty. The position-based
scheduling subservice type includes the capability for enabling and disabling
the execution of each sub-schedule.

 The position-based scheduling subservice type also provides the optional
concept of groups. If the position-based scheduling subservice supports groups,
each request in the position-based schedule is associated to a group. The
position-based scheduling subservice type includes the capability for enabling
and disabling the execution of grouped requests, independently of the
application processes they are released to and of the sub-schedules they belong
to. Groups are typically related to spacecraft entities (e.g. hardware or
software). Groups can be created and deleted by request and can exist even if

369

ECSS-E-ST-70-41C
15 April 2016

empty. They can be used, for example, to group all requests associated to a
specific instrument and disable their release when the conditions for their
execution are not fulfilled, while other requests for the same application process
are associated to a different group and enabled for release.

 The term "scheduled activity" is used in this service to refer to each entry of the
position-based schedule. A scheduled activity consists of:

• scheduling data, e.g. the identifier of the sub-schedule, the identifier of
the group, the release position;

• the request that is scheduled for later release.

 Each scheduled activity is identified by the identifier of the request that is
scheduled for later release.

6.22.2 Service layout

6.22.2.1 Subservice

6.22.2.1.1 Position-based scheduling subservice

a. Each position-based scheduling service shall contain at least one position-
based scheduling subservice.

6.22.2.2 Application process
a. Each application process shall host at most one position-based

scheduling subservice provider.

6.22.3 Accessibility

6.22.3.1 Application process
a. The list of application processes that can be addressed by the position-

based scheduling subservice when releasing requests shall be declared
when specifying that subservice.

NOTE 1 This Standard assumes that all requests of
addressable application processes can be used by
the position-based scheduling subservice. The
application process that hosts the position-based
scheduling subservice is, by nature, an addressable
application process.

NOTE 2 When the position-based scheduling subservice
releases a request, the request is processed by an
executing service, indicated by the service type
and the application process identifier within the
request.

NOTE 3 Requests released by the position-based
scheduling subservice are not generated by that
subservice but by the source that initiated the
insert activities into schedule request, i.e. the
original source.

370

ECSS-E-ST-70-41C
15 April 2016

6.22.4 Determining orbit positions
a. Each position tag used to specify a position shall consist of an orbit

number and the position on that orbit.
NOTE 1 The orbit number never wraps around during a

mission, while the orbit position is cyclic.
NOTE 2 The orbit number increments autonomously on-

board and can be set to a specific value using the
request to set the orbit number, refer to clause
6.22.6.4.

b. The position within the orbit shall be specified using the angle measured
in the plane of the osculating inertial orbit starting from the intersection
with the Earth Fixed Equatorial Plane.

NOTE This Standard does not further elaborate on the
algorithm used to compute this angle, e.g. the
accuracy to use remains mission-specific.

6.22.5 Persistent scheduling
a. Whether the position-based scheduling subservice provides the

capability for persistent scheduling shall be declared when specifying
that subservice.

b. If the position-based scheduling subservice provides the capability for
persistent scheduling, the subservice shall maintain, for each scheduled
activity, a status indicating whether that scheduled activity is persistent
or non-persistent.

NOTE 1 This status is named "activity persistency status".
NOTE 2 If the activity persistency status of a scheduled

activity is non-persistent, then once the request
contained in that activity is released, the scheduled
activity is deleted from the schedule. If the
capability for persistent scheduling is not
provided, all scheduled activities are handled in
this way.

NOTE 3 If the activity persistency status of a scheduled
activity is persistent, then after the request
associated with that activity is released, the
scheduled activity remains in the schedule. It can
subsequently be released again or deleted.

6.22.6 Managing the position-based schedule

6.22.6.1 Capability
a. Whether the position-based scheduling subservice supports the

capability for managing sub-schedules shall be declared when specifying
that subservice.

NOTE See clause 6.22.7.

371

ECSS-E-ST-70-41C
15 April 2016

b. Whether the position-based scheduling subservice supports the
capability for managing groups specified shall be declared when
specifying that subservice.

NOTE See clause 6.22.8.

6.22.6.2 General
a. Each scheduled activity definition shall consist of:

1. the request;
2. a position tag containing the release position for the request;
3. if the position-based scheduling subservice provides the capability

for persistent scheduling:
(a) the activity persistency status that is either "persistent" or

"non-persistent";
(b) the persistent activity periodicity expressed as an integer

number of orbits;
4. if sub-schedules are supported, the identifier of the sub-schedule

to which that scheduled activity is associated;
5. if groups are supported, the identifier of the group to which that

scheduled activity is associated.
NOTE 1 For item 2, refer to clause 6.22.4
NOTE 2 For item 3, refer to clause 6.22.5.
NOTE 3 For item 4, refer to requirement 6.22.6.1a.
NOTE 4 For item 5, refer requirement 6.22.6.1b.

b. Each scheduled activity definition shall be identified by a scheduled
activity identifier that corresponds to the identifier of the request
contained in that definition.

NOTE For the request identifier, refer to requirement
5.4.11.2.1c.

c. The maximum number of scheduled activity definitions that the position-
based scheduling subservice can insert within the position-based
schedule and contemporaneously process at any time shall be declared
when specifying that subservice.

NOTE This Standard assumes that the resources allocated
to the position-based scheduling subservice are
sufficient to support this maximum number of
scheduled activities independently of the size of
the requests they contain.

d. The position margin that the position-based scheduling subservice uses
shall be declared when specifying that subservice.

NOTE The position margin is present in order to ensure
the consistency and operability of the schedule at
any time. Inserting activities or position-shifting
them can only be performed if the release position
of these activities is greater than or equal to the
current position plus a position margin.

372

ECSS-E-ST-70-41C
15 April 2016

e. The maximum delta position between the release position specified in a
scheduled activity definition and the real release position of the related
request shall be declared when specifying the position-based scheduling
subservice.

6.22.6.3 Controlling the position-based schedule execution
function

6.22.6.3.1 Status

a. The position-based scheduling subservice shall maintain a status
indicating whether the overall position-based schedule execution
function is enabled or disabled.

NOTE This status is named "position-based schedule
execution function status".

b. When starting the position-based scheduling subservice, the position-
based schedule execution function status shall be set to "disabled".

6.22.6.3.2 Enable the position-based schedule execution function

a. The position-based scheduling subservice shall provide the capability to
enable the position-based schedule execution function.

NOTE 1 The corresponding requests are of message type
"TC[22,1] enable the position-based schedule
execution function".

NOTE 2 For the capability to disable the position-based
schedule execution function, refer to clause
6.22.6.3.3.

b. Each request to enable the position-based schedule execution function
shall contain exactly one instruction to enable the position-based
schedule execution function.

NOTE The instructions to enable the position-based
schedule execution function contain no argument.

c. For each valid instruction to enable the position-based schedule
execution function, the position-based scheduling subservice shall:
1. set the position-based schedule execution function status to

"enabled".
NOTE Enabling the position-based schedule execution

function does not depend on the presence of
scheduled activities in the schedule.

6.22.6.3.3 Disable the position-based schedule execution function

a. The position-based scheduling subservice shall provide the capability to
disable the position-based schedule execution function.

NOTE 1 The corresponding requests are of message type
"TC[22,2] disable the position-based schedule
execution function".

373

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For the capability to enable the position-based
schedule execution function, refer to clause
6.22.6.3.2.

b. Each request to disable the position-based schedule execution function
shall contain exactly one instruction to disable the position-based
schedule execution function.

NOTE The instructions to disable the position-based
schedule execution function contain no argument.

c. For each valid instruction to disable the position-based schedule
execution function, the position-based scheduling subservice shall:
1. set the position-based schedule execution function status to

"disabled".
NOTE Disabling the position-based schedule execution

function does not depend on the presence of
scheduled activities in the schedule.

6.22.6.4 Set the orbit number
a. The position-based scheduling subservice capability to set the orbit

number shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[22,28] set the orbit number".

b. Each request to set the orbit number shall contain exactly one instruction
to set the orbit number.

c. Each instruction to set the orbit number shall contain:
1. the orbit number.

d. For each valid instruction to set the orbit number, the position-based
scheduling subservice shall:
1. at the end of the current orbit, set the new orbit number to the orbit

number specified in the instruction.
NOTE This Standard does not further elaborate on how

the orbit number increments on-board.

6.22.6.5 Reset the position-based schedule
a. The position-based scheduling subservice shall provide the capability to

reset the position-based schedule.
NOTE The corresponding requests are of message type

"TC[22,3] reset the position-based schedule".

b. Each request to reset the position-based schedule shall contain exactly
one instruction to reset the position-based schedule.

NOTE The instructions to reset the position-based
schedule contain no argument.

c. For each valid instruction to reset the position-based schedule, the
position-based scheduling subservice shall:

374

ECSS-E-ST-70-41C
15 April 2016

1. set the position-based schedule execution function status to
"disabled";

2. delete all scheduled activities from the schedule;
3. if sub-schedules are supported, delete all sub-schedules;
4. if groups are supported, enable all groups.

6.22.6.6 Insert activities into the position-based schedule
a. The position-based scheduling subservice shall provide the capability to

insert activities into the position-based schedule.
NOTE 1 The corresponding requests are of message type

"TC[22,4] insert activities into the position-based
schedule".

NOTE 2 Each valid instruction to insert an activity into the
position-based schedule results in the creation of a
new scheduled activity in the position-based
schedule.

NOTE 3 If sub-schedules are supported, the new scheduled
activity is associated to the specified sub-schedule.

NOTE 4 If groups are supported, the new scheduled
activity is associated to the specified group.

b. Each request to insert activities into the position-based schedule shall
contain:
1. if sub-schedules are supported, a sub-schedule identifier,
2. one or more instructions to insert an activity into the position-

based schedule.
NOTE For item 1, refer to requirement 6.22.6.1a.

c. The position-based scheduling subservice shall reject any request to
insert activities into the position-based schedule if:
1. that request implies the creation of a new sub-schedule but the

maximum number of sub-schedules that can be
contemporaneously managed is already reached.
NOTE For that maximum number of sub-schedules, refer

to requirement 6.22.7.1a.

d. For each request to insert activities into the position-based schedule that
is rejected, the position-based scheduling subservice shall generate a
failed start of execution notification.

e. Each instruction to insert an activity into the position-based schedule
shall contain:
1. if groups are supported, the group identifier associated to the new

scheduled activity;
2. the position tag that specifies the release position for the request in

the new scheduled activity;
3. if persistent scheduling is supported:

(a) the activity persistency status;

375

ECSS-E-ST-70-41C
15 April 2016

(b) if the activity persistency status is "persistent", the persistent
activity periodicity;

4. the request to place in the new scheduled activity.
NOTE 1 For item 1, refer to requirement 6.22.6.1b.
NOTE 2 For item 3, refer to requirement 6.22.5a.

f. The list of verification checks that the position-based scheduling
subservice shall perform when accepting a request to place in a new
scheduled activity shall be declared when specifying that subservice.

g. The position-based scheduling subservice shall reject any instruction to
insert an activity into the position-based schedule if any of the following
conditions occurs:
1. the activity cannot be added since the maximum number of

scheduled activities that can be contemporaneously processed is
already reached;

2. that instruction refers to a group that is unknown;
3. that instruction refers to a release position that is not consistent

with the planned orbit;
4. the activity is non-persistent and the position tag of the activity is

earlier than the position obtained by adding the position-based
schedule position margin to the current position;

5. the request contained in that instruction fails any of the verification
checks.
NOTE 1 For the maximum number of scheduled activities

mentioned in item 1, refer to requirement 6.22.6.2c.
NOTE 2 For item 4, the activity is non-persistent if

persistent scheduling is not supported or if the
activity persistency status of the activity is "non-
persistent".

NOTE 3 For item 5, refer to requirement 6.22.6.6f.

h. For each instruction to insert an activity into the position-based schedule
that it rejects, the position-based scheduling subservice shall generate the
failed start of execution notification for that instruction.

i. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to insert activities into the
position-based schedule regardless of the presence of faulty instructions.

j. For each valid request to insert activities into the position-based
schedule, the position-based scheduling subservice shall:
1. if sub-schedules are supported and the sub-schedule specified in

that request is unknown:
(a) create that sub-schedule;
(b) set its status to "disabled".

k. For each valid instruction to insert an activity into the position-based
schedule, the position-based scheduling subservice shall:
1. create a new scheduled activity in the schedule;

376

ECSS-E-ST-70-41C
15 April 2016

2. place the request specified in that instruction into the new
scheduled activity;

3. set the position tag of the new scheduled activity to the position
tag specified in that instruction;

4. if persistent scheduling is supported, set the activity persistency
status of the new scheduled activity to "persistent" or "non-
persistent" using the status specified in that instruction;

5. if sub-schedules are supported, associate the new scheduled
activity to the sub-schedule specified in the request to insert
activities into the position-based schedule;

6. if groups are supported, associate the new scheduled activity to
the group specified in that instruction.

7. if the activity is "persistent" and the release orbit position for that
activity is earlier than the sum of the current position and the
position-based schedule position margin, increment the orbit
number of that activity by its persistent activity periodicity as
many times as necessary for the release position-tag to be above
that margin.

6.22.6.7 Schedule execution logic
a. The position-based schedule execution process shall process the

scheduled activities in the order of their release positions.

b. The position-based schedule execution process shall consider a scheduled
activity is disabled if:
1. the position-based schedule execution function is disabled,
2. that scheduled activity is associated to a disabled sub-schedule,
3. that scheduled activity is associated to a disabled group.

c. For each scheduled activity whose release position is reached, the
position-based schedule execution process shall, in sequence:
1. if that scheduled activity is not disabled, release the related

request;
2. if the position-based scheduling sub-service provides the

capability for persistent scheduling:
(a) if the activity persistency status of that scheduled activity is

"non-persistent", delete that scheduled activity from the
schedule;

(b) if the activity persistency status of that scheduled activity is
"persistent", increment the orbit number of that scheduled
activity by its persistent activity periodicity;

3. if the position-based scheduling sub-service does not provide the
capability for persistent scheduling:
(a) delete that scheduled activity from the schedule;

4. if deleting that scheduled activity from the schedule results in an
empty sub-schedule:
(a) delete that empty sub-schedule.

377

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 Items 2 and 3 ensure that scheduled activities that
cannot be released when their release position is
reached are deleted from the schedule or
rescheduled according to their activity persistency
status.

NOTE 2 This Standard does not prescribe any notification
to ground when requests are deleted without
being released.

NOTE 3 This Standard does not prescribe the release order
of activities scheduled at the same exact position.

6.22.7 Managing position-based sub-schedules

6.22.7.1 Position-based sub-schedules
a. The maximum number of sub-schedules that the position-based

scheduling subservice can contemporaneously manage shall be declared
when specifying that subservice.

b. For each sub-schedule, the position-based scheduling subservice shall
maintain a status indicating whether the schedule execution function for
that sub-schedule is enabled or disabled.

NOTE This status is named "sub-schedule status".

6.22.7.2 Enabling and disabling position-based sub-
schedules

6.22.7.2.1 Enable position-based sub-schedules

a. The position-based scheduling subservice capability to enable position-
based sub-schedules shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,20] enable position-based sub-schedules".

NOTE 2 That capability implies that the subservice
provides the capability to disable position-based
sub-schedules (refer to clause 6.22.7.2.2).

NOTE 3 For the capability to disable position-based sub-
schedules, refer to clause 6.22.7.2.2.

b. Each request to enable position-based sub-schedules shall contain:
1. one or more instructions to enable a position-based sub-schedule,

or
2. exactly one instruction to enable all position-based sub-schedules.

NOTE The instructions to enable all position-based sub-
schedules contain no argument.

c. Each instruction to enable a position-based sub-schedule shall contain:
1. the identifier of the sub-schedule to enable.

d. The position-based scheduling subservice shall reject any instruction to
enable a position-based sub-schedule if:

378

ECSS-E-ST-70-41C
15 April 2016

1. that instruction refers to an unknown sub-schedule.

e. For each instruction to enable a position-based sub-schedule that it
rejects, the position-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to enable position-based
sub-schedules regardless of the presence of faulty instructions.

g. For each valid instruction to enable a position-based sub-schedule, the
position-based scheduling subservice shall:
1. set the status of that sub-schedule to "enabled".

h. For each valid instruction to enable all position-based sub-schedules, the
position-based scheduling subservice shall:
1. for each sub-schedule maintained by that subservice, set its status

to "enabled".

6.22.7.2.2 Disable position-based sub-schedules

a. The position-based scheduling subservice shall provide the capability to
disable position-based sub-schedules if the capability to enable position-
based sub-schedules is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,21] disable position-based sub-schedules".

NOTE 2 For the capability to enable position-based sub-
schedules, refer to clause 6.22.7.2.1.

b. Each request to disable position-based sub-schedules shall contain:
1. one or more instructions to disable a position-based sub-schedule,

or
2. exactly one instruction to disable all position-based sub-schedules.

NOTE The instructions to disable all position-based sub-
schedules contain no argument.

c. Each instruction to disable a position-based sub-schedule shall contain:
1. the identifier of the sub-schedule to disable.

d. The position-based scheduling subservice shall reject any instruction to
disable a position-based sub-schedule if:
1. that instruction refers to an unknown sub-schedule.

e. For each instruction to disable a position-based sub-schedule that it
rejects, the position-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to disable position-based
sub-schedules regardless of the presence of faulty instructions.

g. For each valid instruction to disable a position-based sub-schedule, the
position-based scheduling subservice shall:
1. set the status of that sub-schedule to "disabled".

379

ECSS-E-ST-70-41C
15 April 2016

h. For each valid instruction to disable all position-based sub-schedules, the
position-based scheduling subservice shall:
1. for each sub-schedule maintained by that subservice, set its status

to "disabled".

6.22.7.2.3 Report the status of each position-based sub-schedule

a. The position-based scheduling subservice capability to report the status
of each position-based sub-schedule shall be declared when specifying
that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,18] report the status of each position-based
sub-schedule". The responses are data reports of
message type "TM[22,19] position-based sub-
schedule status report".

NOTE 2 That capability requires that the subservice
provides:
• the capability to enable position-based sub-

schedules (refer to clause 6.22.7.2.1).

b. Each request to report the status of each position-based sub-schedule
shall contain exactly one instruction to report the status of each position-
based sub-schedule.

NOTE The instructions to report the status of each
position-based sub-schedule contain no argument.

c. For each valid instruction to report the status of each position-based sub-
schedule, the position-based scheduling subservice shall:
1. generate, for each position-based sub-schedule managed by that

subservice, a single position-based sub-schedule status notification
that includes:
(a) the sub-schedule identifier;
(b) its status.

6.22.8 Managing position-based scheduling
groups

6.22.8.1 Position-based scheduling groups
a. The maximum number of groups that the position-based scheduling

subservice can contemporaneously manage shall be declared when
specifying that subservice.

b. For each group, the position-based scheduling subservice shall maintain
a status indicating whether the schedule execution function for that
group is enabled or disabled.

NOTE This status is named "group status".

380

ECSS-E-ST-70-41C
15 April 2016

6.22.8.2 Creating and deleting position-based scheduling
groups

6.22.8.2.1 Create position-based scheduling groups

a. The position-based scheduling subservice capability to create position-
based scheduling groups shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,22] create position-based scheduling
groups".

NOTE 2 For the capability to delete position-based
scheduling groups, refer to clause 6.22.8.2.2.

b. Each request to create position-based scheduling groups shall contain
one or more instructions to create a position-based scheduling group.

c. Each instruction to create a position-based scheduling group shall
contain:
1. the identifier of the group;
2. the group status at creation time.

d. The position-based scheduling subservice shall reject any instruction to
create a position-based scheduling group if any of the following
conditions occurs:
1. that instruction refers to an already existing group;
2. the maximum number of groups that can be contemporaneously

managed is already reached.

e. For each instruction to create a position-based scheduling group that it
rejects, the position-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to create position-based
scheduling groups regardless of the presence of faulty instructions.

g. For each valid instruction to create a position-based scheduling group,
the position-based scheduling subservice shall:
1. add the group identifier to the list of groups maintained by that

sub-service;
2. set the group status to the value specified in the instruction.

6.22.8.2.2 Delete position-based scheduling groups

a. The position-based scheduling subservice shall provide the capability to
delete position-based scheduling groups if the capability to create
position-based scheduling groups is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,23] delete position-based scheduling
groups".

NOTE 2 For the capability to create position-based
scheduling groups, refer to clause 6.22.8.2.1.

381

ECSS-E-ST-70-41C
15 April 2016

b. Each request to delete position-based scheduling groups shall contain:
1. one or more instructions to delete a position-based scheduling

group, or
2. exactly one instruction to delete all position-based scheduling

groups.
NOTE The instructions to delete all position-based

scheduling groups contain no argument.

c. Each instruction to delete a position-based scheduling group shall
contain:
1. the identifier of the group to delete.

d. The position-based scheduling subservice shall reject any instruction to
delete a position-based scheduling group if any of the following
conditions occurs:
1. that instruction refers to a group that does not exist;
2. that instruction refers to a group that has associated activities.

NOTE If there are scheduled activities associated to a
group, the group cannot be deleted.

e. For each instruction to delete a position-based scheduling group that it
rejects, the position-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to delete position-based
scheduling groups regardless of the presence of faulty instructions.

g. For each valid instruction to delete a position-based scheduling group,
the position-based scheduling subservice shall:
1. delete the group identifier from the list of groups maintained by

that service.

h. For each valid instruction to delete all position-based scheduling groups,
the position-based scheduling subservice shall:
1. for each group maintained by that subservice, delete the identifier

of that group;
2. for each group that has associated activities, generate a failed

execution notification for that group.

6.22.8.3 Enabling and disabling position-based scheduling
groups

6.22.8.3.1 Enable position-based scheduling groups

a. The position-based scheduling subservice shall provide the capability to
enable position-based scheduling groups if the capability to create
position-based scheduling groups is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,24] enable position-based scheduling
groups".

382

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 For the capability to disable position-based
scheduling groups, refer to clause 6.22.8.3.2.

b. Each request to enable position-based scheduling groups shall contain:
1. one or more instructions to enable a position-based scheduling

group, or
2. exactly one instruction to enable all position-based scheduling

groups.
NOTE The instructions to enable all position-based

scheduling groups contain no argument.

c. Each instruction to enable a position-based scheduling group shall
contain:
1. the identifier of the group to enable.

d. The position-based scheduling subservice shall reject any instruction to
enable a position-based scheduling group if:
1. that instruction refers to an unknown group.

e. For each instruction to enable a position-based scheduling group that it
rejects, the position-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to enable position-based
scheduling groups regardless of the presence of faulty instructions.

g. For each valid instruction to enable a position-based scheduling group,
the position-based scheduling subservice shall:
1. set the status of that group to "enabled".

h. For each valid instruction to enable all position-based scheduling groups,
the position-based scheduling subservice shall:
1. for each scheduling group maintained by that subservice, set the

status of that group to "enabled".

6.22.8.3.2 Disable position-based scheduling groups

a. The position-based scheduling subservice shall provide the capability to
disable position-based scheduling groups if the capability to enable
position-based scheduling groups is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,25] disable position-based scheduling
groups".

NOTE 2 For the capability to enable position-based
scheduling groups, refer to clause 6.22.8.3.1.

b. Each request to disable position-based scheduling groups shall contain:
1. one or more instructions to disable a position-based scheduling

group, or
2. exactly one instruction to disable all position-based scheduling

groups.
NOTE The instructions to disable all position-based

scheduling groups contain no argument.

383

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to disable a position-based scheduling group shall
contain:
1. the identifier of the group to disable.

d. The position-based scheduling subservice shall reject any instruction to
disable a position-based scheduling group if:
1. that instruction refers to an unknown group.

e. For each instruction to disable a position-based scheduling group that it
rejects, the position-based scheduling subservice shall generate the failed
start of execution notification for that instruction.

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to disable position-based
scheduling groups regardless of the presence of faulty instructions.

g. For each valid instruction to disable a position-based scheduling group,
the position-based scheduling subservice shall:
1. set the status of that group to "disabled".

h. For each valid instruction to disable all position-based scheduling
groups, the position-based scheduling subservice shall:
1. for each scheduling group maintained by that subservice, set the

status of that group to "disabled".

6.22.8.3.3 Report the status of each position-based scheduling group

a. The position-based scheduling subservice capability to report the status
of each position-based scheduling group shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,26] report the status of each position-based
scheduling group". The responses are data reports
of message type "TM[22,27] position-based
scheduling group status report".

NOTE 2 That capability requires the capability for that
subservice to create position-based scheduling
groups, refer to clause 6.22.8.2.1.

b. Each request to report the status of each position-based scheduling group
shall contain exactly one instruction to report the status of each position-
based scheduling group.

NOTE The instructions to report the status of each
position-based scheduling group contain no
argument.

c. For each valid instruction to report the status of a position-based
scheduling group, the position-based scheduling subservice shall:
1. for each group managed by that subservice, generate a single

position-based scheduling group status notification that includes:
(a) the group identifier;
(b) its status.

384

ECSS-E-ST-70-41C
15 April 2016

d. For each valid request to report the status of each position-based
scheduling group, the position-based scheduling subservice shall
generate a single position-based scheduling group status report that
includes, for each scheduling group maintained by that subservice, the
related position-based scheduling group status notification.

6.22.9 Reports of position-based scheduled
activities

6.22.9.1 Position-based schedule summary report
a. The position-based scheduling subservice shall provide the capability to

generate position-based schedule summary reports if any of the
capabilities to summary-report scheduled activities is provided by that
subservice.

NOTE 1 The corresponding reports are data reports of
message type "TM[22,13] position-based schedule
summary report".

NOTE 2 The capabilities to summary-report scheduled
activities are:
• the capability to summary-report all position-

based scheduled activities (refer to clause
6.22.10.3);

• the capability to summary-report position-
based scheduled activities identified by request
identifier (refer to clause 6.22.11.4);

• the capability to summary-report the position-
based scheduled activities identified by a filter
(refer to clause 6.22.12.5).

b. Each position-based schedule summary report shall contain, for each
scheduled activity to summary report, a notification consisting of:
1. if sub-schedules are supported, the identifier of the sub-schedule;
2. if groups are supported, the identifier of the group;
3. the scheduled release position;
4. if persistent scheduling is supported:

(a) the activity persistency status;
(b) if the activity persistency status is "persistent", the persistent

activity periodicity;
5. the identifier of the related request consisting of:

(a) its source identifier;
(b) its application process identifier;
(c) its sequence count.
NOTE 1 The position-based scheduled activities to

summary report are determined by one of the
requests specified in clauses 6.22.10.3, 6.22.11.4 and
6.22.12.5.

NOTE 2 For item 1, refer to requirement 6.22.6.1a.

385

ECSS-E-ST-70-41C
15 April 2016

NOTE 3 For item 2, refer to requirement 6.22.6.1b.
NOTE 4 For item 4, refer to requirement 6.22.5a.

c. The notifications contained in a position-based schedule summary report
shall be ordered according to the release positions of the associated
scheduled activities.

6.22.9.2 Position-based schedule detail report
a. The position-based scheduling subservice shall provide the capability to

generate position-based schedule detail reports if any of the capabilities
to detail-report scheduled activities is provided by that subservice.

NOTE 1 The corresponding reports are data reports of
message type "TM[22,10] position-based schedule
detail report".

NOTE 2 The capabilities to detail-report scheduled
activities are:
• the capability to detail-report all position-based

scheduled activities (refer to clause 6.22.10.4);
• the capability to detail-report position-based

scheduled activities identified by request
identifier (refer to clause 6.22.11.5);

• the capability to detail-report the position-
based scheduled activities identified by a filter
(refer to clause 6.22.12.6).

b. Each position-based schedule detail report shall contain, for each
scheduled activity to detail report, a notification consisting of:
1. if sub-schedules are supported, the identifier of the sub-schedule;
2. if groups are supported, the identifier of the group;
3. the scheduled release position;
4. if persistent scheduling is supported:

(a) the activity persistency status;
(b) if the activity persistency status is "persistent", the persistent

activity periodicity;
5. the request.

NOTE 1 The position-based scheduled activities to detail
report are determined by one of the requests
specified in clauses 6.22.10.4, 6.22.11.5 and
6.22.12.6.

NOTE 2 The position-based schedule summary report in
clause 6.22.9.1 includes only the identifier of the
request associated with the scheduled activity. The
position-based schedule detail report specified
here includes the complete request, usually in the
form of a telecommand packet.

NOTE 3 For item 1, refer to requirement 6.22.6.1a.
NOTE 4 For item 2, refer to requirement 6.22.6.1b.
NOTE 5 For item 4, refer to requirement 6.22.5a.

386

ECSS-E-ST-70-41C
15 April 2016

c. The notifications contained in a position-based schedule detail report
shall be ordered according to the release positions of the associated
scheduled activities.

6.22.10 Managing all position-based scheduled
activities

6.22.10.1 General
NOTE The capability to reset the position-based schedule

specified in clause 6.22.6.5 includes the capability
to delete all scheduled activities

6.22.10.2 Position-shift all scheduled activities
a. The position-based scheduling subservice capability to position-shift all

scheduled activities shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[22,15] position-shift all scheduled activities".

b. Each request to position-shift all scheduled activities shall contain exactly
one instruction to position-shift all scheduled activities.

c. Each instruction to position-shift all scheduled activities shall contain:
1. the delta position.

d. The position-based scheduling subservice shall reject any request to
position-shift all scheduled activities if:
1. the position obtained by adding the delta position to the release

position of the earliest non-persistent activity contained within the
position-based schedule is earlier than the position obtained by
adding the position-based schedule position margin to the current
position.
NOTE 1 An activity is non-persistent if persistent

scheduling is not supported, or if the activity
persistency status of the activity is "non-
persistent".

NOTE 2 If the delta position is sufficient to result in a non-
persistent scheduled activity with a release
position in the past, no activities are position-
shifted.

NOTE 3 Shifting a scheduled activity that is persistent
never results in a past position tag.

e. For each request to position-shift all scheduled activities that is rejected,
the position-based scheduling subservice shall generate a failed start of
execution notification.

f. For each valid instruction to position-shift all scheduled activities, the
position-based scheduling subservice shall:
1. for each scheduled activity contained within the position-based

schedule:

387

ECSS-E-ST-70-41C
15 April 2016

(a) set the release position of that scheduled activity to the sum
of the current release position of that activity and the delta
position;

(b) if the activity is "persistent" and the new release orbit
position for that activity is earlier than the sum of the
current position and the position-based schedule position
margin, increment the orbit number of that activity by its
persistent activity periodicity as many times as necessary for
the release position-tag to be above that margin.

6.22.10.3 Summary-report all position-based scheduled
activities

a. The position-based scheduling subservice capability to summary-report
all position-based scheduled activities shall be declared when specifying
that subservice.

NOTE The corresponding requests are of message type
"TC[22,17] summary-report all position-based
scheduled activities". The responses are data
reports of message type "TM[22,13] position-based
schedule summary report" (refer to clause 6.22.9.1).

b. Each request to summary-report all position-based scheduled activities
shall contain exactly one instruction to summary-report all position-
based scheduled activities.

NOTE The instructions to summary-report all position-
based scheduled activities contain no argument.

c. For each valid instruction to summary-report all position-based
scheduled activities, the position-based scheduling subservice shall
generate, for each scheduled activity contained within the position-based
schedule, a single position-based schedule summary notification.

NOTE The position-based schedule summary notification
is defined in clause 6.22.9.1.

d. For each valid request to summary-report all position-based scheduled
activities, the position-based scheduling subservice shall generate a
single position-based schedule summary report that includes all related
position-based schedule summary notifications.

NOTE The position-based schedule summary report is
defined in clause 6.22.9.1.

6.22.10.4 Detail-report all position-based scheduled activities
a. The position-based scheduling subservice capability to detail-report all

position-based scheduled activities shall be declared when specifying
that subservice.

NOTE The corresponding requests are of message type
"TC[22,16] detail-report all position-based
scheduled activities". The responses are data
reports of message type "TM[22,10] position-based
schedule detail report" (refer to clause 6.22.9.2).

388

ECSS-E-ST-70-41C
15 April 2016

b. Each request to detail-report all position-based scheduled activities shall
contain exactly one instruction to detail-report all position-based
scheduled activities.

NOTE The instructions to detail-report all position-based
scheduled activities contain no argument.

c. For each valid instruction to detail-report all position-based scheduled
activities, the position-based scheduling subservice shall generate, for
each scheduled activity contained within the schedule, a single position-
based schedule detail notification.

NOTE The position-based schedule detail notification is
defined in clause 6.22.9.2.

d. For each valid request to detail-report all position-based scheduled
activities, the position-based scheduling subservice shall generate a
single position-based schedule detail report that includes all related
position-based schedule detail notifications.

NOTE The position-based schedule detail report is
defined in clause 6.22.9.2.

6.22.11 Managing position-based scheduled
activities identified by request identifier

6.22.11.1 General
a. Whether the position-based scheduling subservice supports the

identification of scheduled activities by request identifier shall be
declared when specifying that subservice.

NOTE That support is required for the capabilities to
manage scheduled activities identified by request
identifier, i.e.:
• the capability to delete position-based

scheduled activities identified by request
identifier (refer to clause 6.22.11.2);

• the capability to position-shift scheduled
activities identified by request identifier (refer
to clause 6.22.11.3);

• the capability to summary-report position-
based scheduled activities identified by request
identifier (refer to clause 6.22.11.4);

• the capability to detail-report position-based
scheduled activities identified by request
identifier (refer to clause 6.22.11.5).

389

ECSS-E-ST-70-41C
15 April 2016

6.22.11.2 Delete position-based scheduled activities
identified by request identifier

a. The position-based scheduling subservice capability to delete position-
based scheduled activities identified by request identifier shall be
declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,5] delete position-based scheduled
activities identified by request identifier".

NOTE 2 That capability implies that the subservice
provides the capability to identify scheduled
activities by request identifier (refer to requirement
6.22.11.1a).

b. Each request to delete position-based scheduled activities identified by
request identifier shall contain one or more instructions to delete a
position-based scheduled activity identified by request identifier.

c. Each instruction to delete a position-based scheduled activity identified
by request identifier shall contain:
1. the identifier of the scheduled activity to delete.

NOTE See requirement 6.22.6.2b.

d. The position-based scheduling subservice shall reject any instruction to
delete a position-based scheduled activity identified by request identifier
if:
1. that request identifier is unknown.

e. For each instruction to delete a position-based scheduled activity
identified by request identifier that it rejects, the position-based
scheduling subservice shall generate the failed start of execution
notification for that instruction.

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to delete position-based
scheduled activities identified by request identifier regardless of the
presence of faulty instructions.

g. For each valid instruction to delete a position-based scheduled activity
identified by request identifier, the position-based scheduling subservice
shall:
1. delete the scheduled activity corresponding to the request

identifier.
2. if that scheduled activity was the last scheduled activity of a sub-

schedule, delete the sub-schedule.

6.22.11.3 Position-shift scheduled activities identified by
request identifier

a. The position-based scheduling subservice capability to position-shift
scheduled activities identified by request identifier shall be declared
when specifying that subservice.

390

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 The corresponding requests are of message type
"TC[22,7] position-shift scheduled activities
identified by request identifier".

NOTE 2 That capability implies that the subservice
provides the capability to identify scheduled
activities by request identifier (refer to requirement
6.22.11.1a).

b. Each request to position-shift scheduled activities identified by request
identifier shall contain:
1. a delta position,
2. one or more instructions to position-shift a scheduled activity

identified by request identifier.
NOTE The delta position in a request to position-shift

scheduled activities identified by request identifier
applies to all the instructions in that request.

c. Each instruction to position-shift a scheduled activity identified by
request identifier shall contain:
1. the identifier of the scheduled activity to position-shift.

NOTE See requirement 6.22.6.2b.

d. The position-based scheduling subservice shall reject any request to
position-shift scheduled activities identified by request identifier if:
1. the position obtained by adding the delta position to the release

position of the earliest non-persistent activity identified within the
request is earlier than the position obtained by adding the
position-based schedule position margin to the current position.
NOTE 1 An activity is non-persistent if persistent

scheduling is not supported, or if the activity
persistency status of the activity is "non-
persistent".

NOTE 2 If the delta position is sufficient to result in a non-
persistent scheduled activity with a release
position in the past, no activities are position-
shifted.

NOTE 3 Shifting a scheduled activity that is persistent
never results in a past position tag.

e. For each request to position-shift scheduled activities identified by
request identifier that is rejected, the position-based scheduling
subservice shall generate a failed start of execution notification.

f. The position-based scheduling subservice shall reject any instruction to
position-shift a scheduled activity identified by request identifier if:
1. that request identifier is unknown.

g. For each instruction to position-shift a scheduled activity identified by
request identifier that it rejects, the position-based scheduling subservice
shall generate the failed start of execution notification for that instruction.

h. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to position-shift scheduled

391

ECSS-E-ST-70-41C
15 April 2016

activities identified by request identifier regardless of the presence of
faulty instructions.

i. For each valid instruction to position-shift a scheduled activity identified
by request identifier, the position-based scheduling subservice shall:
1. set the release position of the scheduled activity specified in the

instruction to the sum of the current release position of that
activity and the delta position;

2. if the activity is "persistent" and the new release orbit position for
that activity is earlier than the sum of the current position and the
position-based schedule position margin, increment the orbit
number of that activity by its persistent activity periodicity as
many times as necessary for the release position-tag to be above
that margin.

6.22.11.4 Summary-report position-based scheduled
activities identified by request identifier

a. The position-based scheduling subservice capability to summary-report
position-based scheduled activities identified by request identifier shall
be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,12] summary-report position-based
scheduled activities identified by request
identifier". The responses are data reports of
message type "TM[22,13] position-based schedule
summary report"(refer to clause 6.22.9.1).

NOTE 2 That capability implies that the subservice
provides the capability to identify scheduled
activities by request identifier (refer to requirement
6.22.11.1a).

b. Each request to summary-report position-based scheduled activities
identified by request identifier shall contain one or more instructions to
summary-report a position-based scheduled activity identified by request
identifier.

c. Each instruction to summary-report a position-based scheduled activity
identified by request identifier shall contain:
1. the identifier of the scheduled activity to summary report.

NOTE See requirement 6.22.6.2b.

d. The position-based scheduling subservice shall reject any instruction to
summary-report a position-based scheduled activity identified by request
identifier if:
1. that request identifier is unknown.

e. For each instruction to summary-report a position-based scheduled
activity identified by request identifier that it rejects, the position-based
scheduling subservice shall generate the failed start of execution
notification for that instruction.

392

ECSS-E-ST-70-41C
15 April 2016

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to summary-report
position-based scheduled activities identified by request identifier
regardless of the presence of faulty instructions.

g. For each valid instruction to summary-report a position-based scheduled
activity identified by request identifier, the position-based scheduling
subservice shall generate a single position-based schedule summary
notification for that scheduled activity.

NOTE The position-based schedule summary notification
is defined in clause 6.22.9.1.

h. For each valid request to summary-report position-based scheduled
activities identified by request identifier, the position-based scheduling
subservice shall generate a single position-based schedule summary
report that contains all related position-based schedule summary
notifications.

NOTE The position-based schedule summary report is
defined in clause 6.22.9.1.

6.22.11.5 Detail-report position-based scheduled activities
identified by request identifier

a. The position-based scheduling subservice capability to detail-report
position-based scheduled activities identified by request identifier shall
be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,9] detail-report position-based scheduled
activities identified by request identifier". The
responses are data reports of message type
"TM[22,10] position-based schedule detail
report"(refer to clause 6.22.9.2).

NOTE 2 That capability implies that the subservice
provides the capability to identify scheduled
activities by request identifier (refer to requirement
6.22.11.1a).

b. Each request to detail-report position-based scheduled activities
identified by request identifier shall contain one or more instructions to
detail-report a position-based scheduled activity identified by request
identifier.

c. Each instruction to detail-report a position-based scheduled activity
identified by request identifier shall contain:
1. the identifier of the scheduled activity to report.

NOTE See requirement 6.22.6.2b.

d. The position-based scheduling subservice shall reject any instruction to
detail-report a position-based scheduled activity identified by request
identifier if:
1. that request identifier is unknown.

393

ECSS-E-ST-70-41C
15 April 2016

e. For each instruction to detail-report a position-based scheduled activity
identified by request identifier that it rejects, the position-based
scheduling subservice shall generate the failed start of execution
notification for that instruction.

f. The position-based scheduling subservice shall process any valid
instruction that is contained within a request to detail-report position-
based scheduled activities identified by request identifier regardless of
the presence of faulty instructions.

g. For each valid instruction to detail-report a position-based scheduled
activity identified by request identifier, the position-based scheduling
subservice shall generate a single position-based schedule detail
notification for that scheduled activity.

NOTE The position-based schedule detail notification is
defined in clause 6.22.9.2.

h. For each valid request to detail-report position-based scheduled activities
identified by request identifier, the position-based scheduling subservice
shall generate a single position-based schedule detail report that contains
all related position-based schedule detail notifications.

NOTE The position-based schedule detail report is
defined in clause 6.22.9.2.

6.22.12 Managing the position-based scheduled
activities identified by a filter

6.22.12.1 General
a. Whether the position-based scheduling subservice supports selecting

scheduled activity using a position-window filtering function shall be
declared when specifying that subservice.

NOTE 1 For the position-window filtering function refer to
clause 6.22.12.2.

NOTE 2 That support is required for the capabilities to
manage time-based scheduled activities identified
by a filter, i.e.:
• the capability to delete the position-based

scheduled activities identified by a filter (refer
to clause 6.22.12.3);

• the capability to position-shift the scheduled
activities identified by a filter (refer to clause
6.22.12.4);

• the capability to summary-report the position-
based scheduled activities identified by a filter
(refer to clause 6.22.12.5);

• the capability to detail-report the position-
based scheduled activities identified by a filter
(refer to clause 6.22.12.6).

394

ECSS-E-ST-70-41C
15 April 2016

6.22.12.2 Position-window filtering function

6.22.12.2.1 Overview
 Each request that uses the position-window filtering function contains a single

filter that identifies which scheduled activities are concerned in that request,
based on a combination of:

• a position window;

• if sub-schedules are supported, zero or more sub-schedules;

• if groups are supported, zero or more groups.

6.22.12.2.2 Position window filtering

a. The position window filtering function shall support the following
filtering mechanisms:
1. "select all activities scheduled from position tag to position tag",
2. "select all activities scheduled from position tag",
3. "select all activities scheduled up to position tag".

b. The set of scheduled activities identified by the "select all activities
scheduled from position tag to position tag" filtering mechanism shall be
all activities that are scheduled between and including the specified
"from position tag" and "to position tag".

c. The set of scheduled activities identified by the "select all activities
scheduled from position tag" filtering mechanism shall be all activities
that are scheduled at and after that specified "from position tag".

d. The set of scheduled activities identified by the "select all activities
scheduled up to position tag" filtering mechanism shall be all activities
that are scheduled before and at that specified "to position tag".

6.22.12.2.3 Sub-schedule filtering

a. The set of scheduled activities identified by the sub-schedule filtering
function shall be all activities that are associated to that sub-schedule.

b. The sub-schedule filtering function shall ignore any unknown sub-
schedule that appears in a filter.

6.22.12.2.4 Group filtering

a. The set of scheduled activities identified by the group filtering function
shall be all activities that are associated to that group.

6.22.12.2.5 Overall filtering
a. If the overall filtering only includes the position window filtering, the set

of scheduled activities identified by the overall filtering function is the set
of scheduled activities identified by the position window filtering
function.

b. If the overall filtering includes both the position window filtering and the
sub-schedule filtering, the set of scheduled activities identified by the
overall filtering function is the scheduled activities that result from the
intersection of the sets of scheduled activities:

395

ECSS-E-ST-70-41C
15 April 2016

1. identified by the position window filtering function;
2. identified by the sub-schedule filtering function.

NOTE The set of scheduled activities identified by the
sub-schedule filtering function consists of the sum
of all activities that are associated to the specified
sub-schedules. Unknown sub-schedules are
ignored.

c. If the overall filtering includes both the position window filtering and the
group filtering, the set of scheduled activities identified by the overall
filtering function is the scheduled activities that result from the
intersection of the sets of scheduled activities:
1. identified by the position window filtering function;
2. identified by the group filtering function.

NOTE The set of scheduled activities identified by the
group filtering function consists of the sum of all
activities that are associated to the specified
groups.

d. If the overall filtering includes the position window filtering, the sub-
schedule filtering and the group filtering, the set of scheduled activities
identified by the overall filtering function is the scheduled activities that
result from the intersection of the sets of scheduled activities:
1. identified by the position window filtering function;
2. identified by the sub-schedule filtering function;
3. identified by the group filtering function.

6.22.12.3 Delete the position-based scheduled activities
identified by a filter

a. The position-based scheduling subservice capability to delete the
position-based scheduled activities identified by a filter shall be declared
when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,6] delete the position-based scheduled
activities identified by a filter".

NOTE 2 That capability implies that the subservice
provides the capability of the position-window
filtering function (refer to requirement 6.22.12.1a).

b. Each request to delete the position-based scheduled activities identified
by a filter shall contain exactly one instruction to delete the position-
based scheduled activities identified by a filter.

c. Each instruction to delete the position-based scheduled activities
identified by a filter shall contain:
1. a position window, consisting of:

(a) the type of the position window that is one of "select all",
"from position tag", "to position tag", "from position tag to
position tag";

396

ECSS-E-ST-70-41C
15 April 2016

(b) for "from position tag" and "from position tag to position
tag", the from position tag;

(c) for "to position tag" and "from position tag to position tag",
the to position tag;

2. if sub-schedules are supported, zero or more sub-schedules;
3. if groups are supported, zero or more groups.

NOTE 1 For the filtering mechanism, including the
interaction of the parts of the filter, refer to clause
6.22.12.2.

NOTE 2 For sub-schedule support, refer to requirement
6.22.6.1a.

NOTE 3 For group support, refer to requirement 6.22.6.1b.

d. The position-based scheduling subservice shall reject any request to
delete the position-based scheduled activities identified by a filter if any
of the following conditions occurs:
1. that request contains an instruction that refers to an invalid

position window type;
2. that request contains an instruction that refers to a "from position

tag" that is greater than a "to position tag".

e. For each request to delete the position-based scheduled activities
identified by a filter that is rejected, the position-based scheduling
subservice shall generate a failed start of execution notification.

f. For each valid instruction to delete the position-based scheduled
activities identified by a filter, the position-based scheduling subservice
shall:
1. for each scheduled activity identified by that instruction:

(a) delete that scheduled activity;
(b) if that scheduled activity was the last scheduled activity of a

sub-schedule, delete the sub-schedule.

6.22.12.4 Position-shift the scheduled activities identified by
a filter

a. The position-based scheduling subservice capability to position-shift the
scheduled activities identified by a filter shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,8] position-shift the scheduled activities
identified by a filter".

NOTE 2 That capability implies that the subservice
provides the capability of the position-window
filtering function (refer to requirement 6.22.12.1a).

b. Each request to position-shift the scheduled activities identified by a filter
shall contain exactly one instruction to position-shift the scheduled
activities identified by a filter.

397

ECSS-E-ST-70-41C
15 April 2016

c. Each instruction to position-shift the scheduled activities identified by a
filter shall contain:
1. a delta position;
2. the position window, consisting of:

(a) the type of the position window that is one of "select all",
"from position tag", "to position tag", "from position tag to
position tag";

(b) for "from position tag" and "from position tag to position
tag", the from position tag;

(c) for "to position tag" and "from position tag to position tag",
the to position tag;

3. if sub-schedules are supported, zero or more sub-schedules;
4. if groups are supported, zero or more groups.

NOTE 1 For the filtering mechanism, including the
interaction of the parts of the filter, refer to clause
6.22.12.2.

NOTE 2 For sub-schedule support, refer to requirement
6.22.6.1a.

NOTE 3 For group support, refer to requirement 6.22.6.1b.

d. The position-based scheduling subservice shall reject any request to
position-shift the scheduled activities identified by a filter if any of the
following conditions occurs:
1. that request contains an instruction that refers to an invalid

position window type;
2. that request contains an instruction that refers to a "from position

tag" that is greater than a "to position tag";
3. the position obtained by adding the delta position to the release

position of the earliest non-persistent activity identified by the
filter is earlier than the position obtained by adding the position-
based schedule position margin to the current position.
NOTE 1 For item 3, an activity is non-persistent if persistent

scheduling is not supported, or if the activity
persistency status of the activity is "non-
persistent".

NOTE 2 If the delta position is sufficient to result in a non-
persistent scheduled activity with a release
position in the past, no activities are position-
shifted.

NOTE 3 Shifting a scheduled activity that is persistent
never results in a past position tag.

e. For each request to position-shift the scheduled activities identified by a
filter that is rejected, the position-based scheduling subservice shall
generate a failed start of execution notification.

f. For each valid instruction to position-shift the scheduled activities
identified by a filter, the position-based scheduling subservice shall:
1. for each scheduled activity identified by the instruction:

398

ECSS-E-ST-70-41C
15 April 2016

(a) set the release position of the scheduled activity to the sum
of the current release position of that activity and the delta
position;

(b) if the activity is "persistent" and the new release orbit
position for that activity is earlier than the sum of the
current position and the position-based schedule position
margin, increment the orbit number of that activity by its
persistent activity periodicity as many times as necessary for
the release position-tag to be above that margin.

6.22.12.5 Summary-report the position-based scheduled
activities identified by a filter

a. The position-based scheduling subservice capability to summary-report
the position-based scheduled activities identified by a filter shall be
declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,14] summary-report the position-based
scheduled activities identified by a filter". The
responses are data reports of message type
"TM[22,13] position-based schedule summary
report"(refer to clause 6.22.9.1).

NOTE 2 That capability implies that the subservice
provides the capability of the position-window
filtering function (refer to requirement 6.22.12.1a).

b. Each request to summary-report the position-based scheduled activities
identified by a filter shall contain exactly one instruction to summary-
report the position-based scheduled activities identified by a filter.

c. Each instruction to summary-report the position-based scheduled
activities identified by a filter shall contain the filter to identify the
scheduled activities to report that consists of:
1. a position window, consisting of:

(a) the type of the position window that is one of "select all",
"from position tag", "to position tag", "from position tag to
position tag";

(b) for "from position tag" and "from position tag to position
tag", the from position tag;

(c) for "to position tag" and "from position tag to position tag",
the to position tag;

2. if sub-schedules are supported, zero or more sub-schedules;
3. if groups are supported, zero or more groups.

NOTE 1 For the filtering mechanism, including the
interaction of the parts of the filter, refer to clause
6.22.12.2.

NOTE 2 For item 2, refer to requirement 6.22.6.1a.
NOTE 3 For item 3, refer to requirement 6.22.6.1b.

399

ECSS-E-ST-70-41C
15 April 2016

d. The position-based scheduling subservice shall reject any request to
summary-report the position-based scheduled activities identified by a
filter if any of the following conditions occurs:
1. that request contains an instruction that refers to an invalid

position window type;
2. that request contains an instruction that refers to a "from position

tag" that is greater than a "to position tag".

e. For each request to summary-report the position-based scheduled
activities identified by a filter that is rejected, the position-based
scheduling subservice shall generate a failed start of execution
notification.

f. For each valid instruction to summary-report the position-based
scheduled activities identified by a filter, the position-based scheduling
subservice shall generate, for each identified scheduled activity, a single
position-based schedule summary notification.

NOTE The position-based schedule summary notification
is defined in clause 6.22.9.1.

g. For each valid request to summary-report the position-based scheduled
activities identified by a filter, the position-based scheduling subservice
shall generate a single position-based schedule summary report that
includes all related position-based schedule summary notifications.

NOTE The position-based schedule summary report is
defined in clause 6.22.9.1.

6.22.12.6 Detail-report the position-based scheduled
activities identified by a filter

a. The position-based scheduling subservice capability to detail-report the
position-based scheduled activities identified by a filter shall be declared
when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[22,11] detail-report the position-based
scheduled activities identified by a filter". The
responses are data reports of message type
"TM[22,10] position-based schedule detail
report"(refer to clause 6.22.9.2).

NOTE 2 That capability implies that the subservice
provides the capability of the position-window
filtering function (refer to requirement 6.22.12.1a).

b. Each request to detail-report the position-based scheduled activities
identified by a filter shall contain exactly one instruction to detail-report
the position-based scheduled activities identified by a filter.

c. Each instruction to detail-report the position-based scheduled activities
identified by a filter shall include the filter to identify the scheduled
activities to report that consists of:
1. a position window, consisting of:

400

ECSS-E-ST-70-41C
15 April 2016

(a) the type of the position window that is one of "select all",
"from position tag", "to position tag", "from position tag to
position tag";

(b) for "from position tag" and "from position tag to position
tag", the from position tag;

(c) for "to position tag" and "from position tag to position tag",
the to position tag;

2. if sub-schedules are supported, zero or more sub-schedules;
3. if groups are supported, zero or more groups.

NOTE 1 For the filtering mechanism, including the
interaction of the parts of the filter, refer to clause
6.22.12.2.

NOTE 2 For item 2, refer to requirement 6.22.6.1a.
NOTE 3 For item 3, refer to requirement 6.22.6.1b.

d. The position-based scheduling subservice shall reject any request to
detail-report the position-based scheduled activities identified by a filter
if any of the following conditions occurs:
1. that request contains an instruction that refers to an invalid

position window type;
2. that request contains an instruction that refers to a "from position

tag" that is greater than a "to position tag".

e. For each request to detail-report the position-based scheduled activities
identified by a filter that is rejected, the position-based scheduling
subservice shall generate a failed start of execution notification.

f. For each valid instruction to detail-report the position-based scheduled
activities identified by a filter, the position-based scheduling subservice
shall generate, for each scheduled activity identified by the instruction, a
single position-based schedule detail notification.

NOTE The position-based schedule detail notification is
defined in clause 6.22.9.2.

g. For each valid request to detail-report the position-based scheduled
activities identified by a filter, the position-based scheduling subservice
shall generate a single position-based schedule detail report that includes
all related position-based schedule detail notifications.

NOTE The position-based schedule detail report is
defined in clause 6.22.9.2.

6.22.13 Subservice observables
a. The following observables shall be defined for the position-based

scheduling subservice:
1. the current orbit number;
2. the position-based schedule execution function status (enabled or

disabled);
3. the current number of scheduled activities in the position-based

schedule;

401

ECSS-E-ST-70-41C
15 April 2016

4. if sub-schedules are supported, the current number of sub-
schedules;

5. if groups are supported, the current number of groups.

402

ECSS-E-ST-70-41C
15 April 2016

6.23 ST[23] file management

6.23.1 Scope

6.23.1.1 General
 The file management service type provides the capability to manage on-board

file systems and files.

 File systems can either be:

• flat, where directory structures are not supported, or

• structured, where files are stored within directories.

 To locate and identify files and directories, this standard introduces the
repository path and object name concepts.

 The repository path is the logical path to where the object is located. A
repository path can either represent:

• a physical path such as a directory path within a file system, or

• a logical path such as a mounted device (e.g. "/mm1" pointing to a mass
memory device), a directory within a mounted device (e.g. "/mm1/dir1").

 An object can be either a file or a directory. An object name is the unique
identifier of that object within a repository. The combination of repository path
and object name uniquely identifies an object at mission level and is named the
object path (i.e. file path or directory path).

 The file management service is not concerned with the contents of the files that
it manages.

 The file management service type defines two standardized subservice types,
i.e.:

• the file handling subservice type;

• the file copy subservice type.

6.23.1.2 File handling subservice
 The file handling subservice type provides capabilities for interfacing to the on-

board file handling system, for file and directory management operations.

6.23.1.3 File copy subservice
 The file copy subservice type provides capabilities for copying or moving files

within a file system or between different systems. For example, the capabilities
include:

• copying a file from an on-ground file system to an on-board file system;

• copying a file from an on-board file system to a ground file system;

• controlling a file copy operation by suspending, resuming or aborting it.

403

ECSS-E-ST-70-41C
15 April 2016

 This Standard assumes the presence of a dedicated file transfer layer, e.g. the
CCSDS file delivery protocol, to copy files between the ground and the space
systems but does not standardize the corresponding protocol.

6.23.2 Service layout

6.23.2.1 Subservice

6.23.2.1.1 File handling subservice

a. Each file management service shall contain exactly one file handling
subservice.

6.23.2.1.2 File copy subservice

a. Each file management service shall contain at most one file copy
subservice.

6.23.2.2 Application process
a. For each file management service that contains both, a file handling

subservice and a file copy subservice, the two subservice providers of
that service shall be hosted by the same application process

6.23.3 file systems

6.23.3.1 Overview
 File management service access to a file system includes, for example, creating

and deleting files and reading and changing file attributes. If the file system is
structured, it also includes creating and deleting directories.

 The file management service provides an interface to the on-board file handling
system. The extent of the access by the file management service to an on-board
file system is constrained by the facilities provided by the related file handling
system.

 File management service requests typically include arguments specifying files
or directories in an on-board file system. This Standard does not specify how
the validation of such arguments is shared between the file management service
and the related on-board file handling system. Therefore, in the specifications
for the handling of the service requests, the validation of such arguments is
specified without detail.

 The specification of the argument validation performed by the on-board file
handling system is outside the scope of this Standard. However, this Standard
assumes that the on-board file handling system can detect and react to typical
errors, such as:

• the attempts to create files that already exist;

• the attempts to delete files that do not exist;

• the attempts to delete files that are in use or protected.

404

ECSS-E-ST-70-41C
15 April 2016

 If the file management service detects an error in a request, this results in a
failed start of execution. If the error is detected by the file handling system, this
results in a failed completion of execution.

 The file management service does not have exclusive access to an on-board file
system. Other on-board services can also access the file system: for example, the
request sequencing subservice can load a request sequence from an on-board
file.

 Generally, the file management service manages a single on-board file system
but it can also manage multiple on-board file systems.

6.23.3.2 Accessibility

6.23.3.2.1 File systems

a. The list of on-board file systems that are accessed by the file management
service shall be declared when specifying that service.

NOTE For the on-board file system, refer also to clause
5.4.5.

6.23.3.3 Wildcard characters in an object path
a. For each on-board file system that is accessible to the file management

service, the set of wildcard characters recognised by that file system shall
be declared when specifying that subservice.

NOTE A wildcard is a special character matching one or
more other characters in a repository path or object
name.

6.23.3.4 On-board file attributes

6.23.3.4.1 General

a. For each on-board file system, the set of file attributes that the file
management service can read shall be declared when specifying that
subservice.

NOTE For the list of file attributes supported by the on-
board file system, refer to requirement 5.4.5d.

b. For each on-board file system, the set of file attributes that the file
management service can set shall be declared when specifying that
subservice.

6.23.3.4.2 Minimum capability

a. The file management service shall have access to the size in bytes of any
file.

6.23.3.4.3 Additional capability

a. The file management service shall have access to the locking status of any
file located in file systems that support locking.

NOTE Refer to requirement 5.4.5e.

405

ECSS-E-ST-70-41C
15 April 2016

6.23.4 File handling subservice

6.23.4.1 Creating and deleting files

6.23.4.1.1 Create a file

a. The file handling subservice shall provide the capability to create a file.
NOTE 1 The corresponding requests are of message type

"TC[23,1] create a file".
NOTE 2 For the capability to delete a file, refer to clause

6.23.4.1.2.

b. Each request to create a file shall contain exactly one instruction to create
a file.

c. Each instruction to create a file shall contain:
1. the object path of the file;
2. if the file system does not support files with unbounded size, the

maximum size of the file in bytes;
3. if locking is supported, the file locking status;
4. any additional file attributes supported by the file handling

subservice at creation time.
NOTE 1 For item 2, refer to requirement 5.4.5c.
NOTE 2 For item 3, refer to requirement 6.23.3.4.3a.
NOTE 3 For item 4, refer to requirement 6.23.3.4.1b.

d. The file handling subservice shall reject any request to create a file if any
of the following conditions occurs:
1. that request contains an instruction that refers to an object path

that is invalid;
2. that request contains an instruction that specifies a maximum size

that is invalid.

e. For each request to create a file that is rejected, the file handling
subservice shall generate a failed start of execution notification.

f. For each valid instruction to create a file, the file handling subservice
shall:
1. request the underlying file system to create the file referred to by

that instruction;
2. if the underlying file system reports an error in creating that file,

generate a failed "completion of execution" notification.

6.23.4.1.2 Delete a file

a. The file handling subservice shall provide the capability to delete a file.
NOTE 1 The corresponding requests are of message type

"TC[23,2] delete a file".
NOTE 2 If the file is locked, deletion of the file is prevented.

See clause 6.23.4.3.

406

ECSS-E-ST-70-41C
15 April 2016

NOTE 3 For the capability to create a file, refer to clause
6.23.4.1.1.

b. Each request to delete a file shall contain exactly one instruction to delete
a file.

c. Each instruction to delete a file shall contain:
1. the object path of the file.

d. The file handling subservice shall reject any request to delete a file if any
of the following conditions occurs:
1. that request contains an instruction that refers to an object path

that is invalid;
2. that request contains an instruction that refers to an object path

that contains one or more wildcard characters that are recognised
by the file system.
NOTE The delete a file request cannot be used to delete

multiple files by means of wildcard characters.

e. For each request to delete a file that is rejected, the file handling
subservice shall generate a failed start of execution notification.

f. For each valid instruction to delete a file, the file handling subservice
shall:
1. request the underlying file system to delete the file referred to by

that instruction;
2. if the underlying file system reports an error in deleting the file,

generate a failed "completion of execution" notification.

6.23.4.2 Report the attributes of a file
a. The file handling subservice shall provide the capability to report the

attributes of a file.
NOTE 1 The corresponding requests are of message type

"TC[23,3] report the attributes of a file". The
responses are data reports of message type
"TM[23,4] file attribute report".

NOTE 2 The file attributes to report are those mentioned in
requirement 6.23.3.4.1a.

b. Each request to report the attributes of a file shall contain exactly one
instruction to report the attributes of a file.

c. Each instruction to report the attributes of a file shall contain:
1. the object path of the file.

d. The file handling subservice shall reject any request to report the
attributes of a file if:
1. that request contains an instruction that refers to an object path

that is invalid.

e. For each request to report the attributes of a file that is rejected, the file
handling subservice shall generate a failed start of execution notification.

407

ECSS-E-ST-70-41C
15 April 2016

f. For each valid instruction to report the attributes of a file, the file
handling subservice shall:
1. request the underlying file system to provide the attributes of the

file referred to by that instruction;
2. if the underlying file system reports an error in providing the

attributes of the file, generate a failed completion of execution
notification.

3. if no error is reported by the underlying file system, generate a
single file attribute notification that includes:
(a) the file path;
(b) the file size;
(c) if the file system supports locking files, the file locked status;
(d) any additional file attributes supported by the file handling

subservice.
NOTE 1 For item 3(c), refer to requirement 6.23.3.4.3a.
NOTE 2 For item 3(d), refer to requirement 6.23.3.4.1b.

g. For each valid request to report the attributes of a file, the file handling
subservice shall generate a single file attribute report that includes the
related file attribute notification.

6.23.4.3 File access protection

6.23.4.3.1 Lock a file

a. The file handling subservice capability to lock a file shall be declared
when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,5] lock a file".

NOTE 2 Locking a file in an on-board file system means
that the file is read-only. This implies that the
related file handling system provides write
protection for a locked file and that it prevents any
operations to delete or move a locked file

NOTE 3 File handling systems generally also provide
protection to a file while the file is open.

NOTE 4 No change can be done on a file that is locked
except unlocking it.

NOTE 5 For a file system that supports file locking, the file
management service has access to the locking
status of any file. See requirement 6.23.3.4.3a.

NOTE 6 For the capability to unlock a file, refer to clause
6.23.4.3.2.

b. Each request to lock a file shall contain exactly one instruction to lock a
file.

c. Each instruction to lock a file shall contain:
1. the object path of the file.

408

ECSS-E-ST-70-41C
15 April 2016

d. The file handling subservice shall reject any request to lock a file if any of
the following conditions occurs:
1. that request contains an instruction that refers to an object path

that is invalid;
2. that request contains an instruction that refers to an object path

that contains one or more wildcard characters that are recognised
by the file system.
NOTE The lock a file request cannot be used to lock

multiple files by means of wildcard characters.

e. For each request to lock a file that is rejected, the file handling subservice
shall generate a failed start of execution notification.

f. For each valid instruction to lock a file, the file handling subservice shall:
1. request the underlying file system to lock the file referred to by

that instruction;
2. if the underlying file system reports an error in locking the file,

generate a failed "completion of execution" notification.

6.23.4.3.2 Unlock a file

a. The file handling subservice shall provide the capability to unlock a file if
the capability to lock a file is provided by that subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,6] unlock a file".

NOTE 2 For the capability to lock a file, refer to clause
6.23.4.3.1.

b. Each request to unlock a file shall contain exactly one instruction to
unlock a file.

c. Each instruction to unlock a file shall contain:
1. the object path of the file.

d. The file handling subservice shall reject any request to unlock a file if any
of the following conditions occurs:
1. that request contains an instruction that refers to an object path

that is invalid;
2. that request contains an instruction that refers to an object path

that contains one or more wildcard characters that are recognised
by the file system.
NOTE The request to unlock a file cannot be used to

unlock multiple files by means of wildcard
characters.

e. For each request to unlock a file that is rejected, the file handling
subservice shall generate a failed start of execution notification.

f. For each valid instruction to unlock a file, the file handling subservice shall:
1. request the underlying file system to unlock the file referred to by

that instruction;
2. if the underlying file system reports an error in unlocking the file,

generate a failed "completion of execution" notification.

409

ECSS-E-ST-70-41C
15 April 2016

6.23.4.4 Find files
a. The file handling subservice capability to find files shall be declared

when specifying that subservice.
NOTE 1 The corresponding requests are of message type

"TC[23,7] find files". The responses are data reports
of message type "TM[23,8] found files report".

NOTE 2 Finding files in an on-board file system implies
that the related file handling system finds the files
whose names match the search pattern.

NOTE 3 The extent of the search depends on the
capabilities of the related file handling system. The
search can be restricted to the files in the directory
specified in the request, or it can extend to files in
all directories below the specified directory.

b. The file handling subservice shall support the use of search patterns
containing wildcards.

NOTE A wildcard is a special character matching one or
more other characters.

c. The search pattern wildcards supported by the file handling subservice
shall be declared when specifying that subservice.

NOTE These wildcards are those used by the underlying
file systems.

d. The extent of the search provided by the file handling subservice for
finding files shall be declared when specifying that subservice.

NOTE For example, only files local to the selected
repository, or recursively within all sub-directories
of the repository.

e. Each request to find files shall contain exactly one instruction to find files.

f. Each instruction to find files shall contain:
1. the repository path;
2. the search pattern.

NOTE Wildcards are limited to the search pattern. The
find files request cannot be used to search for files
in multiple repositories by means of wildcard
characters in the repository path.

g. The file handling subservice shall reject any request to find files if any of
the following conditions occurs:
1. that request contains an instruction that refers to a repository path

that is invalid;
2. that request contains an instruction that refers to a repository path

that contains one or more wildcard characters that are recognised
by the file system;

3. that request contains an instruction that specifies an invalid search
pattern.

410

ECSS-E-ST-70-41C
15 April 2016

h. For each request to find files that is rejected, the file handling subservice
shall generate a failed start of execution notification.

i. For each valid instruction to find files, the file handling subservice shall:
1. request the underlying file system to find the files that match the

search pattern in the repository referred to by that instruction;
2. if the underlying file system reports an error in finding the files,

generate a failed "completion of execution" notification.
3. generate, for each found file, a single found file notification that

includes:
(a) the searched repository path;
(b) the searched name pattern;
(c) the list of all matching file paths, if any.
NOTE If no other error is reported, a failure by the

underlying file system to find files that match the
search pattern is not considered an error.

j. For each valid request to find files, the file handling subservice shall
generate a single found files report that includes all related found file
notifications.

NOTE If no files have been found as a result of the search,
the list of files in the found files report is empty.

6.23.4.5 Managing directories

6.23.4.5.1 Create a directory

a. The file handling subservice capability to create a directory shall be
declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,9] create a directory".

NOTE 2 For the capability to delete a directory, refer to
clause 6.23.4.5.2.

b. Each request to create a directory shall contain exactly one instruction to
create a directory.

c. Each instruction to create a directory shall contain:
1. the object path of the directory.

d. The file handling subservice shall reject any request to create a directory
if:
1. that request contains an instruction that refers to an object path

that is invalid.

e. For each request to create a directory that is rejected, the file handling
subservice shall generate a failed start of execution notification.

f. For each valid instruction to create a directory, the file handling
subservice shall:
1. request the underlying file system to create the directory referred

to by that instruction;

411

ECSS-E-ST-70-41C
15 April 2016

2. if the underlying file system reports an error in creating the
directory, generate a failed "completion of execution" notification.

6.23.4.5.2 Delete a directory

a. The file handling subservice shall provide the capability to delete a
directory if the capability to create a directory is provided by that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,10] delete a directory".

NOTE 2 The type of directory deletion depends on the
capabilities of the related file handling system. For
example, deletion can be restricted to an empty
directory, or to a directory with no sub-directories.
If the file handling system supports recursive
deletion, then deletion extends to all files and
directories below the specified directory.

NOTE 3 The presence of a locked file in a directory, or in
any directory below it, prevents deletion of the
directory.

NOTE 4 For the capability to create a directory, refer to
clause 6.23.4.5.1.

b. The type of directory deletion provided by the file handling subservice
shall be declared when specifying that subservice.

c. Each request to delete a directory shall contain exactly one instruction to
delete a directory.

d. Each instruction to delete a directory shall contain:
1. the object path of the directory.

e. The file handling subservice shall reject any request to delete a directory
if any of the following conditions occurs:
1. that request contains an instruction that refers to an object path

that is invalid;
2. that request contains an instruction that refers to an object path

that contains one or more wildcard characters that are recognised
by the file system.
NOTE The delete a directory request cannot be used to

delete multiple directories by means of wildcard
characters.

f. For each request to delete a directory that is rejected, the file handling
subservice shall generate a failed start of execution notification.

g. For each valid instruction to delete a directory, the file handling
subservice shall:
1. request the underlying file system to delete the directory referred

to by that instruction;
2. if the underlying file system reports an error in deleting the

directory, generate a failed completion of execution notification.

412

ECSS-E-ST-70-41C
15 April 2016

6.23.4.5.3 Rename a directory

a. The file handling subservice shall provide the capability to rename a
directory if the capability to create a directory is provided by that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,11] rename a directory".

NOTE 2 The presence of a locked file in a directory, or in
any directory below it, prevents renaming of the
directory.

NOTE 3 For the capability to create a directory, refer to
clause 6.23.4.5.1.

b. Whether the file handling subservice supports the renaming of
directories shall be declared when specifying that subservice.

c. Each request to rename a directory shall contain exactly one instruction
to rename a directory.

d. Each instruction to rename a directory shall contain:
1. the repository path and current directory name of the directory;
2. the new directory name of the directory.

e. The file handling subservice shall reject any request to rename a directory
if any of the following conditions occurs:
1. that request contains an instruction that refers to a repository path

that is invalid;
2. that request contains an instruction that refers to a current

directory name that is invalid;
3. that request contains an instruction that refers to a new directory

name that is invalid.

f. For each request to rename a directory that is rejected, the file handling
subservice shall generate a failed start of execution notification.

g. For each valid instruction to rename a directory, the file handling
subservice shall:
1. request the underlying file system to rename the directory to the

new name referred to by that instruction;
2. if the underlying file system reports an error in renaming the

directory, generate a failed "completion of execution" notification.

6.23.4.6 Summary-report the content of a repository
a. The file handling subservice capability to summary-report the content of

a repository shall be declared when specifying that subservice.
NOTE The corresponding requests are of message type

"TC[23,12] summary-report the content of a
repository". The responses are data reports of
message type "TM[23,13] repository content
summary report".

413

ECSS-E-ST-70-41C
15 April 2016

b. When summary reporting repository content, the file handling subservice
shall report only those objects that are direct children of the repository
specified in the request.

NOTE This request does not report recursively on objects
in directories below the directory specified in the
request.

c. Each request to summary-report the content of a repository shall contain
exactly one instruction to summary-report the content of a repository.

d. Each instruction to summary-report the content of a repository shall
contain:
1. the repository path.

e. The file handling subservice shall reject any request to summary-report
the content of a repository if any of the following conditions occurs:
1. that request contains an instruction that refers to a repository path

that is invalid;
2. that request contains an instruction that refers to a repository path

that contains one or more wildcard characters that are recognised
by the file system.
NOTE The summary-report the content of a repository

request cannot be used to report the contents of
multiple directories by use of wildcard characters.

f. For each request to summary-report the content of a repository that is
rejected, the file handling subservice shall generate a failed start of
execution notification.

g. For each valid instruction to summary-report the content of a repository,
the file handling subservice shall:
1. request the underlying file system to provide a list of the objects in

the repository referred to by that instruction;
2. if the underlying file system reports an error in providing the list

of objects, generate a failed "completion of execution" notification.
3. generate, for each object contained within the repository, a single

repository content summary notification that includes:
(a) the repository path;
(b) the object type that is one of file or directory;
(c) the object name.
NOTE 1 If there are no objects in the repository, the list of

objects in the repository content summary report is
empty.

NOTE 2 A report from the underlying file system that the
repository is empty is not considered an error.

h. For each valid request to summary-report the content of a repository, the
file handling subservice shall generate a single repository content
summary report that includes all related repository content summary
notifications.

414

ECSS-E-ST-70-41C
15 April 2016

6.23.4.7 Subservice observables
a. The following observables shall be defined for the file handling

subservice:
1. for each file system:

(a) the available unallocated memory.

6.23.5 File copy subservice

6.23.5.1 File systems
a. When specifying the file copy subservice, the list of file systems that are

accessible to that subservice as source, as destination or as both source
and destination shall be declared.

NOTE The list contains the on-board file systems and the
remote file systems, e.g. ground.

b. A file in a remote file system shall be uniquely identified to the file copy
subservice by a remote file path that is the combination of a repository
path and a file name.

6.23.5.2 File copy operations

6.23.5.2.1 General

a. Each file copy operation shall have an identifier that is unique during the
lifetime of the operation.

NOTE 1 That unique identifier is used in the requests to
copy a file and to move a file.

NOTE 2 During the lifetime of the file copy operation, the
identifier can be used in other requests, for
example, to suspend or abort the operation. It is
also used in reports of the status of file copy
operations.

6.23.5.2.2 Copy a file

a. The file copy subservice shall provide the capability to copy a file.
NOTE 1 The corresponding requests are of message type

"TC[23,14] copy a file".
NOTE 2 The attributes of the created target file (e.g.

permissions) are file system and implementation
dependent.

b. Each request to copy a file shall contain exactly one instruction to copy a
file.

c. Each instruction to copy a file shall contain:
1. the identifier for the file copy operation;
2. the object path of the source file;
3. the object path of the target file.

415

ECSS-E-ST-70-41C
15 April 2016

d. The file copy subservice shall reject any request to copy a file if any of the
following conditions occurs:
1. that request contains a file copy operation identifier that is already

allocated to another on-going file copy operation;
2. that request contains an instruction that refers to an object path for

the source file that is invalid;
3. that request contains an instruction that refers to an object path for

the target file that is invalid;
4. that request contains an instruction for which both the source and

the target object paths refer to a remote file system.
NOTE The copy a file request cannot be used to copy a

file from a remote source to a remote target.

e. For each request to copy a file that is rejected, the file copy subservice
shall generate a failed start of execution notification.

f. For each valid instruction to copy a file, the file copy subservice shall:
1. use the file copy operation identifier contained in that instruction

as the identifier of the new file copy operation that it starts;
2. from the file paths of the source file and the target file in that

instruction, determine the underlying file transfer handler to use
for copying the file;

3. request the underlying file transfer handler to copy the source file
to the target file.
NOTE The file copy subservice uses an underlying file

transfer handler to perform the file copy. For
example, this can be a file transfer layer or it can be
a capability of a local file system. The choice is
implementation dependent and it also depends on
the file systems affected by the copy request.

g. For each file copy operation that it starts in response to a file copy
request, the file copy subservice shall process each related execution
notification that it receives from the underlying file transfer handler.

NOTE For example, if the target file system has
insufficient available memory, the underlying file
transfer handler fails to copy the file, causing the
raising of a failed execution notification.

h. For each file copy successful execution notification that it receives, if the
corresponding successful execution verification report has been
requested, the file copy subservice shall generate exactly one successful
execution verification report of type deduced from the type of the
received notification.

i. For each file copy failed execution notification that it receives, the file
copy subservice shall generate exactly one failed execution verification
report of type deduced from the type of the received notification.

416

ECSS-E-ST-70-41C
15 April 2016

6.23.5.2.3 Move a file

a. The file copy subservice capability to move a file shall be declared when
specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,15] move a file".

NOTE 2 The attributes of the created target file (e.g.
permissions) are file system and implementation
dependent.

b. Each request to move a file shall contain exactly one instruction to move
a file.

c. Each instruction to move a file shall contain:
1. the identifier for the file copy operation;
2. the object path of the source file;
3. the object path of the target file.

d. The file copy subservice shall reject any request to move a file if any of
the following conditions occurs:
1. that request contains a file copy operation identifier that is already

allocated to another on-going file copy operation;
2. that request contains an instruction that refers to an object path for

the source file that is invalid;
3. that request contains an instruction that refers to an object path for

the target file that is invalid;
4. the source object path and the target object path in the instruction

each identify a remote file system.
NOTE The move a file request cannot be used to move a

file from a remote source to a remote target.

e. For each request to move a file that is rejected, the file copy subservice
shall generate a failed start of execution notification.

f. For each valid instruction to move a file, the file copy subservice shall:
1. use the file copy operation identifier contained in that instruction

as the identifier of the new file copy operation that it starts;
2. from the file paths of the source file and the target file in that

instruction, determine the underlying file transfer handler to use
for moving the file;

3. request the underlying file transfer handler to move the source file
to the target file.
NOTE The file copy subservice uses an underlying file

transfer handler to perform the file move. For
example, this can be a file transfer layer or it can be
a capability of a local file system. The choice is
implementation dependent and it also depends on
the file systems affected by the move request.

g. For each file copy operation that it starts in response to a file move
request, the file copy subservice shall process each related execution
notification that it receives from the underlying file transfer handler.

417

ECSS-E-ST-70-41C
15 April 2016

h. For each file move successful execution notification that it receives, if the
corresponding successful execution verification report has been
requested, the file copy subservice shall generate exactly one successful
execution verification report of type deduced from the type of the
received notification.

i. For each file move failed execution notification that it receives, the file
copy subservice shall generate exactly one failed execution verification
report of type deduced from the type of the received notification.

6.23.5.3 Suspending and resuming the file copy operations

6.23.5.3.1 Suspend file copy operations

a. The file copy subservice capability to suspend file copy operations shall
be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,16] suspend file copy operations".

NOTE 2 This capability applies both to the file copy
operations that have been initiated using a request
to copy a file or to move a file.

NOTE 3 For the capability to resume file copy operations,
refer to clause 6.23.5.3.2.

b. Each request to suspend file copy operations shall contain one or more
instructions to suspend a file copy operation.

c. Each instruction to suspend a file copy operation shall contain:
1. the identifier of the file copy operation to suspend.

d. The file copy subservice shall reject any instruction to suspend a file copy
operation if:
1. the identifier in that instruction refers to a file copy operation that

does not exist.

e. For each instruction to suspend a file copy operation that it rejects, the
file copy subservice shall generate the failed start of execution
notification for that instruction.

f. The file copy subservice shall process any valid instruction that is
contained within a request to suspend file copy operations regardless of
the presence of faulty instructions.

g. For each valid instruction to suspend a file copy operation, the file copy
subservice shall request the associated underlying file transfer handler to
suspend the file copy operation.

6.23.5.3.2 Resume file copy operations

a. The file copy subservice shall provide the capability to resume file copy
operations if the capability to suspend file copy operations is provided by
that subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,17] resume file copy operations".

418

ECSS-E-ST-70-41C
15 April 2016

NOTE 2 This capability applies to both the file copy
operations that have been initiated using a copy a
file request and a move a file request.

NOTE 3 For the capability to suspend file copy operations,
refer to clause 6.23.5.3.1.

b. Each request to resume file copy operations shall contain one or more
instructions to resume a file copy operation.

c. Each instruction to resume a file copy operation shall contain:
1. the identifier of the file copy operation to resume.

d. The file copy subservice shall reject any instruction to resume a file copy
operation if:
1. the identifier in that instruction refers to a file copy operation that

does not exist.

e. For each instruction to resume a file copy operation that it rejects, the file
copy subservice shall generate the failed start of execution notification for
that instruction.

f. The file copy subservice shall process any valid instruction that is
contained within a request to resume file copy operations regardless of
the presence of faulty instructions.

g. For each valid instruction to resume a file copy operation, the file copy
subservice shall request the associated underlying file transfer handler to
resume the file copy operation.

6.23.5.3.3 Suspend all file copy operations involving a repository path

a. The file copy subservice capability to suspend all file copy operations
involving a repository path shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,19] suspend all file copy operations
involving a repository path".

NOTE 2 This capability applies both to the file copy
operations that have been initiated using a request
to copy a file or to move a file.

NOTE 3 This allows for example to suspend all file copies
involving ground by specifying the logical path
representing the ground, or to suspend all file
copy operations by specifying the root path.

NOTE 4 For the capability to resume all file copy
operations involving a repository path, refer to
clause 6.23.5.3.4.

b. Each request to suspend all file copy operations involving a repository
path shall contain exactly one instruction to suspend all file copy
operations involving a repository path.

c. Each instruction to suspend all file copy operations involving a
repository path shall contain:
1. the repository path.

419

ECSS-E-ST-70-41C
15 April 2016

d. For each valid instruction to suspend all file copy operations involving a
repository path, the file copy subservice shall:
1. for each on-going file copy operation, if either the source or the

destination of the copy is constrained within the provided
repository path, request the associated underlying file transfer
handler to suspend that file copy operation.

6.23.5.3.4 Resume all file copy operations involving a repository path

a. The file copy subservice shall provide the capability to resume all file
copy operations involving a repository path if the capability to suspend
all file copy operations involving a repository path is provided by that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,20] resume all file copy operations
involving a repository path".

NOTE 2 This capability applies both to the file copy
operations that have been initiated using a request
to copy a file or to move a file.

NOTE 3 This allows for example to resume all file copies
involving ground by specifying the logical path
representing the ground, or to resume all file copy
operations by specifying the root path.

NOTE 4 For the capability to suspend all file copy
operations involving a repository path, refer to
clause 6.23.5.3.3.

b. Each request to resume all file copy operations involving a repository
path shall contain exactly one instruction to resume all file copy
operations involving a repository path.

c. Each instruction to resume all file copy operations involving a repository
path shall contain:
1. the repository path.

d. For each valid instruction to resume all file copy operations involving a
repository path, the file copy subservice shall:
1. for each file copy operation that is on-hold, request the associated

underlying file transfer handler to resume that file copy operation.

6.23.5.4 Abort the file copy operations

6.23.5.4.1 Abort file copy operations

a. The file copy subservice capability to abort file copy operations shall be
declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,18] abort file copy operations".

NOTE 2 This capability applies both to the file copy
operations that have been initiated using a request
to copy a file or to move a file.

420

ECSS-E-ST-70-41C
15 April 2016

b. Each request to abort file copy operations shall contain one or more
instructions to abort a file copy operation.

c. Each instruction to abort a file copy operation shall contain:
1. the identifier of the file copy operation to abort.

d. The file copy subservice shall reject any instruction to abort a file copy
operation if:
1. the identifier in that instruction refers to a file copy operation that

does not exist.

e. For each instruction to abort a file copy operation that it rejects, the file
copy subservice shall generate the failed start of execution notification for
that instruction.

f. The file copy subservice shall process any valid instruction that is
contained within a request to abort file copy operations regardless of the
presence of faulty instructions.

g. For each valid instruction to abort a file copy operation, the file copy
subservice shall request the associated underlying file transfer handler to
abort that file copy operation.

6.23.5.4.2 Abort all file copy operations involving a repository path

a. The file copy subservice capability to abort all file copy operations
involving a repository path shall be declared when specifying that
subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,21] abort all file copy operations involving
a repository path".

NOTE 2 This capability applies both to the file copy
operations that have been initiated using a request
to copy a file or to move a file.

NOTE 3 This allows for example to abort all file copies
involving ground by specifying the logical path
representing the ground, or to abort all file copy
operations by specifying the root path.

b. Each request to abort all file copy operations involving a repository path
shall contain exactly one instruction to abort all file copy operations
involving a repository path.

c. Each instruction to abort all file copy operations involving a repository
path shall contain:
1. the repository path.

d. The file copy subservice shall reject any request to abort all file copy
operations involving a repository path if:
1. no file copy operations are on-going.

e. For each request to abort all file copy operations involving a repository
path that is rejected, the file copy subservice shall generate a failed start
of execution notification.

421

ECSS-E-ST-70-41C
15 April 2016

f. For each valid instruction to abort all file copy operations involving a
repository path, the file copy subservice shall:
1. For each on-going file copy operation, request the associated

underlying file transfer handler to abort that file copy operation.

6.23.5.5 Periodic file copy status reporting

6.23.5.5.1 General

a. Whether the file copy subservice provides means to report, within the file
copy status reports, the progress of the copy operations shall be declared
when specifying that subservice.

6.23.5.5.2 Enable the periodic reporting of the file copy status

a. The file copy subservice capability to enable the periodic reporting of the
file copy status shall be declared when specifying that subservice.

NOTE 1 The corresponding requests are of message type
"TC[23,22] enable the periodic reporting of the file
copy status".

NOTE 2 That capability applies both to the file copy
operations that have been initiated using a request
to copy a file or to move a file.

NOTE 3 For the capability to disable the periodic reporting
of the file copy status, refer to clause 6.23.5.5.3.

b. Each request to enable the periodic reporting of the file copy status shall
contain exactly one instruction to enable the periodic reporting of the file
copy status.

c. Each instruction to enable the periodic reporting of the file copy status
shall contain:
1. the periodic reporting interval.

d. The file copy subservice shall reject any request to enable the periodic
reporting of the file copy status if:
1. that request contains an instruction that specifies an invalid

reporting interval.

e. For each request to enable the periodic reporting of the file copy status
that is rejected, the file copy subservice shall generate a failed start of
execution notification.

f. For each valid instruction to enable the periodic reporting of the file copy
status, the file copy subservice shall:
1. set the file copy status periodic reporting status to "enabled";
2. set the file copy status periodic reporting interval to the specified

interval.

6.23.5.5.3 Disable the periodic reporting of the file copy status

a. The file copy subservice shall provide the capability to disable the
periodic reporting of the file copy status if the capability to enable the
periodic reporting of the file copy status is provided by that subservice.

422

ECSS-E-ST-70-41C
15 April 2016

NOTE 1 The corresponding requests are of message type
"TC[23,24] disable the periodic reporting of the file
copy status".

NOTE 2 This capability applies both to the file copy
operations that have been initiated using a request
to copy a file or to move a file.

NOTE 3 For the capability to enable the periodic reporting
of the file copy status, refer to clause 6.23.5.5.2.

b. Each request to disable the periodic reporting of the file copy status shall
contain exactly one instruction to disable the periodic reporting of the file
copy status.

NOTE The instructions to disable the periodic reporting
of the file copy status contain no argument.

c. For each valid instruction to disable the periodic reporting of the file
copy status, the file copy subservice shall:
1. set the file copy status periodic reporting status to "disabled".

6.23.5.5.4 File copy status report

a. The file copy subservice shall provide the capability for generating the
file copy status reports if the capability to enable the periodic reporting of
the file copy status is provided by that subservice.

NOTE 1 The corresponding reports are data reports of
message type "TM[23,23] file copy status report".

NOTE 2 For the capability to enable the periodic reporting
of the file copy status, refer to clause 6.23.5.5.2.

b. Each file copy status report shall contain exactly one file copy status
notification for each file copy operation that is on-going.

c. Each file copy status notification shall contain:
1. the identifier of an on-going file copy operation;
2. whether that operation is in-progress, pending waiting on-board

resources or on-hold;
3. if the file copy subservice provides means to report the progress of

a copy operation, the progress indicator as a percentage of
completion.
NOTE For item 3, refer to requirement 6.23.5.5.1a.

d. When the file copy status periodic reporting is enabled, the file copy
subservice shall generate exactly one file copy status report at the end of
each file copy status periodic reporting interval.

NOTE The enabling of the file copy status periodic
reporting results from the execution of a request to
enable the periodic reporting of the file copy
status, refer to clause 6.23.5.5.2.

423

ECSS-E-ST-70-41C
15 April 2016

6.23.5.6 Subservice observables
a. The following observables shall be defined for the file copy subservice:

1. a flag signalling that at least one file copy operation is in-progress;
2. a flag signalling that at least one file copy operation is on-hold;
3. a flag signalling whether the file copy status reporting is enabled

or disabled.

424

ECSS-E-ST-70-41C
15 April 2016

7
Space to ground interface requirements

7.1 Introduction

7.1.1 Packets
 This Standard promotes using space packets compliant to the CCSDS space

packet protocol to transport the PUS messages. It does not prescribe the
protocol used to transport requests initiated on-board and reports destined for
on-board.

 In this Standard:

• a "telecommand packet" is the data unit that is used to carry a service
request from an application process on the ground to an application
process on-board;

• a "telemetry packet" is the data unit that is used to carry a service report
from an application process on board to an application process on the
ground.

 The initiation of a request by a subservice user on the ground results in the
transmission of a telecommand packet to the on-board subservice provider, the
reception of which initiates the execution of the corresponding activity.

 The initiation of a report by an on-board subservice provider results in the
sending of a telemetry packet to a subservice user.

 The specification of the activities performed by the ground as a subservice user
(e.g. to generate requests or to process reports) is beyond the scope of this
Standard.

 Some of the PUS services defined in this Standard imply an exchange of
messages between on-board application processes. The mechanisms used to
exchange such messages on-board are mission-dependent and therefore outside
the scope of this Standard.

 The data format for telemetry packets and for telecommand packets is the
"space packet" specified in CCSDS 133.0-B-1.

 Clause 7.4 specifies how the common fields of a space packet are used for a
telemetry or telecommand packet.

 Service-specific fields are specified in clause 8.

 Clauses 7.4 and 8 uses the standard PUS field types specified in clause 7.3.

 This Standard does not exclude the use of other packet protocols that are fully
compatible with its requirements for telemetry and telecommand packets.

425

ECSS-E-ST-70-41C
15 April 2016

7.1.2 Packet transport

7.1.2.1 Introduction
 The telemetry or telecommand systems through which the packets are

transported are layered, with each layer drawing upon a well-defined set of
services provided by the layer below and providing a similarly well-defined set
of services to the layer above (see ECSS-E-ST-50-03 and ECSS-E-ST-50-04).

7.1.2.2 Telemetry link
 On the telemetry link, the physical channel can be shared between multiple

Master Channels, for example, when one spacecraft acts as a relay for another
spacecraft such as in a planetary orbiter/lander mission (see ECSS-E-ST-50-03).
Each master channel is identified by a unique spacecraft identifier field in the
telemetry frame header. However, for a typical mission comprising a single
spacecraft, all the frames on a physical channel have the same value for the
spacecraft identifier, so there is only one master channel on the physical
channel.

 Some spacecraft can use several physical channels for their telemetry data and
can further differentiate the data transmitted on those channels by using
different frame formats (for examples, see ECSS-E-ST-50-03 and CCSDS 732.0-B-
2), or by other means outside the scope of this Standard.

 Virtual Channels provide a technique for multiple on-board packet sources
(application processes) to share the finite capacity of a physical link through
multiplexing. Each virtual channel is identified by a unique virtual channel
identifier field in the telemetry frame header and the frames from different
virtual channels are multiplexed together on a master channel (see Figure 7-1).
Up to eight virtual channels (refer to ECSS-E-ST-50-03) or up to 64 virtual
channels (refer to CCSDS 732.0-B-2) can be supported on a master channel.
Virtual channels can be used for a variety of purposes, such as:

• flow control to prevent long packets from blocking the physical channel;

• separating different types of data for stream splitting on the ground. For
example, separating low-rate engineering data from high-rate science
data for onward transmission on the ground or separating real-time data
from playback data.

 Whilst a long packet is being transmitted, the transmission of any other packets
for the same virtual channel is delayed. To overcome this, a mission may define
a maximum length for the telemetry packets to use by the mission, which is
considerably shorter than the maximum length supported by the packet
protocol used.

7.1.2.3 Telecommand link
 On the telecommand link, the physical channel can also be shared between

multiple master channels and virtual channels (see ECSS-E-ST-50-04). In
addition, an optional identifier, called the multiplexer access point identifier
(MAP ID), can be used to create multiple streams of telecommand data within a
virtual channel. All the transfer frames on a given virtual channel with the same
MAP ID constitute a MAP channel. Up to sixty-four MAP channels can be

426

ECSS-E-ST-70-41C
15 April 2016

supported on a virtual channel. The choice of multiplexing algorithm and the
allocation of priorities to the individual virtual channels and MAPs is
implementation dependent. For example, MAPs can be used for:

• flow control purposes;

• telecommand prioritization i.e. a telecommand on a high-priority MAP
can be transmitted before a telecommand arriving earlier on a lower-
priority MAP;

• telecommand routing as part of the telecommand decoding process.

 Whilst there is a theoretically huge multiplexing capability available, real
implementations generally use a very modest repertoire of MAP ID and virtual
channel ID assignments.

Figure 7-1 Sharing a physical channel

7.2 Convention

7.2.1 Structure diagram
 In the remainder of this Standard, sequences of packet fields are presented in

structure diagrams as shown in Figure 7-2.

 repeated N times

N packet field 1 packet field 2

unsigned integer Boolean enumerated

optional

Figure 7-2 An example of a packet field structure diagram
 For each field contained in the corresponding structure:

• the field name is specified in the first row of the diagram;

• the field type is specified in the second row.

 Where the presence of a field, or group of fields, is optional, this is indicated by
the text "optional" below the corresponding fields. A field or group of fields is

427

ECSS-E-ST-70-41C
15 April 2016

optional if its presence is determined at the level of the mission, application
process or service instance.

 The omission of an optional field can imply that the value is known by both the
subservice provider and the subservice user. For example, the subservice
provider can use a fixed value or a "current value" which can be set by the
subservice user through other means. The subservice provider can even use the
values of other preceding fields in the request or report to access a fixed or
modifiable look-up table in which the values are contained.

 Where a field, or group of fields, constitutes an entry in a fixed-length or a
variable-length array, this is indicated above the table by the text "repeated N
times", where N is the number of repetitions within the array. In the case of a
variable-length array, N is given explicitly at the start of the array. In the case of
a fixed-length array, N is known implicitly for the mission.

7.2.2 Bit-field numbering
 Each bit in a field (a n-bit field) is identified and numbered from left to right as

follows:

• The first bit, i.e. the leftmost justified bit on a figure, i.e. the most
significant bit, is called "Bit 0";

• The second bit is called "Bit 1";

• and so on, up to "Bit N-1".

 A group of 8 adjacent bits is called an octet or a byte.

7.3 Packet field type code

7.3.1 General
a. Each packet field shall be associated to a packet field code that indicates

the data type of any value carried by that packet field.
NOTE The packet field code specified in this Standard are

uniquely identified by the combination of:
• a packet field type code (PTC), and
• a packet field format code (PFC).
The interpretation of each PFC is fully and only
dependent on the associated PTC.

b. Tailoring this Standard for a mission, for each new message type defined
for that mission, the packet field type code of each field of that new
message type shall be declared when specifying that message type.

c. Tailoring this Standard for a mission, for each message type field that
packet field format code is unknown, the packet field format code of that
field shall be declared when specifying the application process that uses
the related message type.

d. The PTC specified in Table 7-1 shall be used to declare the PTC of each
packet field.

428

ECSS-E-ST-70-41C
15 April 2016

Table 7-1 PTC – packet field type code

PTC simple type correspondence

1 Boolean

2 enumerated

3 unsigned integer

4 signed integer

5 real

6 bit-string

7 octet-string

8 character-string

9 absolute time

10 relative time

11 deduced

12 packet

e. The PTC of each packet field shall be declared when specifying the
structure of each packet type.

7.3.2 Boolean
a. Each packet field used to carry Boolean values shall be of PTC 1.

NOTE 1 A Boolean value > 0 denotes TRUE.
NOTE 2 A Boolean value = 0 denotes FALSE.

b. The PFCs specified in Table 7-2 shall be used for packet fields carrying
Boolean values.

Table 7-2 PFC for Boolean values

PFC format definition

0 1-bit Boolean parameter value

n > 1 The PFC identifies the length in bits of the Boolean
parameter value, e.g. PFC = 8 means an 8-bits Boolean
parameter value.

429

ECSS-E-ST-70-41C
15 April 2016

7.3.3 Enumerated
a. Each packet field used to carry enumerated values shall be of PTC 2.

NOTE 1 An enumerated value is an unsigned integer value
that can be involved in logical and comparative
expressions but not in numeric and relational
expressions.

NOTE 2 An enumerated value has a meaning that is
interpreted as a character-string value. An error
code is a typical example (e.g. 0 means
"unchecked", 3 means "invalid").

b. The PFCs specified in Table 7-3 shall be used for packet fields carrying
enumerated values.

Table 7-3 PFC for enumerated values

PFC format definition

1 to 64 The PFC identifies the length in bits of the enumerated
parameter, e.g. PFC = 1 means one-bit parameter value.

7.3.4 Unsigned integer
a. Each packet field used to carry unsigned integer values shall be of PTC 3.

b. Each unsigned integer value shall be encoded with Bit 0 being the most
significant bit (MSB) and Bit N-1 the least significant bit (LSB).

c. The PFCs specified in Table 7-4 shall be used for packet fields carrying
unsigned integer values.

Table 7-4 PFC for unsigned integer values

PFC format definition lowest value highest value

0 to 12 (PFC + 4) bits, unsigned 0 2𝑃𝑃𝑃𝑃𝑃𝑃+4– 1
(15 𝑡𝑡𝑡𝑡 65 535)

13 3 octets, unsigned 0 224– 1
(16 777 215)

14 4 octets, unsigned 0 232– 1
(≈ 4,3 × 109)

15 6 octets, unsigned 0 248– 1
(≈ 2,8 × 1014)

16 8 octets, unsigned 0 264– 1
(≈ 18,5 × 1018)

17 1 bit, unsigned 0 1

18 2 bits, unsigned 0 3

19 3 bits, unsigned 0 7

430

ECSS-E-ST-70-41C
15 April 2016

7.3.5 Signed integer
a. Each packet field used to carry signed integer values shall be of PTC 4.

b. Bit 0 of each signed integer parameter shall be used to determine the sign
of the parameter value.

NOTE 1 Bit 0 = 0 denotes a positive value.
NOTE 2 Bit 0 = 1 denotes a negative value.
NOTE 3 Negative values are represented as 2’s complement

of the absolute value.

c. The PFCs specified in Table 7-5 shall be used for packet fields carrying
signed integer values.

Table 7-5 PFC for signed integer values

PFC format definition lowest value highest value

0 to 12 (PFC + 4) bits, signed −2𝑃𝑃𝑃𝑃𝑃𝑃+3
(−8 𝑡𝑡𝑡𝑡 − 32 768)

2𝑃𝑃𝑃𝑃𝑃𝑃+3– 1
(7 𝑡𝑡𝑡𝑡 32 767)

13 3 octets, signed −223
(−8 388 608)

223 − 1
(8 388 607)

14 4 octets, signed −231
(≈ −2,15 × 109)

231 − 1
(≈ 2,15 × 109)

15 6 octets, signed −247
(≈ −1,4 × 1014)

247 − 1
(≈ 1,4 × 1014)

16 8 octets, signed −263
(≈ −9,2 × 1018)

263 − 1
(≈ 9,2 × 1018)

7.3.6 Real
a. Each packet field used to carry real values shall be of PTC 5.

b. The PFCs specified in Table 7-6 shall be used for packet fields carrying
real values.

Table 7-6 PFC for real values

PFC format definition

1 4 octets simple precision format (IEEE)

2 8 octets double precision format (IEEE)

3 4 octets simple precision format (MIL-STD)

4 6 octets extended precision format (MIL-STD)

NOTE 1 The IEEE simple precision and double precision formats are defined in "IEEE 754
Standard for Binary Floating-point Arithmetic" (Reference [7]), see also annex
A.1.

NOTE 2 The MIL-STD simple precision and extended precision formats are defined in
the "Military Standard Sixteen-Bit Computer Instruction Set Architecture" MIL-
STD-1750a, 2nd July 1980 (Reference [8]), see also annex A.2.

431

ECSS-E-ST-70-41C
15 April 2016

7.3.7 Bit-string
a. Each packet field used to carry bit-string values shall be of PTC 6.

b. The PFCs specified in Table 7-7 shall be used for packet fields carrying
bit-string values:

Table 7-7 PFC for bit-string values

PFC format definition

0 variable-length bit-string

n > 0 fixed-length bit-string with a number of bits equal to
PFC

NOTE The meaning and interpretation of a bit-string value is
application process specific.

c. The variable-length bit-string shall have the structure specified in Figure
7-3.

variable-length bit-string

length data

unsigned integer N bits

NOTE The packet field code "N bits" means that a value
carried in the data field of a variable-length bit-string
has a fixed number of bits that equals to the value
carried in the corresponding length field.

Figure 7-3 PTC 6 PFC 0 structure

d. For each application process that uses variable-length octet-strings, the
PFC of the length field of the variable-length bit-string format shall be
declared when specifying that application process.

e. Each spare field of a telemetry or a telecommand packet shall be of fixed-
length PTC 6.

f. For each spare field of a telemetry or a telecommand packet, all bits of
that field shall be set to zero.

g. For each packet field containing a fixed-length bit-string whose length is
deduced, the definition used to deduce that length shall be declared
when specifying the related packet field type.

NOTE The deduced length corresponds to a fixed length
PFC.

h. For each packet field containing a fixed-length bit-string whose length is
deduced, the deduction of the length shall only result from the content of
one or more preceding fields of the same packet, of one or more mission
constants or a combination of both.

432

ECSS-E-ST-70-41C
15 April 2016

7.3.8 Octet-string
a. Each packet field used to carry octet-string values shall be of PTC 7.

b. The PFCs specified in Table 7-8 shall be used for packet fields carrying
octet-string values.

Table 7-8 PFC for octet-string values

PFC format definition

0 Variable-length octet-string

n > 0 Fixed-length octet-string with a number of octets equal
to PFC

NOTE The meaning and interpretation of an octet-string value is
application process specific.

c. The variable-length octet-string shall have the structure specified in
Figure 7-4.

variable-length octet-string

length data

unsigned integer N octets

NOTE The packet field code "N octets" means that a value
carried in the data field of a variable-length octet-string
has a fixed number of octets that equals to the value
carried in the corresponding length field.

Figure 7-4 PTC 7 PFC 0 structure

d. For each application process that uses variable-length octet-strings, the
PFC of the length field of the variable-length octet-string format shall be
declared when specifying that application process.

e. For each packet field containing a fixed-length octet-string whose length
is deduced, the definition used to deduce that length shall be declared
when specifying the related packet field type.

NOTE The deduced length corresponds to a fixed length
PFC.

f. For each packet field containing a fixed-length octet-string whose length
is deduced, the deduction of the length shall only result from the content
of one or more preceding fields of the same packet, of one or more
mission constants or a combination of both.

7.3.9 Character-string
a. Each packet field used to carry character-string values shall be of PTC 8.

b. The values that character-string parameters can take shall be sequences of
visible characters.

433

ECSS-E-ST-70-41C
15 April 2016

NOTE Visible characters are defined in ANSI X3.4
(Reference [9]) and represented by their ASCII
code on one octet.

c. The PFCs specified in Table 7-9 shall be used for packet fields carrying
character-string values.

Table 7-9 PFC for character-string values

PFC format definition

0 Variable-length character-string

n > 0 Fixed-length character-string with a number of
characters equal to PFC

NOTE The meaning and interpretation of a character-string value is
application process specific.

d. The variable-length character-string format shall have the structure
specified in Figure 7-5:

variable-length character-string

length data

unsigned integer N characters

NOTE 1 The packet field code "N character" means that a value carried
in the data field of a variable-length character-string has a
fixed number of characters that equals to the value carried in
the corresponding length field.

NOTE 2 Each character of the value field is represented in ASCII on
one octet.

Figure 7-5 PTC 8 PFC 0 structure

e. For each application process that uses variable-length character-strings,
the PFC of the length field of the variable-length character-string format
shall be declared when specifying that application process.

f. For each packet field containing a fixed-length character-string whose
length is deduced, the definition used to deduce that length shall be
declared when specifying the related packet field type.

NOTE The deduced length corresponds to a fixed length
PFC.

g. For each packet field containing a fixed-length character-string whose
length is deduced, the deduction of the length shall only result from the
content of one or more preceding fields of the same packet, of one or
more mission constants or a combination of both.

434

ECSS-E-ST-70-41C
15 April 2016

7.3.10 Absolute time
a. Each packet field used to carry absolute time values shall be of PTC 9.

b. Each absolute time parameter value shall be a positive time offset that is
a number of seconds and fractions of a second from a given epoch.

NOTE 1 If the CUC format is used, either the standard
CCSDS epoch of 1958 January 1 or an Agency
defined epoch can be used. In the latter case, the
parameter corresponds to a free-running counter
that is converted on ground using the applicable
time correlation coefficients.

NOTE 2 The CUC format is specified in CCSDS 301.0-B-4.
The CCSDS offers means to define CUC coarse
time values using 1 to 7 octets and fine time values
using 1 to 10 octets. This Standard implements
means to define CUC coarse time values using 1 to
4 octets and fine time values using 1 to 10 octets.

c. If the absolute time parameter has CDS format, the standard CCSDS
epoch of 1958 January 1 shall be used.

NOTE The CDS format is specified in CCSDS 301.0-B-4.

d. The PFCs specified in Table 7-10 shall be used for packet fields carrying
absolute time values.

435

ECSS-E-ST-70-41C
15 April 2016

Table 7-10 PFC for absolute time values

PFC format definition

0 Explicit definition of time format (CUC or CDS), i.e. including the P-field

1 2 octets day CDS format without a µs field
The parameter field has a length equal to 6 octets.

2 2 octets day CDS format with a µs field
The parameter field has a length equal to 8 octets.

3 to 18 CUC format with:
The number of octets of coarse time equals the integer quotient of (PFC number + 1) divided
by 4, and
The number of octets of fine time equals the remainder of (PFC number + 1) divided by 4.
The P-field is implicit and derived from the PFC.

19 to 46 CUC format with:
The number of octets of coarse time equals the integer quotient of (PFC number -12) divided
by 7, and
The number of octets of fine time equals 4 + the remainder of (PFC number -12) divided by 7.
The P-field is implicit and derived from the PFC.

NOTE 1 The CUC and CDS time formats are defined in CCSDS 301.0-B-4.
NOTE 2 The CDS Format with µs, i.e. PFC = 2 has the structure shown in figure below. The value of day is an

unsigned integer in the range 0 𝑡𝑡𝑡𝑡 216 − 1.

day ms of day µs of ms

2 octets 4 octets 2 octets

NOTE 3 The full CUC format, i.e. PFC 18 has the structure shown in figure below. The time in seconds from
the given Agency epoch is given by 𝑡𝑡 = 𝐶𝐶1 × 2563 + 𝐶𝐶2 × 2562 + 𝐶𝐶3 × 256 + 𝐶𝐶4 + 𝐹𝐹1 × 256−1 +
 𝐹𝐹2 × 256−2 + 𝐹𝐹3 × 256−3.

C1 C2 C3 C4 F1 F2 F3

1 octet 1 octet 1 octet 1 octet 1 octet 1 octet 1 octet

7.3.11 Relative time
a. Each packet field used to carry relative time values shall be of PTC 10.

b. Each relative time parameter value shall be a positive or a negative time
offset that is the number of seconds and fractions of a second from the
occurrence time of an event whose identification can be derived from
other parameters in the packet (identifying a type of on-board event) or a
number of seconds and fractions of a second between two absolute times.

NOTE A negative time offset is expressed as the "2’s
complement" of the corresponding positive time
offset.

436

ECSS-E-ST-70-41C
15 April 2016

c. The PFCs specified in Table 7-11 shall be used for packet fields carrying
relative time values.

Table 7-11 PFC for relative time values

PFC format definition

2 2 octets day CDS format with a µs field
The parameter field has a length equal to 8 octets.

3 to 18 CUC format with:
The number of octets of coarse time equals the integer quotient of
(PFC number + 1) divided by 4, and
The number of octets of fine time equals the remainder of (PFC
number + 1) divided by 4.
The P-field is implicit and derived from the PFC.

NOTE The full CUC format, i.e. PFC 18 has the structure shown in figure below. A
positive time offset is given by 𝑡𝑡 = 𝐶𝐶1 × 2563 + 𝐶𝐶2 × 2562 + 𝐶𝐶3 × 256 + 𝐶𝐶4 +
 𝐹𝐹1 × 256−1 + 𝐹𝐹2 × 256−2 + 𝐹𝐹3 × 256−3 where C1 is in the range 0 to 127.

C1 C2 C3 C4 F1 F2 F3

1 octet 1 octet 1 octet 1 octet 1 octet 1 octet 1 octet

7.3.12 Deduced
a. Each packet field whose structure and format is deduced shall be of PTC

11 PFC 0.

b. For each packet field whose structure and format is deduced, the
definition used to deduce that structure and format shall be declared
when specifying the related packet field type.

c. For each packet field whose structure and format is deduced, the
deduction of the structure and format shall only result from the content
of one or more preceding fields of the same packet, of one or more
mission constants or a combination of both.

7.3.13 Packet
a. Each packet field used to carry packets shall be of PTC 12.

b. The PFCs specified in Table 7-12 shall be used for packet fields carrying
packets.

Table 7-12 PFC for packet values

PFC format definition

0 CCSDS telemetry packet compliant with this Standard

1 CCSDS telecommand packet compliant with this Standard

NOTE For PFC 0 and PFC 1, refer to clause 7.4.

437

ECSS-E-ST-70-41C
15 April 2016

7.4 The CCSDS Space Packet

7.4.1 Overview
 The CCSDS Space Packet Protocol is defined in CCSDS 133.0-B-1. The generic

structure of a CCSDS space packet is shown in Figure 7-6.

packet primary header packet data field

packet
version
number

packet ID
packet sequence

control

packet
data

length

packet
secondary

header

user
data
field packet

type
secondary
header flag

application
process ID

sequence
flags

packet
sequence
count or
packet
name

3 bits 1 bit 1 bit 11 bits 2 bits 14 bits 16 bits variable variable

2 octets 2 octets 2 octets 1 to 65536 octets

Figure 7-6 The space packet structure
 The packet version number is set to 0 and identifies it as a space packet defined by

CCSDS 133. 0-B-1. A space packet is also referred to as a version 1 CCSDS
packet.

 The packet type bit distinguishes between telemetry packets, for which this bit is
set to 0, and telecommand packets, for which this bit is set to 1.

 The secondary header flag indicates the presence or absence of the packet
secondary header. With the exception of spacecraft time packets (refer to clause
6.9.4), all telemetry packets defined in this Standard have a packet secondary
header field. With the exception of CPDU command packets (refer to clause
9.3.1), all telecommand packets defined in this Standard have a packet
secondary header field.

 The application process ID uniquely identifies the on-board application process
that is source of the telemetry packet and destination of the telecommand
packet. Some values of the application process ID field are reserved by the
CCSDS standard, making them unavailable for use by PUS services.

 The sequence flags are defined by CCSDS but not used by the space packet protocol.
This Standard uses the binary value "11" for the sequence flags, to indicate a stand-
alone packet. All telemetry packets and telecommand packets defined within
this Standard are stand-alone packets.

 The packet sequence count is used for telemetry packets. It is incremented by 1
whenever the source application process releases a packet. The packet sequence
count wraps around from 214-1 to zero.

 The telecommand packets carry either a packet sequence count or a packet name to
identify them within the same communication session. For the purpose of this
Standard, the telecommand packet sequence count or packet name field carries an
identifier that used in combination with the source identifier specified in clause
7.4.4.1, uniquely identify the telecommand packet.

438

ECSS-E-ST-70-41C
15 April 2016

 The packet data length field specifies the length of the packet data field. The value
of the unsigned integer in the packet data length field is one less than the
number of octets contained within the packet data field. The length of the entire
packet, including the packet primary header, is 6 octets more than the length of
the packet data field.

 The structure of the packet data field depends on the packet type.

• for telemetry packets that field is composed of:
− the telemetry packet secondary header specified in clause 7.4.3.1;
− the telemetry user data field specified in clause 7.4.3.2;

• for telecommand packets that field is composed of:
− the telecommand packet secondary header specified in clause 7.4.4.1;
− the telecommand user data field specified in clause 7.4.4.2.

7.4.2 General
a. Once a telecommand or a telemetry packet has been generated by an

application process, no one shall update that packet.

7.4.3 Telemetry packet data field

7.4.3.1 Telemetry packet secondary header
a. With the exception of the spacecraft time packets specified in clauses

6.9.4.2 and 6.9.4.3, all telemetry packets defined in this Standard shall
have a telemetry packet secondary header.

b. Each telemetry packet secondary header shall have the structure
specified in Figure 7-7.

TM packet
PUS version

number

spacecraft time
reference

status

message type ID message
type

counter

destination
ID

time spare service
type ID

message
subtype ID

enumerated
(4 bits)

enumerated
(4 bits)

enumerated
(8 bits)

enumerated
(8 bits)

unsigned
integer
(16 bits)

enumerated
(16 bits)

absolute
time

fixed-size
bit-string

optional

NOTE The spare field is used to constrain the length of the telemetry packet secondary header to an
integral number of words. Its optional presence is driven by requirement 7.4.3.1l.

Figure 7-7 Packet secondary header for telemetry packets

c. Each application process shall set the TM packet PUS version number of
each telemetry packet it generates to 2.

NOTE The TM packet PUS version number reflects the
different versions of this Standard.
• Version 0 was used by the ESA PUS (ESA PSS-

07-101).
• Version 1 corresponds to the ECSS-E-70-41A.

439

ECSS-E-ST-70-41C
15 April 2016

d. Each application process that provides the capability to report the
spacecraft time reference status used when time tagging telemetry
packets shall set the spacecraft time reference status field of each
telemetry packet it generates to the status of the on-board time reference
used when time tagging that telemetry packet.

NOTE 1 For the capability to report the status of the on-
board time reference, refer to requirement 5.4.2.1h.

NOTE 2 For the possible values of the spacecraft time
reference status, refer to requirement 6.9.4.1c. If the
reporting of the spacecraft time reference status is
not supported, the spacecraft time reference status
field value is set to 0.

NOTE 3 The time tag of the telemetry packet is stored in
the time field of the telemetry packet secondary
header.

e. Each application process that does not provide the capability to report
the status of the on-board time reference used when time tagging
telemetry packets shall set the spacecraft time reference status field of
each telemetry packet it generates to 0.

NOTE For the capability to report the status of the on-
board time reference, refer to requirement 5.4.2.1h.

f. For each report that it generates, each application process shall set the
message type ID field of the corresponding telemetry packet to the
message type identifier of that report.

NOTE The structure of the message type ID field is
driven by requirement 5.3.3.1c.

g. For each report that it generates, each application process that provides the
capability to count the type of generated messages per destination and
report the corresponding message type counter shall set the message type
counter of the related telemetry packet to the value of the related counter.

NOTE For the capability to count the type of generated
messages, refer to requirement 5.4.2.1j.

h. Each application process that does not provide the capability to count the
type of generated messages per destination and report the corresponding
message type counter shall set the message type counter field of each
telemetry packet it generates to 0.

NOTE For the capability to count the type of generated
messages, refer to requirement 5.4.2.1j.

i. Each application process shall set the destination ID field of each
telemetry packet it generates to the application process user identifier of
the application process addressed by the related report.

NOTE For the application process user identifier, refer to
requirement 5.4.2.1d.

j. The PFC of the time field of telemetry packets shall be declared when
specifying the time service used by the spacecraft.

NOTE For the time service, refer to clause 6.9.

440

ECSS-E-ST-70-41C
15 April 2016

k. Each application process shall set the time field of each telemetry packet
it generates to the time tag of the related report.

NOTE See requirement 5.4.2.1g.

l. For each application process, the presence and bit-size of the spare field
of the telemetry packet secondary header shall be declared when
specifying that application process.

7.4.3.2 Telemetry user data field
a. Each telemetry user data field shall have the structure specified in Figure

7-8.

source data spare packet error control

deduced fixed-size bit-string
(deduced)

fixed-size bit-string
(16 bits)

optional

optional

NOTE 1 The structure and format of the source data is deduced from the message
type ID. For each report message type specified in this Standard, the
structure and format of the source data is specified in clause 8.

NOTE 2 The spare field is used to constrain the overall packet size to an integral
number of words (octets or longer), appropriate to the word size of the
application process. Its optional presence is driven by requirement 7.4.3.2c.

NOTE 3 The packet error control field transports an error detection code that is
used by the ground system to verify the checksum of the telemetry packet.
Its optional presence is driven by requirement 7.4.3.2d.
Figure 7-8 User data field for telemetry packets

b. The telemetry padding word size used by each application process shall
be declared when specifying that application process.

NOTE The telemetry padding word size is the multiple-
of-bits number to apply when padding telemetry
packets.

c. For each telemetry packet that it generates, each application process shall
ensure that the total length of that packet is an integer multiple of the
padding word size declared for that application process by including a
user data spare field of the minimum bit-size that results in that integer
multiple.

d. Whether checksumming telemetry packets is used shall be declared
when tailoring this standard to the mission.

e. If checksumming telemetry packets is used for the mission, the type of
checksum to use, that is either the ISO standard 16-bits checksum or the
CRC standard 16-bits, shall be declared when tailoring this standard to
the mission.

NOTE 1 For the CRC standard 16-bits checksum algorithm,
refer to annex B.1.

NOTE 2 For the ISO standard 16-bits checksum algorithm,
refer to annex B.2.

441

ECSS-E-ST-70-41C
15 April 2016

f. If checksumming telemetry packets is used for the mission, for each
telemetry packet that it generates, each application process shall:
1. calculate the checksum of that packet, and
2. set the calculated value in the packet error control field of that

packet.
NOTE 1 The telemetry packet checksum is calculated when

all other fields of the packet are complete, and
prior to downloading the packet.

NOTE 2 The telemetry packet checksum is used by the
ground system to verify the checksum of the
complete telemetry packet.

NOTE 3 Checksumming telemetry packets includes also
checksumming large telemetry packets, see clause
6.13.3.

7.4.4 Telecommand packet data field

7.4.4.1 Telecommand packet secondary header
a. With the exception of the CPDU command packet specified in clause 9,

all telecommand packets defined in this Standard shall have a
telecommand packet secondary header.

b. Each telecommand packet secondary header shall have the structure
specified in Figure 7-9.

TC packet
PUS version

number

acknowledgement
flags

message type ID

source ID spare service type
ID

message
subtype ID

enumerated
(4 bits)

enumerated
(4 bits)

enumerated
(8 bits)

enumerated
(8 bits)

enumerated
(16 bits)

fixed-size bit-
string

optional

NOTE The spare field is used to constrain the length of the telecommand packet secondary header to
an integral number of words. Its optional presence of is driven by requirement 7.4.4.1g.

Figure 7-9 Packet secondary header for telecommand packets

c. For each request that it issues, each application process shall set the TC
packet PUS version number to 2.

NOTE The TC packet PUS version number reflects the
different versions of this Standard.
• Version 0 was used by the ESA PUS (ESA PSS-

07-101).
• Version 1 corresponds to the ECSS-E-70-41A.

442

ECSS-E-ST-70-41C
15 April 2016

d. For each request that it issues, each application process shall set:
1. the bit 3 of the acknowledgement flags field of the corresponding

telecommand packet to:
(a) 1 if the reporting of the successful acceptance of that request

by the destination application process is requested
(b) 0 otherwise;

2. the bit 2 of the acknowledgement flags field of the corresponding
telecommand packet to:
(a) 1 if successful start of execution of that request by the

destination application process is requested;
(b) 0 otherwise;

3. the bit 1 of the acknowledgement flags field of the corresponding
telecommand packet to:
(a) 1 if the reporting of the successful progresses of execution of

that request by the destination application process is
requested;

(b) 0 otherwise;
4. the bit 0 of the acknowledgement flags field of the corresponding

telecommand packet to:
(a) 1 if the reporting of the successful completion of execution

of the related request by the destination application process
is requested;

(b) 0 otherwise.
NOTE 1 For item 1, refer to requirement 5.4.11.2.2a.1.
NOTE 2 For item 2, refer to requirement 5.4.11.2.2a.2.
NOTE 3 For item 3, refer to requirement 5.4.11.2.2a.3.
NOTE 4 For item 4, refer to requirement 5.4.11.2.2a.4.

e. For each request that it issues, each application process shall set the
message type ID field of the corresponding telecommand packet to the
message type identifier of that request.

NOTE The structure of the message type ID field is
driven by requirement 5.3.3.1c.

f. For each request that it issues, each application process shall set the
source ID field to its source identifier.

NOTE For the source identifier, see requirement
5.4.11.2.1c.

g. For each application process that issues requests, the presence and bit-
size of the spare field of the telecommand packet secondary header shall
be declared when specifying that application process.

443

ECSS-E-ST-70-41C
15 April 2016

7.4.4.2 Telecommand user data field
a. Each telecommand user data field shall have the structure specified in

Figure 7-10.

application data spare packet error control

deduced
fixed-size bit-string

(deduced)
fixed-size bit-string

(16 bits)

optional

NOTE 1 The structure and format of the application data is deduced from the
message type ID. For each request type specified in this Standard, the
structure and format of the application data is specified in clause 6.

NOTE 2 The spare field is used to constrain the overall packet size to an
integral number of words (octets or longer), appropriate to the word
size of the application process. Its optional presence and deduced size
are driven by requirement 7.4.4.2c.

Figure 7-10 User data field for telecommand packets

b. The telecommand padding word size used for each application process
shall be declared when specifying that application process.

NOTE The telecommand padding word size is the
multiple-of-bits number to apply when padding
telecommand packets.

c. For each telecommand packet that it generates, each application process
shall ensure that the total length of that packet is an integer multiple of the
padding word size declared for that application process, by including a user
data spare field of the minimum bit-size that results in that integer multiple.

d. The type of checksum to use for checksumming all telecommand packets,
which is either the ISO standard 16-bits checksum or the CRC standard
16-bits checksum, shall be declared when tailoring this standard to the
mission.

NOTE 1 For the CRC standard 16-bits checksum algorithm,
refer to annex B.1.

NOTE 2 For the ISO standard 16-bits checksum algorithm,
refer to annex B.2.

e. For each telecommand packet that it generates, each application process
shall:
1. calculate the checksum of that packet, and
2. set the calculated value in the packet error control field of that

packet.
NOTE 1 The telecommand packet checksum is calculated

when all other fields of the packet are complete,
and prior to releasing the packet.

NOTE 2 The checksum of each telecommand packet that is
received on-board is verified using the checksum
that is contained within the packet error control
field of the packet. Refer also to requirement
6.1.3.2b.

444

ECSS-E-ST-70-41C
15 April 2016

8
Service type interface requirements

8.1 ST[01] request verification

8.1.1 General
a. Each packet transporting a request verification report shall be of service

type 1.

8.1.2 Request and reports

8.1.2.1 TM[1,1] successful acceptance verification report
a. Each telemetry packet transporting a successful acceptance verification

report shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.1.4.2.

b. For each telemetry packet transporting a successful acceptance
verification report, the source data field shall have the structure specified
in Figure 8-1.

request ID

packet version
number

packet ID packet sequence control

packet type
secondary
header flag

application
process ID

sequence
flags

packet
sequence

count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned
integer
(14 bits)

NOTE The request ID field alone cannot be used to identify the request since it does not
contain the identifier of the source of that request. That source identifier
corresponds to the destination identifier of the secondary header of the related
telemetry packet, refer to clause 7.4.3.1.

Figure 8-1 Successful acceptance verification report

445

ECSS-E-ST-70-41C
15 April 2016

8.1.2.2 TM[1,2] failed acceptance verification report
a. Each telemetry packet transporting a failed acceptance verification report

shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.1.4.3.

b. For each telemetry packet transporting a failed acceptance verification
report, the source data field shall have the structure specified in Figure 8-2.

request ID failure notice

packet
version
number

packet ID
packet sequence

control

code data

packet type
secondary
header flag

application
process ID

sequence
flags

packet
sequence

count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned
integer
(14 bits)

enumerated deduced

deduced presence

NOTE The request ID field alone cannot be used to identify the request since it does not contain the identifier of
the source of that request. That source identifier corresponds to the destination identifier of the
secondary header of the related telemetry packet, refer to clause 7.4.3.1.

Figure 8-2 Failed acceptance verification report

8.1.2.3 TM[1,3] successful start of execution verification
report

a. Each telemetry packet transporting a successful start of execution
verification report shall be of message subtype 3.

NOTE For the corresponding system requirements, refer
to clause 6.1.5.1.1.

b. For each telemetry packet transporting a successful start of execution
verification report, the source data field shall have the structure specified
in Figure 8-3.

request ID

packet version
number

packet ID packet sequence control

packet type
secondary
header flag

application
process ID

sequence
flags

packet sequence count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned integer
(14 bits)

NOTE The request ID field alone cannot be used to identify the request since it does not contain the
identifier of the source of that request. That source identifier corresponds to the destination
identifier of the secondary header of the related telemetry packet, refer to clause 7.4.3.1.

Figure 8-3 Successful start of execution verification report

446

ECSS-E-ST-70-41C
15 April 2016

8.1.2.4 TM[1,4] failed start of execution verification report
a. Each telemetry packet transporting a failed start of execution verification

report shall be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.1.5.1.2.

b. For each telemetry packet transporting a failed start of execution
verification report, the source data field shall have the structure specified
in Figure 8-4.

request ID failure notice

packet
version
number

packet ID
packet sequence

control

code data

packet type
secondary
header flag

application
process ID

sequence
flags

packet
sequence

count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned
integer
(14 bits)

enumerated deduced

deduced presence

NOTE The request ID field alone cannot be used to identify the request since it does not contain the identifier of
the source of that request. That source identifier corresponds to the destination identifier of the
secondary header of the related telemetry packet, refer to clause 7.4.3.1.

Figure 8-4 Failed start of execution verification report

8.1.2.5 TM[1,5] successful progress of execution
verification report

a. Each telemetry packet transporting a successful progress of execution
verification report shall be of message subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.1.5.2.1.

b. For each telemetry packet transporting a successful progress of execution
verification report, the source data field shall have the structure specified
in Figure 8-5.

request ID

step ID packet
version
number

packet ID packet sequence control

packet type
secondary
header flag

application
process ID

sequence
flags

packet sequence
count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned integer
(14 bits) enumerated

NOTE The request ID field alone cannot be used to identify the request since it does not contain the identifier of
the source of that request. That source identifier corresponds to the destination identifier of the secondary
header of the related telemetry packet, refer to clause 7.4.3.1.

Figure 8-5 Successful progress of execution verification report

447

ECSS-E-ST-70-41C
15 April 2016

8.1.2.6 TM[1,6] failed progress of execution verification
report

a. Each telemetry packet transporting a failed progress of execution
verification report shall be of message subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.1.5.2.2.

b. For each telemetry packet transporting a failed progress of execution
verification report, the source data field shall have the structure specified
in Figure 8-6.

request ID

step ID

failure notice

packet
version
number

packet ID
packet sequence

control

code data

packet type
secondary
header flag

application
process ID

sequence
flags

packet
sequence

count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned
integer
(14 bits)

enumerated enumerated deduced

deduced presence

NOTE The request ID field alone cannot be used to identify the request since it does not contain the identifier of the source
of that request. That source identifier corresponds to the destination identifier of the secondary header of the related
telemetry packet, refer to clause 7.4.3.1.

Figure 8-6 Failed progress of execution verification report

8.1.2.7 TM[1,7] successful completion of execution
verification report

a. Each telemetry packet transporting a successful completion of execution
verification report shall be of message subtype 7.

NOTE For the corresponding system requirements, refer
to clause 6.1.5.3.1.

b. For each telemetry packet transporting a successful completion of
execution verification report, the source data field shall have the
structure specified in Figure 8-7.

448

ECSS-E-ST-70-41C
15 April 2016

request ID

packet version
number

packet ID packet sequence control

packet type
secondary
header flag

application
process ID

sequence
flags

packet
sequence

count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned
integer
(14 bits)

NOTE The request ID field alone cannot be used to identify the request since it does not
contain the identifier of the source of that request. That source identifier
corresponds to the destination identifier of the secondary header of the related
telemetry packet, refer to clause 7.4.3.1.

Figure 8-7 Successful completion of execution verification report

8.1.2.8 TM[1,8] failed completion of execution verification
report

a. Each telemetry packet transporting a failed completion of execution
verification report shall be of message subtype 8.

NOTE For the corresponding system requirements, refer
to clause 6.1.5.3.2.

b. For each telemetry packet transporting a failed completion of execution
verification report, the source data field shall have the structure specified
in Figure 8-8.

request ID failure notice

packet
version
number

packet ID
packet sequence

control

code data

packet type
secondary
header flag

application
process ID

sequence
flags

packet
sequence

count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned
integer
(14 bits)

enumerated deduced

deduced presence

NOTE The request ID field alone cannot be used to identify the request since it does not contain the identifier
of the source of that request. That source identifier corresponds to the destination identifier of the
secondary header of the related telemetry packet, refer to clause 7.4.3.1.

Figure 8-8 Failed completion of execution verification report

449

ECSS-E-ST-70-41C
15 April 2016

8.1.2.9 TM[1,10] failed routing verification report
a. Each telemetry packet transporting a failed routing verification report

shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.1.3.3.

b. For each telemetry packet transporting a failed routing verification
report, the source data field shall have the structure specified in Figure
8-9.

request ID failure notice

packet
version
number

packet ID
packet sequence

control

code data

packet type
secondary
header flag

application
process ID

sequence
flags

packet
sequence

count

enumerated
(3 bits)

enumerated
(1 bit)

Boolean
(1 bit)

enumerated
(11 bits)

enumerated
(2 bits)

unsigned
integer
(14 bits)

enumerated deduced

deduced presence

NOTE The request ID field alone cannot be used to identify the request since it does not contain the identifier
of the source of that request. That source identifier corresponds to the destination identifier of the
secondary header of the related telemetry packet, refer to clause 7.4.3.1.

Figure 8-9 Failed routing verification report

450

ECSS-E-ST-70-41C
15 April 2016

8.2 ST[02] device access

8.2.1 General
a. Each packet transporting a device access message shall be of service type 2.

8.2.2 Requests and reports

8.2.2.1 TC[2,1] distribute on/off device commands
a. Each telecommand packet transporting a request to distribute on/off

device commands shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.2.4.2.

b. For each telecommand packet transporting a request to distribute on/off
device commands, the application data field shall have the structure
specified in Figure 8-10.

 repeated N times

N on/off device address

unsigned integer enumerated

Figure 8-10 Distribute on/off device commands

8.2.2.2 TC[2,2] distribute register load commands
a. Each telecommand packet transporting a request to distribute register

load commands shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.2.5.2.

b. For each telecommand packet transporting a request to distribute register
load commands, the application data field shall have the structure
specified in Figure 8-11.

 repeated N times

N register address register data

unsigned integer enumerated deduced

Figure 8-11 Distribute register load commands

8.2.2.3 TC[2,4] distribute CPDU commands
a. Each telecommand packet transporting a request to distribute CPDU

commands shall be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.2.6.2.

451

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to distribute CPDU
commands, the application data field shall have the structure specified in
Figure 8-12.

 repeated N1 times

 repeated N2 times

N1 CPDU ID N2
output line

ID
reserved

duration
exponential

value

unsigned
integer

enumerated unsigned
integer

enumerated
(12 bits)

bit-string
(1 bit)

unsigned integer
(3 bits)

optional

Figure 8-12 Distribute CPDU commands

8.2.2.4 TC[2,5] distribute register dump commands
a. Each telecommand packet transporting a request to distribute register

dump commands shall be of message subtype 5.
NOTE For the corresponding system requirements, refer

to clause 6.2.5.3.

b. For each telecommand packet transporting a request to distribute register
dump commands, the application data field shall have the structure
specified in Figure 8-13.

 repeated N times

N register address

unsigned integer enumerated

Figure 8-13 Distribute register dump commands

8.2.2.5 TM[2,6] register dump report
a. Each telemetry packet transporting a register dump report shall be of

message subtype 6.
NOTE For the corresponding system requirements, refer

to clause 6.2.5.3.

b. For each telemetry packet transporting a register dump report, the source
data field shall have the structure specified in Figure 8-14.

 repeated N times

N register address register data

unsigned
integer

enumerated deduced

Figure 8-14 Register dump report

452

ECSS-E-ST-70-41C
15 April 2016

8.2.2.6 TC[2,7] distribute physical device commands
a. Each telecommand packet transporting a request to distribute physical

device commands shall be of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.2.7.1.2.

b. For each telecommand packet transporting a request to distribute
physical device commands, the application data field shall have the
structure specified in Figure 8-15.

 repeated N times

N
physical device

ID
protocol-

specific data
command data

unsigned integer enumerated deduced deduced

Figure 8-15 Distribute physical device commands

8.2.2.7 TC[2,8] acquire data from physical devices
a. Each telecommand packet transporting a request to acquire data from

physical devices shall be of message subtype 8.
NOTE For the corresponding system requirements, refer

to clause 6.2.7.1.3.

b. For each telecommand packet transporting a request to acquire data from
physical devices, the application data field shall have the structure
specified in Figure 8-16.

 repeated N times

N transaction ID
physical

device ID
protocol-

specific data

unsigned integer unsigned integer enumerated deduced

Figure 8-16 Acquire data from physical devices

8.2.2.8 TM[2,9] physical device data report
a. Each telemetry packet transporting a physical device data report shall be

of message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.2.7.1.3.

453

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a physical device data report, the
source data field shall have the structure specified in Figure 8-17.

transaction
ID

transaction execution status

data block data acquisition
return code

auxiliary data

unsigned
integer

enumerated deduced deduced

deduced presence

Figure 8-17 Physical device data report

8.2.2.9 TC[2,10] distribute logical device commands
a. Each telecommand packet transporting a request to distribute logical

device commands shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.2.7.2.2.

b. For each telecommand packet transporting a request to distribute logical
device commands, the application data field shall have the structure
specified in Figure 8-18.

 repeated N times

N logical device ID command ID
command
arguments

unsigned integer enumerated deduced deduced

Figure 8-18 Distribute logical device commands

8.2.2.10 TC[2,11] acquire data from logical devices
a. Each telecommand packet transporting a request to acquire data from

logical devices shall be of message subtype 11.
NOTE For the corresponding system requirements, refer

to clause 6.2.7.2.3.

b. For each telecommand packet transporting a request to acquire data from
logical devices, the application data field shall have the structure
specified in Figure 8-19.

 repeated N times

N transaction ID
logical device

ID
parameter ID

unsigned integer unsigned integer enumerated enumerated

Figure 8-19 Acquire data from logical devices

454

ECSS-E-ST-70-41C
15 April 2016

8.2.2.11 TM[2,12] logical device data report
a. Each telemetry packet transporting a logical device data report shall be of

message subtype 12.
NOTE For the corresponding system requirements, refer

to clause 6.2.7.2.3.

b. For each telemetry packet transporting a logical device data report, the
source data field shall have the structure specified in Figure 8-20.

transaction
ID

transaction execution status
parameter

value data acquisition
return code

auxiliary data

unsigned
integer enumerated deduced deduced

deduced presence

Figure 8-20 Logical device data report

455

ECSS-E-ST-70-41C
15 April 2016

8.3 ST[03] housekeeping

8.3.1 General
a. Each packet transporting a housekeeping message shall be of service type

3.

8.3.2 Requests and reports

8.3.2.1 TC[3,1] create a housekeeping parameter report
structure

a. Each telecommand packet transporting a request to create a
housekeeping parameter report structure shall be of message subtype 1.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.5.1.

b. For each telecommand packet transporting a request to create a
housekeeping parameter report structure, the application data field shall
have the structure specified in Figure 8-21.

 repeated NFA times

 repeated N1 times

 repeated N2 times

housekeeping
parameter

report structure
ID

collection
interval

N1
parameter

ID
NFA

super
commutated

sample
repetition
number

N2
parameter

ID

enumerated
unsigned

integer
unsigned

integer enumerated
unsigned

integer unsigned integer
unsigned

integer enumerated

Figure 8-21 Create a housekeeping parameter report structure

8.3.2.2 TC[3,2] create a diagnostic parameter report
structure

a. Each telecommand packet transporting a request to create a diagnostic
parameter report structure shall be of message subtype 2.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.6.

456

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to create a
diagnostic parameter report structure, the application data field shall
have the structure specified in Figure 8-22.

 repeated NFA times

 repeated N1 times

 repeated N2 times

 diagnostic
parameter

report
structure ID

collection
interval

N1
parameter

ID
NFA

super
commutated

sample repetition
number

N2
parameter

ID

enumerated
unsigned

integer
unsigned

integer
enumerated

unsigned
integer

unsigned integer
unsigned

integer
enumerated

Figure 8-22 Create a diagnostic parameter report structure

8.3.2.3 TC[3,3] delete housekeeping parameter report
structures

a. Each telecommand packet transporting a request to delete housekeeping
parameter report structures shall be of message subtype 3.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.5.2.

b. For each telecommand packet transporting a request to delete
housekeeping parameter report structures, the application data field shall
have the structure specified in Figure 8-23.

 repeated N times

N
housekeeping

parameter report
structure ID

unsigned integer enumerated

Figure 8-23 Delete housekeeping parameter report structures

8.3.2.4 TC[3,4] delete diagnostic parameter report
structures

a. Each telecommand packet transporting a request to delete diagnostic
parameter report structures shall be of message subtype 4.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.7.

457

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete diagnostic
parameter report structures, the application data field shall have the
structure specified in Figure 8-24.

 repeated N times

N
diagnostic parameter

report structure ID

unsigned integer enumerated

Figure 8-24 Delete diagnostic parameter report structures

8.3.2.5 TC[3,5] enable the periodic generation of
housekeeping parameter reports

a. Each telecommand packet transporting a request to enable the periodic
generation of housekeeping parameter reports shall be of message
subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.4.1.

b. For each telecommand packet transporting a request to enable the
periodic generation of housekeeping parameter reports, the application
data field shall have the structure specified in Figure 8-25.

 repeated N times

N
housekeeping

parameter report
structure ID

unsigned integer enumerated

Figure 8-25 Enable the periodic generation of housekeeping parameter
reports

8.3.2.6 TC[3,6] disable the periodic generation of
housekeeping parameter reports

a. Each telecommand packet transporting a request to disable the periodic
generation of housekeeping parameter reports shall be of message
subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.4.2.

458

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to disable the
periodic generation of housekeeping parameter reports, the application
data field shall have the structure specified in Figure 8-26.

 repeated N times

N
housekeeping

parameter report
structure ID

unsigned integer enumerated

Figure 8-26 Disable the periodic generation of housekeeping
parameter reports

8.3.2.7 TC[3,7] enable the periodic generation of diagnostic
parameter reports

a. Each telecommand packet transporting a request to enable the periodic
generation of diagnostic parameter reports shall be of message subtype 7.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.4.

b. For each telecommand packet transporting a request to enable the
periodic generation of diagnostic parameter reports, the application data
field shall have the structure specified in Figure 8-27.

 repeated N times

N
diagnostic parameter

report structure ID

unsigned integer enumerated

Figure 8-27 Enable the periodic generation of diagnostic parameter
reports

8.3.2.8 TC[3,8] disable the periodic generation of
diagnostic parameter reports

a. Each telecommand packet transporting a request to disable the periodic
generation of diagnostic parameter reports shall be of message subtype 8.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.5.

b. For each telecommand packet transporting a request to disable the
periodic generation of diagnostic parameter reports, the application data
field shall have the structure specified in Figure 8-28.

459

ECSS-E-ST-70-41C
15 April 2016

 repeated N times

N
diagnostic parameter

report structure ID

unsigned integer enumerated

Figure 8-28 Disable the periodic generation of diagnostic parameter
reports

8.3.2.9 TC[3,9] report housekeeping parameter report
structures

a. Each telecommand packet transporting a request to report housekeeping
parameter report structures shall be of message subtype 9.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.6.

b. For each telecommand packet transporting a request to report
housekeeping parameter report structures, the application data field shall
have the structure specified in Figure 8-29.

 repeated N times

N
housekeeping

parameter report
structure ID

unsigned integer enumerated

Figure 8-29 Report housekeeping parameter report structures

8.3.2.10 TM[3,10] housekeeping parameter report structure
report

a. Each telemetry packet transporting a housekeeping parameter report
structure report shall be of message subtype 10.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.6.

b. For each telemetry packet transporting a housekeeping parameter report
structure report, the source data field shall have the structure specified in
Figure 8-30.

460

ECSS-E-ST-70-41C
15 April 2016

 repeated NFA times

 repeated N1 times

 repeated N2 times

housekeeping
parameter

report
structure ID

periodic
generation

action
status

collection
interval

N1
parameter

ID
NFA

super
commutated

sample
repetition
number

N2 parameter ID

enumerated enumerated
unsigned

integer
unsigned

integer enumerated
unsigned

integer
unsigned

integer
unsigned

integer enumerated

optional

Figure 8-30 Housekeeping parameter report structure report

8.3.2.11 TC[3,11] report diagnostic parameter report
structures

a. Each telecommand packet transporting a request to report diagnostic
parameter report structures shall be of message subtype 11.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.8.

b. For each telecommand packet transporting a request to report diagnostic
parameter report structures, the application data field shall have the
structure specified in Figure 8-31.

 repeated N times

N
diagnostic parameter

report structure ID

unsigned integer enumerated

Figure 8-31 Report diagnostic parameter report structures

8.3.2.12 TM[3,12] diagnostic parameter report structure
report

a. Each telemetry packet transporting a diagnostic parameter report
structure report shall be of message subtype 12.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.8.

b. For each telemetry packet transporting a diagnostic parameter report
structure report, the source data field shall have the structure specified in
Figure 8-32.

461

ECSS-E-ST-70-41C
15 April 2016

 repeated NFA times

repeated N1

times

 repeated N2 times

diagnostic
parameter

report
structure

ID

periodic
generation

action status

collection
interval

N1
parameter

ID
NFA

super
commutated

sample
repetition
number

N2
parameter

ID

enumerated enumerated
unsigned

integer
unsigned

integer
enumerated

unsigned
integer

unsigned
integer

unsigned
integer

enumerated

Figure 8-32 Diagnostic parameter report structure report

8.3.2.13 TM[3,25] housekeeping parameter report
a. Each telemetry packet transporting a housekeeping parameter report

shall be of message subtype 25.
NOTE For the corresponding system requirements, refer

to clause 6.3.3.3.

b. For each telemetry packet transporting a housekeeping parameter report,
the source data field shall have the structure specified in Figure 8-33.

deduced repeated number of times

housekeeping parameter report
structure ID

parameter value

unsigned integer deduced

Figure 8-33 Housekeeping parameter report

8.3.2.14 TM[3,26] diagnostic parameter report
a. Each telemetry packet transporting a diagnostic parameter report shall be

of message subtype 26.
NOTE For the corresponding system requirements, refer

to clause 6.3.4.3.

b. For each telemetry packet transporting a diagnostic parameter report, the
source data field shall have the structure specified in Figure 8-34.

deduced repeated number of times

diagnostic parameter report
structure ID

parameter value

unsigned integer deduced

Figure 8-34 Diagnostic parameter report structure report

462

ECSS-E-ST-70-41C
15 April 2016

8.3.2.15 TC[3,27] generate a one shot report for
housekeeping parameter report structures

a. Each telecommand packet transporting a request to generate a one shot
report for housekeeping parameter report structures shall be of message
subtype 27.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.7.

b. For each telecommand packet transporting a request to generate a one
shot report for housekeeping parameter report structures, the application
data field shall have the structure specified in Figure 8-35.

 repeated N times

N
housekeeping

parameter report
structure ID

unsigned integer enumerated

Figure 8-35 Generate a one shot report for housekeeping parameter
report structures

8.3.2.16 TC[3,28] generate a one shot report for diagnostic
parameter report structures

a. Each telecommand packet transporting a request to generate a one shot
report for diagnostic parameter report structures shall be of message
subtype 28.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.9.

b. For each telecommand packet transporting a request to generate a one
shot report for diagnostic parameter report structures, the application
data field shall have the structure specified in Figure 8-36.

 repeated N times

N
diagnostic parameter

report structure ID

unsigned integer enumerated

Figure 8-36 Generate a one shot report for diagnostic parameter report
structures

8.3.2.17 TC[3,29] append parameters to a housekeeping
parameter report structure

a. Each telecommand packet transporting a request to append parameters
to a housekeeping parameter report structure shall be of message
subtype 29.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.8.

463

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to append
parameters to a housekeeping parameter report structure, the application
data field shall have the structure specified in Figure 8-37.

 repeated NFA times

 repeated N1 times

 repeated N2 times

housekeeping
parameter

report structure
ID

N1
parameter

ID
NFA

super
commutated

sample repetition
number

N2
parameter

ID

enumerated unsigned
integer

enumerated unsigned
integer

unsigned integer unsigned
integer

enumerated

Figure 8-37 Append parameters to a housekeeping parameter report
structure

8.3.2.18 TC[3,30] append parameters to a diagnostic
parameter report structure

a. Each telecommand packet transporting a request to append parameters
to a diagnostic parameter report structure shall be of message subtype 30.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.10.

b. For each telecommand packet transporting a request to append
parameters to a diagnostic parameter report structure, the application
data field shall have the structure specified in Figure 8-38.

 repeated NFA times

 repeated N1 times

 repeated N2 times

diagnostic
parameter

report
structure ID

N1
parameter

ID
NFA

super
commutated

sample repetition
number

N2
parameter

ID

enumerated unsigned
integer

enumerated unsigned
integer

unsigned integer unsigned
integer

enumerated

Figure 8-38 Append parameters to a diagnostic parameter report
structure

8.3.2.19 TC[3,31] modify the collection interval of
housekeeping parameter report structures

a. Each telecommand packet transporting a request to modify the collection
interval of housekeeping parameter report structures shall be of message
subtype 31.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.9.

464

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to modify the
collection interval of housekeeping parameter report structures, the
application data field shall have the structure specified in Figure 8-39.

 repeated N times

N

housekeeping
parameter

report structure
ID

collection
interval

unsigned integer enumerated unsigned integer

Figure 8-39 Modify the collection interval of housekeeping parameter
report structures

8.3.2.20 TC[3,32] modify the collection interval of diagnostic
parameter report structures

a. Each telecommand packet transporting a request to modify the collection
interval of diagnostic parameter report structures shall be of message
subtype 32.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.11.

b. For each telecommand packet transporting a request to modify the
collection interval of diagnostic parameter report structures, the
application data field shall have the structure specified in Figure 8-40.

 repeated N times

N

diagnostic
parameter

report structure
ID

collection
interval

unsigned integer enumerated unsigned integer

Figure 8-40 Modify the collection interval of diagnostic parameter
report structures

8.3.2.21 TC[3,33] report the periodic generation properties
of housekeeping parameter report structures

a. Each telecommand packet transporting a request to report the periodic
generation properties of housekeeping parameter report structures shall
be of message subtype 33.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.10.

465

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to report the
periodic generation properties of housekeeping parameter report
structures, the application data field shall have the structure specified in
Figure 8-41.

 repeated N times

N
housekeeping

parameter report
structure ID

unsigned integer enumerated

Figure 8-41 Report the periodic generation properties of housekeeping
parameter report structures

8.3.2.22 TC[3,34] report the periodic generation properties
of diagnostic parameter report structures

a. Each telecommand packet transporting a request to report the periodic
generation properties of diagnostic parameter report structures shall be
of message subtype 34.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.12.

b. For each telecommand packet transporting a request to report the
periodic generation properties of diagnostic parameter report structures,
the application data field shall have the structure specified in Figure 8-42.

 repeated N times

N
diagnostic parameter

report structure ID

unsigned integer enumerated

Figure 8-42 Report the periodic generation properties of diagnostic
parameter report structures

8.3.2.23 TM[3,35] housekeeping parameter report periodic
generation properties report

a. Each telemetry packet transporting a housekeeping parameter report
periodic generation properties report shall be of message subtype 35.

NOTE For the corresponding system requirements, refer
to clause 6.3.3.10.

466

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a housekeeping parameter report
periodic generation properties report, the source data field shall have the
structure specified in Figure 8-43.

 repeated N times

N

housekeeping
parameter

report structure
ID

periodic
generation

action status
collection
interval

unsigned integer enumerated enumerated unsigned integer

Figure 8-43 Housekeeping parameter report periodic generation
properties report

8.3.2.24 TM[3,36] diagnostic parameter report periodic
generation properties report

a. Each telemetry packet transporting a diagnostic parameter report
periodic generation properties report shall be of message subtype 36.

NOTE For the corresponding system requirements, refer
to clause 6.3.4.12.

b. For each telemetry packet transporting a diagnostic parameter report
periodic generation properties report, the source data field shall have the
structure specified in Figure 8-44.

 repeated N times

N

diagnostic
parameter

report structure
ID

periodic
generation

action status
collection
interval

unsigned integer enumerated enumerated unsigned integer

Figure 8-44 Diagnostic parameter report periodic generation properties
report

8.3.2.25 TC[3,37] apply parameter functional reporting
configurations

a. Each telecommand packet transporting a request to apply parameter
functional reporting configurations shall be of message subtype 37.

NOTE For the corresponding system requirements, refer
to clause 6.3.5.3.

467

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to apply parameter
functional reporting configurations, the application data field shall have
the structure specified in Figure 8-45.

 repeated N times

configuration
execution flag

N
parameter functional

reporting definition ID

enumerated unsigned
integer

enumerated

NOTE For the configuration execution flag enumerated values,
see requirement 8.3.3b.

Figure 8-45 Apply parameter functional reporting configurations

8.3.2.26 TC[3,38] create a parameter functional reporting
definition

a. Each telecommand packet transporting a request to create a parameter
functional reporting definition shall be of message subtype 38.

NOTE For the corresponding system requirements, refer
to clause 6.3.5.4.1.

b. For each telecommand packet transporting a request to create a
parameter functional reporting definition, the application data field shall
have the structure specified in Figure 8-46.

 repeated N1 times

 repeated N2 times

parameter
functional
reporting

definition ID

N1
application
process ID

N2

parameter
report

structure
type

parameter
report

structure ID

periodic
generation

action status

collection
interval

enumerated
unsigned

integer enumerated
unsigned

integer enumerated enumerated enumerated
unsigned

integer

optional

NOTE For the parameter report structure type values, see requirement 8.3.3a.

Figure 8-46 Create a parameter functional reporting definition

8.3.2.27 TC[3,39] delete parameter functional reporting
definitions

a. Each telecommand packet transporting a request to delete parameter
functional reporting definitions shall be of message subtype 39.

NOTE For the corresponding system requirements, refer
to clause 6.3.5.4.2.

468

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete parameter
functional reporting definitions, the application data field shall have the
structure specified in Figure 8-47.

 repeated N times

N
parameter functional

reporting definition ID

unsigned integer enumerated

Figure 8-47 Delete parameter functional reporting definitions

8.3.2.28 TC[3,40] report parameter functional reporting
definitions

a. Each telecommand packet transporting a request to report parameter
functional reporting definitions shall be of message subtype 40.

NOTE For the corresponding system requirements, refer
to clause 6.3.5.5.

b. For each telecommand packet transporting a request to report parameter
functional reporting definitions, the application data field shall have the
structure specified in Figure 8-48.

 repeated N times

N
parameter functional

reporting definition ID

unsigned integer enumerated

Figure 8-48 Report parameter functional reporting definitions

8.3.2.29 TM[3,41] parameter functional reporting definition
report

a. Each telemetry packet transporting a parameter functional reporting
definition report shall be of message subtype 41.

NOTE For the corresponding system requirements, refer
to clause 6.3.5.5.

469

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a parameter functional reporting
definition report, the source data field shall have the structure specified
in Figure 8-49.

 repeated N1 times

 repeated N2 times

parameter
functional
reporting

definition ID

N1
application
process ID

N2

parameter
report

structure
type

parameter
report

structure ID

periodic
generation

action status

collection
interval

enumerated unsigned
integer

enumerated unsigned
integer

enumerated enumerated enumerated unsigned
integer

optional

NOTE 1 The optional presence of the N1 and the application process ID fields is driven by requirement 6.3.5.2b.
NOTE 2 For the parameter report structure type enumerated values, refer to requirement 8.3.3a.

Figure 8-49 Parameter functional reporting definition report

8.3.2.30 TC[3,42] add parameter report definitions to a
parameter functional reporting definition

a. Each telecommand packet transporting a request to add parameter report
definitions to a parameter functional reporting definition shall be of
message subtype 42.

NOTE For the corresponding system requirements, refer
to clause 6.3.5.6.1.

b. For each telecommand packet transporting a request to add parameter
report definitions to a parameter functional reporting definition, the
application data field shall have the structure specified in Figure 8-50.

 repeated N1 times

 repeated N2 times

parameter
functional
reporting

definition ID

N1
application
process ID

N2

parameter
report

structure
type

parameter
report

structure ID

periodic
generation

action status

collection
interval

enumerated unsigned
integer

enumerated unsigned
integer

enumerated enumerated enumerated unsigned
integer

optional

NOTE For the parameter report structure type values, see requirement 8.3.3a.

Figure 8-50 Add parameter report definitions to a parameter functional
reporting definition

470

ECSS-E-ST-70-41C
15 April 2016

8.3.2.31 TC[3,43] remove parameter report definitions from a
parameter functional reporting definition

a. Each telecommand packet transporting a request to remove parameter
report definitions from a parameter functional reporting definition shall
be of message subtype 43.

NOTE For the corresponding system requirements, refer
to clause 6.3.5.6.2.

b. For each telecommand packet transporting a request to remove
parameter report definitions from a parameter functional reporting
definition, the application data field shall have the structure specified in
Figure 8-51.

 repeated N1 times

 repeated N2 times

parameter
functional
reporting

definition ID

N1
application
process ID

N2

parameter
report

structure
type

parameter
report

structure ID

enumerated unsigned
integer

enumerated unsigned
integer

enumerated enumerated

optional

NOTE For the parameter report structure type values, see requirement 8.3.3a.

Figure 8-51 Remove parameter report definitions from a parameter
functional reporting definition

8.3.2.32 TC[3,44] modify the periodic generation properties
of parameter report definitions of a parameter
functional reporting definition

a. Each telecommand packet transporting a request to modify the periodic
generation properties of parameter report definitions of a parameter
functional reporting definition shall be of message subtype 44.

NOTE For the corresponding system requirements, refer
to clause 6.3.5.6.3.

471

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to modify the
periodic generation properties of parameter report definitions of a
parameter functional reporting definition, the application data field shall
have the structure specified in Figure 8-52.

 repeated N1 times

 repeated N2 times

parameter
functional
reporting

definition ID

N1
application
process ID

N2

parameter
report

structure
type

parameter
report

structure ID

periodic
generation

action status

collection
interval

enumerated
unsigned

integer enumerated
unsigned

integer enumerated enumerated enumerated
unsigned

integer

optional

NOTE For the parameter report structure type values, see requirement 8.3.3a.

Figure 8-52 Modify the periodic generation properties of parameter
report definitions of a parameter functional reporting definition

8.3.3 Enumeration
a. The values of the parameter report structure type shall be as specified in

Table 8-1.

Table 8-1 Service 3 parameter report structure type

engineering value raw value

"housekeeping" 25

"diagnostic" 26

b. The values of the configuration execution flag shall be as specified in
Table 8-2.

Table 8-2 Service 3 configuration execution flag

engineering value raw value

"non-exclusive" 0

"exclusive" 1

472

ECSS-E-ST-70-41C
15 April 2016

8.4 ST[04] parameter statistics reporting

8.4.1 General
a. Each packet transporting a parameter statistics reporting message shall

be of service type 4.

8.4.2 Requests and reports

8.4.2.1 TC[4,1] report the parameter statistics
a. Each telecommand packet transporting a request to report the parameter

statistics shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.4.5.2.

b. For each telecommand packet transporting a request to report the
parameter statistics, the application data field shall have the structure
specified in Figure 8-53.

reset flag

Boolean

optional

Figure 8-53 Report the parameter statistics

8.4.2.2 TM[4,2] parameter statistics report
a. Each telemetry packet transporting a parameter statistics report shall be

of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.4.5.3.

b. For each telemetry packet transporting a parameter statistics report, the
source data field shall have the structure specified in Figure 8-54.

 repeated N times

start
time

end
time

N
parameter

ID

number
of

samples

maximum minimum
mean
value

standard
deviation

value value time value time

absolute
time

absolute
time

unsigned
integer enumerated

unsigned
integer deduced

absolute
time deduced

absolute
time deduced deduced

optional

NOTE The formats of the max value field, the min value field, the mean value field and the standard deviation value
field are specific to the parameter identified by the associated parameter ID field.

Figure 8-54 Parameter statistics report

473

ECSS-E-ST-70-41C
15 April 2016

8.4.2.3 TC[4,3] reset the parameter statistics
a. Each telecommand packet transporting a request to reset the parameter

statistics shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.4.4.

b. For each telecommand packet transporting a request to reset the
parameter statistics, the application data field shall be omitted.

8.4.2.4 TC[4,4] enable the periodic parameter statistics
reporting

a. Each telecommand packet transporting a request to enable the periodic
parameter statistics reporting shall be of message subtype 4.

NOTE For the corresponding system requirements, refer
to clause 6.4.6.2.

b. For each telecommand packet transporting a request to enable the
periodic parameter statistics reporting, the application data field shall
have the structure specified in Figure 8-55.

reporting interval

relative time

optional

Figure 8-55 Enable the periodic parameter statistics reporting

8.4.2.5 TC[4,5] disable the periodic parameter statistics
reporting

a. Each telecommand packet transporting a request to disable the periodic
parameter statistics reporting shall be of message subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.4.6.3.

b. For each telecommand packet transporting a request to disable the
periodic parameter statistics reporting, the application data field shall be
omitted.

8.4.2.6 TC[4,6] add or update parameter statistics
definitions

a. Each telecommand packet transporting a request to add or update
parameter statistics definitions shall be of message subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.4.7.1.

474

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to add or update
parameter statistics definitions, the application data field shall have the
structure specified in Figure 8-56.

 repeated N times

N parameter ID sampling interval

unsigned integer enumerated relative time

optional

Figure 8-56 Add or update parameter statistics definitions

8.4.2.7 TC[4,7] delete parameter statistics definitions
a. Each telecommand packet transporting a request to delete parameter

statistics definitions shall be of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.4.7.2.

b. For each telecommand packet transporting a request to delete parameter
statistics definitions, the application data field shall have the structure
specified in Figure 8-57.

 repeated N times

N parameter ID

unsigned integer enumerated

Figure 8-57 Delete parameter statistics definitions

c. To delete all parameter statistics definitions, N shall be set to 0.

8.4.2.8 TC[4,8] report the parameter statistics definitions
a. Each telecommand packet transporting a request to report the parameter

statistics definitions shall be of message subtype 8.
NOTE For the corresponding system requirements, refer

to clause 6.4.7.3.

b. For each telecommand packet transporting a request to report the
parameter statistics definitions, the application data field shall be
omitted.

8.4.2.9 TM[4,9] parameter statistics definition report
a. Each telemetry packet transporting a parameter statistics definition

report shall be of message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.4.7.3.

475

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a parameter statistics definition
report, the source data field shall have the structure specified in Figure
8-58.

 repeated N times

reporting
interval

N parameter ID sampling interval

relative time unsigned integer enumerated relative time

optional

optional

Figure 8-58 Parameter statistics definition report

c. Whenever a parameter statistics definition report is generated, if the
reporting interval field is present and the periodic reporting is not
enabled, the reporting interval field value shall be set to zero seconds.

476

ECSS-E-ST-70-41C
15 April 2016

8.5 ST[05] event reporting

8.5.1 General
a. Each packet transporting an event reporting message shall be of service

type 5.

8.5.2 Requests and reports

8.5.2.1 TM[5,1] informative event report
a. Each telemetry packet transporting an informative event report shall be

of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.5.4.

b. For each telemetry packet transporting an informative event report, the
source data field shall have the structure specified in Figure 8-59.

event definition ID auxiliary data

enumerated deduced

deduced presence

NOTE The event definition ID, together with the application
process ID, identifies an event definition and as such the
presence and structure of the auxiliary data field.

Figure 8-59 Informative event report

8.5.2.2 TM[5,2] low severity anomaly report
a. Each telemetry packet transporting a low severity anomaly report shall

be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.5.4.

b. For each telemetry packet transporting a low severity anomaly report, the
source data field shall have the structure specified in Figure 8-60.

event definition ID auxiliary data

enumerated deduced

deduced presence

NOTE The event definition ID, together with the application
process ID, identifies an event definition and as such the
presence and structure of the auxiliary data field.

Figure 8-60 Low severity anomaly report

477

ECSS-E-ST-70-41C
15 April 2016

8.5.2.3 TM[5,3] medium severity anomaly report
a. Each telemetry packet transporting a medium severity anomaly report

shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.5.4.

b. For each telemetry packet transporting a medium severity anomaly
report, the source data field shall have the structure specified in Figure
8-61.

event definition ID auxiliary data

enumerated deduced

deduced presence

NOTE The event definition ID, together with the application
process ID, identifies an event definition and as such the
presence and structure of the auxiliary data field.

Figure 8-61 Medium severity anomaly report

8.5.2.4 TM[5,4] High severity anomaly report
a. Each telemetry packet transporting a high severity anomaly report shall

be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.5.4.

b. For each telemetry packet transporting a high severity anomaly report,
the source data field shall have the structure specified in Figure 8-62.

event definition ID auxiliary data

enumerated deduced

deduced presence

NOTE The event definition ID, together with the application
process ID, identifies an event definition and as such the
presence and structure of the auxiliary data field.

Figure 8-62 High severity anomaly report

8.5.2.5 TC[5,5] enable the report generation of event
definitions

a. Each telecommand packet transporting a request to enable the report
generation of event definitions shall be of message subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.5.5.2.

478

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to enable the report
generation of event definitions, the application data field shall have the
structure specified in Figure 8-63.

 repeated N times

N event definition ID

unsigned integer enumerated

Figure 8-63 Enable the report generation of event definitions

8.5.2.6 TC[5,6] disable the report generation of event
definitions

a. Each telecommand packet transporting a request to disable the report
generation of event definitions shall be of message subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.5.5.3.

b. For each telecommand packet transporting a request to disable the report
generation of event definitions, the application data field shall have the
structure specified in Figure 8-64.

 repeated N times

N event definition ID

unsigned integer enumerated

Figure 8-64 Disable the report generation of event definitions

8.5.2.7 TC[5,7] report the list of disabled event definitions
a. Each telecommand packet transporting a request to report the list of

disabled event definitions shall be of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.5.5.4.

b. For each telecommand packet transporting a request to report the list of
disabled event definitions, the application data field shall be omitted.

8.5.2.8 TM[5,8] disabled event definitions list report
a. Each telemetry packet transporting a disabled event definitions list report

shall be of message subtype 8.
NOTE For the corresponding system requirements, refer

to clause 6.5.5.4.

479

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a disabled event definitions list
report, the source data field shall have the structure specified in Figure
8-65.

 repeated N times

N event definition ID

unsigned integer enumerated

Figure 8-65 Disabled event definitions list report

480

ECSS-E-ST-70-41C
15 April 2016

8.6 ST[06] memory management

8.6.1 General
a. Each packet transporting a memory management message shall be of

service type 6.

b. Whether the memory management service supports multiple instructions
within memory management related requests shall be declared when
specifying that service.

8.6.2 Requests and reports

8.6.2.1 TC[6,1] load object memory data
a. Each telecommand packet transporting a request to load object memory

data shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.6.4.4.

b. For each telecommand packet transporting a request to load object
memory data, the application data field shall have the structure specified
in Figure 8-66.

 repeated N times

memory ID base N offset
data to load

checksum
length data

enumerated deduced
unsigned

integer
unsigned

integer
variable octet-

string
bit-string
(16 bits)

optional

optional

NOTE The PFC of the length field of the data to load is driven by requirement
7.3.8d.

Figure 8-66 Load object memory data

8.6.2.2 TC[6,2] load raw memory data areas
a. Each telecommand packet transporting a request to load raw memory

data areas shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.6.3.3.1.

481

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to load raw memory
data areas, the application data field shall have the structure specified in
Figure 8-67.

 repeated N times

memory ID N
start

address

data to load
checksum

length data

enumerated
unsigned

integer
unsigned

integer
variable octet-

string
bit-string
(16 bits)

optional

optional

NOTE The PFC of the length field of the data to load is driven by
requirement 7.3.8d.

Figure 8-67 Load raw memory data areas

8.6.2.3 TC[6,3] dump object memory data
a. Each telecommand packet transporting a request to dump object memory

data shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.6.4.5.

b. For each telecommand packet transporting a request to dump object
memory data, the application data field shall have the structure specified
in Figure 8-68.

 repeated N times

memory ID base N offset length

enumerated deduced
unsigned

integer
unsigned

integer
unsigned

integer

optional

Figure 8-68 Dump object memory data

8.6.2.4 TM[6,4] dumped object memory data report
a. Each telemetry packet transporting a dumped object memory data report

shall be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.6.4.5.

482

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a dumped object memory data
report, the source data field shall have the structure specified in Figure
8-69.

 repeated N times

memory ID base N offset
dumped data

checksum
length data

enumerated deduced
unsigned

integer
unsigned

integer
variable octet-

string
bit-string
(16 bits)

optional

optional

NOTE The PFC of the length field of the dumped data is driven by
requirement 7.3.8d.

Figure 8-69 Dumped object memory data report

8.6.2.5 TC[6,5] dump raw memory data
a. Each telecommand packet transporting a request to dump raw memory

data shall be of message subtype 5.
NOTE For the corresponding system requirements, refer

to clause 6.6.3.4.

b. For each telecommand packet transporting a request to dump raw
memory data, the application data field shall have the structure specified
in Figure 8-70.

 repeated N times

memory ID N
start

address
length

enumerated unsigned
integer

unsigned
integer

unsigned
integer

optional

Figure 8-70 Dump raw memory data

8.6.2.6 TM[6,6] dumped raw memory data report
a. Each telemetry packet transporting a dumped raw memory data report

shall be of message subtype 6.
NOTE For the corresponding system requirements, refer

to clause 6.6.3.4.

483

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a dumped raw memory data
report, the source data field shall have the structure specified in Figure
8-71.

 repeated N times

memory ID N
start

address

dumped data
checksum

length data

enumerated
unsigned

integer
unsigned

integer
variable octet-

string
bit-string
(16 bits)

optional

optional

NOTE The PFC of the length field of the dumped data is driven by
requirement 7.3.8d.

Figure 8-71 Dumped raw memory data report

8.6.2.7 TC[6,7] check object memory data
a. Each telecommand packet transporting a request to check object memory

data shall be of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.6.4.6.

b. For each telecommand packet transporting a request to check object
memory data, the application data field shall have the structure specified
in Figure 8-72.

 repeated N times

memory ID base N offset length

enumerated deduced
unsigned

integer
unsigned

integer
unsigned

integer

optional

Figure 8-72 Check object memory data

8.6.2.8 TM[6,8] checked object memory data report
a. Each telemetry packet transporting a checked object memory data report

shall be of message subtype 8.
NOTE For the corresponding system requirements, refer

to clause 6.6.4.6.

484

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a checked object memory data
report, the source data field shall have the structure specified in Figure
8-73.

 repeated N times

memory ID base N offset length checksum

enumerated deduced unsigned
integer

unsigned
integer

unsigned
integer

bit-string
(16 bits)

optional

Figure 8-73 Checked object memory data report

8.6.2.9 TC[6,9] check raw memory data
a. Each telecommand packet transporting a request to check raw memory

data shall be of message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.6.3.5.

b. For each telecommand packet transporting a request to check raw
memory data, the application data field shall have the structure specified
in Figure 8-74.

 repeated N times

memory ID N
start

address
length

enumerated
unsigned

integer
unsigned

integer
unsigned

integer

optional

Figure 8-74 Check raw memory data

8.6.2.10 TM[6,10] checked raw memory data report
a. Each telemetry packet transporting a checked raw memory data report

shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.6.3.5.

b. For each telemetry packet transporting a checked raw memory data
report, the source data field shall have the structure specified in Figure
8-75.

 repeated N times

memory ID N start address length checksum

enumerated unsigned
integer

unsigned
integer

unsigned
integer

bit-string
(16 bits)

optional

Figure 8-75 Checked raw memory data report

485

ECSS-E-ST-70-41C
15 April 2016

8.6.2.11 TC[6,11] load a raw memory atomic data area in a
non-interruptible transaction

a. Each telecommand packet transporting a request to load a raw memory
atomic data area in a non-interruptible transaction shall be of message
subtype 11.

NOTE For the corresponding system requirements, refer
to clause 6.6.3.3.2.

b. For each telecommand packet transporting a request to load a raw
memory atomic data area in a non-interruptible transaction, the
application data field shall have the structure specified in Figure 8-76.

memory ID start address bit mask data to load

enumerated unsigned integer
fixed octet-

string
(deduced size)

fixed octet-
string

(deduced size)

optional

NOTE The deduced size of the bit mask field and of the data to load
field is driven by requirement 5.4.3.3.1c.1. The size of each of
these fields is equal to the size of the memory access alignment
constraint defined by the memory ID.

Figure 8-76 Load a raw memory atomic data area in a non-interruptible
transaction

8.6.2.12 TC[6,12] abort all memory dumps
a. Each telecommand packet transporting a request to abort all memory

dumps shall be of message subtype 12.
NOTE For the corresponding system requirements, refer

to clause 6.6.5.1.

b. For each telecommand packet transporting a request to abort all memory
dumps, the application data field shall be omitted.

8.6.2.13 TC[6,13] enable the scrubbing of a memory
a. Each telecommand packet transporting a request to enable the scrubbing

of a memory shall be of message subtype 13.
NOTE For the corresponding system requirements, refer

to clause 6.6.6.1.4.

b. For each telecommand packet transporting a request to enable the
scrubbing of a memory, the application data field shall have the structure
specified in Figure 8-77.

memory ID

enumerated

optional

Figure 8-77 Enable the scrubbing of a memory

486

ECSS-E-ST-70-41C
15 April 2016

8.6.2.14 TC[6,14] disable the scrubbing of a memory
a. Each telecommand packet transporting a request to disable the scrubbing

of a memory shall be of message subtype 14.
NOTE For the corresponding system requirements, refer

to clause 6.6.6.1.5.

b. For each telecommand packet transporting a request to disable the
scrubbing of a memory, the application data field shall have the structure
specified in Figure 8-78.

memory ID

enumerated

optional

Figure 8-78 Disable the scrubbing of a memory

8.6.2.15 TC[6,15] enable the write protection of a memory
a. Each telecommand packet transporting a request to enable the write

protection of a memory shall be of message subtype 15.
NOTE For the corresponding system requirements, refer

to clause 6.6.6.2.4.

b. For each telecommand packet transporting a request to enable the write
protection of a memory, the application data field shall have the structure
specified in Figure 8-79.

memory ID

enumerated

optional

Figure 8-79 Enable the write protection of a memory

8.6.2.16 TC[6,16] disable the write protection of a memory
a. Each telecommand packet transporting a request to disable the write

protection of a memory shall be of message subtype 16.
NOTE For the corresponding system requirements, refer

to clause 6.6.6.2.5.

b. For each telecommand packet transporting a request to disable the write
protection of a memory, the application data field shall have the structure
specified in Figure 8-80.

memory ID

enumerated

optional

Figure 8-80 Disable the write protection of a memory

487

ECSS-E-ST-70-41C
15 April 2016

8.6.2.17 TC[6,17] check an object memory object
a. Each telecommand packet transporting a request to check an object

memory object shall be of message subtype 17.
NOTE For the corresponding system requirements, refer

to clause 6.6.4.7.

b. For each telecommand packet transporting a request to check an object
memory object, the application data field shall have the structure
specified in Figure 8-81.

memory ID base

enumerated deduced

optional

Figure 8-81 Check an object memory object

8.6.2.18 TM[6,18] checked object memory object report
a. Each telemetry packet transporting a checked object memory object

report shall be of message subtype 18.
NOTE For the corresponding system requirements, refer

to clause 6.6.4.7.

b. For each telemetry packet transporting a checked object memory object
report, the source data field shall have the structure specified in Figure
8-82.

memory ID base length checksum

enumerated deduced
unsigned

integer
bit-string
(16 bits)

optional

Figure 8-82 Checked object memory object report

8.6.2.19 TC[6,19] load raw memory data areas by reference
a. Each telecommand packet transporting a request to load raw memory

data areas by reference shall be of message subtype 19.
NOTE For the corresponding system requirements, refer

to clause 6.6.3.6.

488

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to load raw memory
data areas, the application data field shall have the structure specified in
Figure 8-83.

 repeated N times

memory ID

file path

N start address
offset in

file
length checksum repository

path
file name

enumerated
variable

character-
string

variable
character-

string

unsigned
integer

unsigned
integer

unsigned
integer

unsigned
integer

bit-string
(16 bits)

optional

optional

Figure 8-83 Load raw memory data areas by reference

8.6.2.20 TC[6,20] dump raw memory data areas to file
a. Each telecommand packet transporting a request to dump raw memory

data areas to file shall be of message subtype 20.
NOTE For the corresponding system requirements, refer

to clause 6.6.3.7.

b. For each telecommand packet transporting a request to dump raw
memory data areas to file, the application data field shall have the
structure specified in Figure 8-84.

 repeated N times

memory ID

file path

N start address length repository
path

file name

enumerated
variable

character-
string

variable
character-

string

unsigned
integer

unsigned
integer

unsigned
integer

optional

Figure 8-84 Dump raw memory data areas to file

489

ECSS-E-ST-70-41C
15 April 2016

8.6.2.21 TC[6,21] load object memory data areas by
reference

a. Each telecommand packet transporting a request to load object memory
data areas by reference shall be of message subtype 21.

NOTE For the corresponding system requirements, refer
to clause 6.6.4.8.

b. For each telecommand packet transporting a request to load object
memory data areas, the application data field shall have the structure
specified in Figure 8-85.

 repeated N times

memory ID base

file path

N
destination

offset
offset in

file
length checksum repository

path
file name

enumerated deduced
variable

character-
string

variable
character-

string

unsigned
integer

unsigned
integer

unsigned
integer

unsigned
integer

bit-string
(16 bits)

optional

optional

Figure 8-85 Load object memory data areas by reference

8.6.2.22 TC[6,22] dump object memory data areas to file
a. Each telecommand packet transporting a request to dump object memory

data areas to file shall be of message subtype 20.
NOTE For the corresponding system requirements, refer

to clause 6.6.4.9.

b. For each telecommand packet transporting a request to dump object
memory data areas to file, the application data field shall have the
structure specified in Figure 8-86.

 repeated N times

memory ID base

file path

N offset length repository
path

file name

enumerated deduced
variable

character-
string

variable
character-

string

unsigned
integer

unsigned
integer

unsigned
integer

optional

Figure 8-86 Dump object memory data areas to file

490

ECSS-E-ST-70-41C
15 April 2016

8.7 ST[07] (reserved)

491

ECSS-E-ST-70-41C
15 April 2016

8.8 ST[08] function management

8.8.1 General
a. Each packet transporting a function management message shall be of

service type 8.

8.8.2 Requests and reports

8.8.2.1 TC[8,1] perform a function
a. Each telecommand packet transporting a request to perform a function

shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.8.4.

b. For each telecommand packet transporting a request to perform a
function, the application data field shall have the structure specified in
Figure 8-87.

 repeated N times

function ID N argument ID
argument

value

fixed character-
string

unsigned
integer enumerated deduced

optional

deduced presence

Figure 8-87 Perform a function

492

ECSS-E-ST-70-41C
15 April 2016

8.9 ST[09] time management

8.9.1 General
a. Each packet transporting a time management message shall be of service

type 9.
NOTE The time reports generated by the time reporting

subservice are spacecraft time packets. A
spacecraft time packet does not carry the message
type, consisting of the service type and message
subtype. Nevertheless, the message type is
associated to the time report and can be used in
PUS services: for example, by the real-time
forwarding control subservice specified in clause
6.14.3.

b. The spacecraft time packets shall not have any packet secondary header
field.

NOTE The spacecraft time packets are specified clauses
6.9.4.2 and 6.9.4.3. See also requirement 7.4.3.1a.

c. For each spacecraft time packet, the secondary header flag in its packet
primary header shall be set to 0.

NOTE Setting the secondary header flag to 0 indicates
that the packet secondary header field is not
present in the packet.

d. For each spacecraft time packet, the application process identifier in its
packet primary header shall be set to zero.

NOTE For the application process identifier, the value
zero is reserved for use in spacecraft time packets.

8.9.2 Requests and reports

8.9.2.1 TC[9,1] set the time report generation rate
a. Each telecommand packet transporting a request to set the time report

generation rate shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.9.5.1.1.

493

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to set the time
report generation rate, the application data field shall have the structure
specified in Figure 8-88.

rate exponential
value

unsigned integer

Figure 8-88 Set the time report generation rate

8.9.2.2 TM[9,2] CUC time report
a. Each telemetry packet transporting a CUC time report shall be of

message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.9.4.2.

b. For each telemetry packet transporting a CUC time report, the source
data field shall have the structure specified in Figure 8-89.

rate exponential
value

spacecraft time
spacecraft time
reference status

unsigned integer absolute time deduced

optional

optional

NOTE The spacecraft time field is formatted according to the
CUC time code format, refer to requirement 6.9.4.2d.

Figure 8-89 CUC time report

8.9.2.3 TM[9,3] CDS time report
a. Each telemetry packet transporting a CDS time report shall be of message

subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.9.4.3.

b. For each telemetry packet transporting a CDS time report, the source
data field shall have the structure specified in Figure 8-90.

rate exponential
value

spacecraft time
spacecraft time
reference status

unsigned integer absolute time deduced

optional

optional

NOTE The spacecraft time field is formatted according to the
CDS time code format, refer to requirement 6.9.4.3d.

Figure 8-90 CDS time report

494

ECSS-E-ST-70-41C
15 April 2016

8.10 ST[10] (reserved)

495

ECSS-E-ST-70-41C
15 April 2016

8.11 ST[11] time-based scheduling

8.11.1 General
a. Each packet transporting a time-based scheduling message shall be of

service type 11.

8.11.2 Requests and reports

8.11.2.1 TC[11,1] enable the time-based schedule execution
function

a. Each telecommand packet transporting a request to enable the time-
based schedule execution function shall be of message subtype 1.

NOTE For the corresponding system requirements, refer
to clause 6.11.4.3.2.

b. For each telecommand packet transporting a request to enable the time-
based schedule execution function, the application data field shall be
omitted.

8.11.2.2 TC[11,2] disable the time-based schedule execution
function

a. Each telecommand packet transporting a request to disable the time-
based schedule execution function shall be of message subtype 2.

NOTE For the corresponding system requirements, refer
to clause 6.11.4.3.3.

b. For each telecommand packet transporting a request to disable the time-
based schedule execution function, the application data field shall be
omitted.

8.11.2.3 TC[11,3] reset the time-based schedule
a. Each telecommand packet transporting a request to reset the time-based

schedule shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.11.4.4.

b. For each telecommand packet transporting a request to reset the time-
based schedule, the application data field shall be omitted.

8.11.2.4 TC[11,4] insert activities into the time-based
schedule

a. Each telecommand packet transporting a request to insert activities into
the time-based schedule shall be of message subtype 4.

496

ECSS-E-ST-70-41C
15 April 2016

NOTE For the corresponding system requirements, refer
to clause 6.11.4.5.

b. For each telecommand packet transporting a request to insert activities
into the time-based schedule, the application data field shall have the
structure specified in Figure 8-91.

 repeated N times

sub-schedule
ID

N group ID release time request

enumerated
unsigned

integer enumerated absolute time TC packet

optional

optional

Figure 8-91 Insert activities into the time-based schedule

8.11.2.5 TC[11,5] delete time-based scheduled activities
identified by request identifier

a. Each telecommand packet transporting a request to delete time-based
scheduled activities identified by request identifier shall be of message
subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.11.9.2.

b. For each telecommand packet transporting a request to delete time-based
scheduled activities identified by request identifier, the application data
field shall have the structure specified in Figure 8-92.

 repeated N times

N

request ID

source ID
application
process ID

sequence count

unsigned integer enumerated enumerated unsigned integer

Figure 8-92 Delete time-based scheduled activities identified by
request identifier

8.11.2.6 TC[11,6] delete the time-based scheduled activities
identified by a filter

a. Each telecommand packet transporting a request to delete the time-based
scheduled activities identified by a filter shall be of message subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.11.10.3.

497

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete the time-
based scheduled activities identified by a filter, the application data field
shall have the structure specified in Figure 8-93.

 repeated N1 times

 repeated N2 times

time window
N1

sub-schedule
ID

N2 group ID
type time tag 1 time tag 2

enumerated
absolute

time
absolute

time
unsigned

integer enumerated
unsigned

integer enumerated

deduced
presence

deduced
presence

optional

optional

NOTE For the type enumerated values, refer to requirement 8.11.3c.

Figure 8-93 Delete the time-based scheduled activities identified by a
filter

8.11.2.7 TC[11,7] time-shift scheduled activities identified by
request identifier

a. Each telecommand packet transporting a request to time-shift scheduled
activities identified by request identifier shall be of message subtype 7.

NOTE For the corresponding system requirements, refer
to clause 6.11.9.3.

b. For each telecommand packet transporting a request to time-shift
scheduled activities identified by request identifier, the application data
field shall have the structure specified in Figure 8-94.

 repeated N times

time offset N

request ID

source ID
application
process ID

sequence
count

relative time unsigned
integer

enumerated enumerated unsigned
integer

Figure 8-94 Time-shift scheduled activities identified by request
identifier

8.11.2.8 TC[11,8] time-shift the scheduled activities
identified by a filter

a. Each telecommand packet transporting a request to time-shift the
scheduled activities identified by a filter shall be of message subtype 8.

NOTE For the corresponding system requirements, refer
to clause 6.11.10.4.

498

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to time-shift the
scheduled activities identified by a filter, the application data field shall
have the structure specified in Figure 8-95.

 repeated N1 times

 repeated N2 times

time offset

time window

N1
sub-schedule

ID
N2 group ID

type
time tag

1
time tag

2

relative time enumerated absolute
time

absolute
time

unsigned
integer

enumerated unsigned
integer

enumerated

deduced
presence

deduced
presence

optional

optional

NOTE For the type enumerated values, refer to requirement 8.11.3c.

Figure 8-95 Time-shift the scheduled activities identified by a filter

8.11.2.9 TC[11,9] detail-report time-based scheduled
activities identified by request identifier

a. Each telecommand packet transporting a request to detail-report time-
based scheduled activities identified by request identifier shall be of
message subtype 9.

NOTE For the corresponding system requirements, refer
to clause 6.11.9.5.

b. For each telecommand packet transporting a request to detail-report
time-based scheduled activities identified by request identifier, the
application data field shall have the structure specified in Figure 8-96.

 repeated N times

N

request ID

source ID
application
process ID

sequence count

unsigned integer enumerated enumerated unsigned integer

Figure 8-96 Detail-report time-based scheduled activities identified by
request identifier

8.11.2.10 TM[11,10] time-based schedule detail report
a. Each telemetry packet transporting a time-based schedule detail report

shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.11.7.2.

499

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a time-based schedule detail
report, the source data field shall have the structure specified in Figure
8-97.

 repeated N times

N
sub-

schedule ID
group ID release time request

unsigned integer enumerated enumerated absolute time TC packet

optional

optional

Figure 8-97 Time-based schedule detail report

8.11.2.11 TC[11,11] detail-report the time-based scheduled
activities identified by a filter

a. Each telecommand packet transporting a request to detail-report the
time-based scheduled activities identified by a filter shall be of message
subtype 11.

NOTE For the corresponding system requirements, refer
to clause 6.11.10.6.

b. For each telecommand packet transporting a request to detail-report the
time-based scheduled activities identified by a filter, the application data
field shall have the structure specified in Figure 8-98.

 repeated N1 times

 repeated N2 times

time window
N1

sub-schedule
ID

N2 group ID
type time tag 1 time tag 2

enumerated
absolute

time
absolute

time
unsigned

integer enumerated
unsigned

integer enumerated

deduced
presence

deduced
presence

optional

optional

NOTE For the type enumerated values, refer to requirement 8.11.3c.

Figure 8-98 Detail-report the time-based scheduled activities
identified by a filter

8.11.2.12 TC[11,12] summary-report time-based scheduled
activities identified by request identifier

a. Each telecommand packet transporting a request to summary-report
time-based scheduled activities identified by request identifier shall be of
message subtype 12.

NOTE For the corresponding system requirements, refer
to clause 6.11.9.4.

500

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to summary-report
time-based scheduled activities identified by request identifier, the
application data field shall have the structure specified in Figure 8-99.

 repeated N times

N

request ID

source ID
application
process ID

sequence count

unsigned integer enumerated enumerated unsigned integer

Figure 8-99 Summary-report time-based scheduled activities
identified by request identifier

8.11.2.13 TM[11,13] time-based schedule summary report
a. Each telemetry packet transporting a time-based schedule summary

report shall be of message subtype 13.
NOTE For the corresponding system requirements, refer

to clause 6.11.7.1.

b. For each telemetry packet transporting a time-based schedule summary
report, the source data field shall have the structure specified in Figure
8-100.

Figure 8-100 Time-based schedule summary report

8.11.2.14 TC[11,14] summary-report the time-based
scheduled activities identified by a filter

a. Each telecommand packet transporting a request to summary-report the
time-based scheduled activities identified by a filter shall be of message
subtype 14.

NOTE For the corresponding system requirements, refer
to clause 6.11.10.5.

 repeated N times

N sub-schedule
ID

group ID release time

request ID

source ID
application
process ID

sequence
count

unsigned
integer enumerated enumerated

absolute
time enumerated enumerated

unsigned
integer

 optional optional

501

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to summary-report
the time-based scheduled activities identified by a filter, the application
data field shall have the structure specified in Figure 8-101.

 repeated N1 times

 repeated N2 times

time window
N1

sub-schedule
ID

N2 group ID
type time tag 1 time tag 2

enumerated
absolute

time
absolute

time
unsigned

integer enumerated
unsigned

integer enumerated

deduced
presence

deduced
presence

optional

optional

NOTE For the type enumerated values, refer to requirement 8.11.3c.

Figure 8-101 Summary-report the time-based scheduled activities
identified by a filter

8.11.2.15 TC[11,15] time-shift all scheduled activities
a. Each telecommand packet transporting a request to time-shift all

scheduled activities shall be of message subtype 15.
NOTE For the corresponding system requirements, refer

to clause 6.11.8.1.

b. For each telecommand packet transporting a request to time-shift all
scheduled activities, the application data field shall have the structure
specified in Figure 8-102.

time offset

relative time

Figure 8-102 Time-shift all scheduled activities

8.11.2.16 TC[11,16] detail-report all time-based scheduled
activities

a. Each telecommand packet transporting a request to detail-report all time-
based scheduled activities shall be of message subtype 16.

NOTE For the corresponding system requirements, refer
to clause 6.11.8.3.

b. For each telecommand packet transporting a request to detail-report all
time-based scheduled activities, the application data field shall be
omitted.

502

ECSS-E-ST-70-41C
15 April 2016

8.11.2.17 TC[11,17] summary-report all time-based scheduled
activities

a. Each telecommand packet transporting a request to summary-report all
time-based scheduled activities shall be of message subtype 17.

NOTE For the corresponding system requirements, refer
to clause 6.11.8.2.

b. For each telecommand packet transporting a request to summary-report
all time-based scheduled activities, the application data field shall be
omitted.

8.11.2.18 TC[11,18] report the status of each time-based sub-
schedule

a. Each telecommand packet transporting a request to report the status of
each time-based sub-schedule shall be of message subtype 18.

NOTE For the corresponding system requirements, refer
to clause 6.11.5.2.3.

b. For each telecommand packet transporting a request to report the status
of each time-based sub-schedule, the application data field shall be
omitted.

8.11.2.19 TM[11,19] time-based sub-schedule status report
a. Each telemetry packet transporting a time-based sub-schedule status

report shall be of message subtype 19.
NOTE For the corresponding system requirements, refer

to clause 6.11.5.2.3.

b. For each telemetry packet transporting a time-based sub-schedule status
report, the source data field shall have the structure specified in Figure
8-103.

 repeated N times

N sub-schedule ID
sub-schedule

status

unsigned integer enumerated enumerated

NOTE For the sub-schedule status enumerated
values, refer to requirement 8.11.3a.

Figure 8-103 Time-based sub-schedule status report

8.11.2.20 TC[11,20] enable time-based sub-schedules
a. Each telecommand packet transporting a request to enable time-based

sub-schedules shall be of message subtype 20.
NOTE For the corresponding system requirements, refer

to clause 6.11.5.2.1.

503

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to enable time-
based sub-schedules, the application data field shall have the structure
specified in Figure 8-104.

 repeated N times

N sub-schedule ID

unsigned integer enumerated

Figure 8-104 Enable time-based sub-schedules

c. To enable all time-based sub-schedules, N shall be set to 0.

8.11.2.21 TC[11,21] disable time-based sub-schedules
a. Each telecommand packet transporting a request to disable time-based

sub-schedules shall be of message subtype 21.
NOTE For the corresponding system requirements, refer

to clause 6.11.5.2.2.

b. For each telecommand packet transporting a request to disable time-
based sub-schedules, the application data field shall have the structure
specified in Figure 8-105.

 repeated N times

N sub-schedule ID

unsigned integer enumerated

Figure 8-105 Disable time-based sub-schedules

c. To disable all time-based sub-schedules, N shall be set to 0.

8.11.2.22 TC[11,22] create time-based scheduling groups
a. Each telecommand packet transporting a request to create time-based

scheduling groups shall be of message subtype 22.
NOTE For the corresponding system requirements, refer

to clause 6.11.6.2.1.

b. For each telecommand packet transporting a request to create time-based
scheduling groups, the application data field shall have the structure
specified in Figure 8-106.

 repeated N times

N group ID group status

unsigned integer enumerated enumerated

NOTE For the group status enumerated values,
refer to requirement 8.11.3b.

Figure 8-106 Create time-based scheduling groups

504

ECSS-E-ST-70-41C
15 April 2016

8.11.2.23 TC[11,23] delete time-based scheduling groups
a. Each telecommand packet transporting a request to delete time-based

scheduling groups shall be of message subtype 23.
NOTE For the corresponding system requirements, refer

to clause 6.11.6.2.2.

b. For each telecommand packet transporting a request to delete time-based
scheduling groups, the application data field shall have the structure
specified in Figure 8-107.

 repeated N times

N group ID

unsigned integer enumerated

Figure 8-107 Delete time-based scheduling groups

c. To delete all time-based scheduling groups, N shall be set to 0.

8.11.2.24 TC[11,24] enable time-based scheduling groups
a. Each telecommand packet transporting a request to enable time-based

scheduling groups shall be of message subtype 24.
NOTE For the corresponding system requirements, refer

to clause 6.11.6.3.1.

b. For each telecommand packet transporting a request to enable time-
based scheduling groups, the application data field shall have the
structure specified in Figure 8-108.

 repeated N times

N group ID

unsigned integer enumerated

Figure 8-108 Enable time-based scheduling groups

c. To enable all time-based scheduling groups, N shall be set to 0.

8.11.2.25 TC[11,25] disable time-based scheduling groups
a. Each telecommand packet transporting a request to disable time-based

scheduling groups shall be of message subtype 25.
NOTE For the corresponding system requirements, refer

to clause 6.11.6.3.2.

505

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to disable time-
based scheduling groups, the application data field shall have the
structure specified in Figure 8-109.

 repeated N times

N group ID

unsigned integer enumerated

Figure 8-109 Disable time-based scheduling groups

c. To disable all time-based scheduling groups, N shall be set to 0.

8.11.2.26 TC[11,26] report the status of each time-based
scheduling group

a. Each telecommand packet transporting a request to report the status of
each time-based scheduling group shall be of message subtype 26.

NOTE For the corresponding system requirements, refer
to clause 6.11.6.3.3.

b. For each telecommand packet transporting a request to report the status
of each time-based scheduling group, the application data field shall be
omitted.

8.11.2.27 TM[11,27] time-based scheduling group status
report

a. Each telemetry packet transporting a time-based scheduling group status
report shall be of message subtype 27.

NOTE For the corresponding system requirements, refer
to clause 6.11.6.3.3.

b. For each telemetry packet transporting a time-based scheduling group
status report, the source data field shall have the structure specified in
Figure 8-110.

 repeated N times

N group ID group status

unsigned integer enumerated enumerated

NOTE For the group status enumerated values,
refer to requirement 8.11.3b.

Figure 8-110 Time-based scheduling group status report

506

ECSS-E-ST-70-41C
15 April 2016

8.11.3 Enumeration
a. The values of the sub-schedule status shall be as specified in Table 8-3.

Table 8-3 Service 11 sub-schedule status

engineering value raw value

"disabled" 0

"enabled" 1

b. The values of the group status shall be as specified in Table 8-4.

Table 8-4 Service 11 group status

engineering value raw value

"disabled" 0

"enabled" 1

c. The values of the type of time window shall be as specified in Table 8-5.

Table 8-5 Service 11 type of time window

engineering value raw value

"select all" 0

"from time tag to time tag" 1

"from time tag" 2

"to time tag" 3

507

ECSS-E-ST-70-41C
15 April 2016

8.12 ST[12] on-board monitoring

8.12.1 General
a. Each packet transporting an on-board monitoring message shall be of

service type 12.

8.12.2 Requests and reports

8.12.2.1 TC[12,1] enable parameter monitoring definitions
a. Each telecommand packet transporting a request to enable parameter

monitoring definitions shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.6.1.

b. For each telecommand packet transporting a request to enable parameter
monitoring definitions, the application data field shall have the structure
specified in Figure 8-111.

 repeated N times

N PMON ID

unsigned integer enumerated

Figure 8-111 Enable parameter monitoring definitions

8.12.2.2 TC[12,2] disable parameter monitoring definitions
a. Each telecommand packet transporting a request to disable parameter

monitoring definitions shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.6.2.

b. For each telecommand packet transporting a request to disable parameter
monitoring definitions, the application data field shall have the structure
specified in Figure 8-112.

 repeated N times

N PMON ID

unsigned integer enumerated

Figure 8-112 Disable parameter monitoring definitions

8.12.2.3 TC[12,3] change the maximum transition reporting
delay

a. Each telecommand packet transporting a request to change the maximum
transition reporting delay shall be of message subtype 3.

508

ECSS-E-ST-70-41C
15 April 2016

NOTE For the corresponding system requirements, refer
to clause 6.12.3.8.

b. For each telecommand packet transporting a request to change the
maximum transition reporting delay, the application data field shall have
the structure specified in Figure 8-113.

max. reporting delay

unsigned integer

Figure 8-113 Change the maximum transition reporting delay

8.12.2.4 TC[12,4] delete all parameter monitoring definitions
a. Each telecommand packet transporting a request to delete all parameter

monitoring definitions shall be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.9.2.

b. For each telecommand packet transporting a request to delete all
parameter monitoring definitions, the application data field shall be
omitted.

8.12.2.5 TC[12,5] add parameter monitoring definitions
a. Each telecommand packet transporting a request to add parameter

monitoring definitions shall be of message subtype 5.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.9.1.

b. For each telecommand packet transporting a request to add parameter
monitoring definitions, the application data field shall have the structure
specified in Figure 8-114.

 repeated N times

N PMON ID
monitored
parameter

ID

check validity condition

monitoring
interval

repetition
number

check type check type
dependent

criteria
(see below)

validity
parameter

ID
mask

expected
value

unsigned
integer enumerated enumerated enumerated

bit-string
(deduced

size)
deduced

unsigned
integer

unsigned
integer enumerated

optional

optional

NOTE 1 For the check type enumerated values, refer to requirement 8.12.3.1a.
NOTE 2 In the check validity condition field, the size of the mask field and the format of the expected value field are specific to

the validity parameter identified by its parameter ID field.
NOTE 3 The structure of the check type dependent criteria field is driven by requirement 8.12.2.5c for expected-value-checking,

requirement 8.12.2.5e for limit-checking and requirement 8.12.2.5f for delta-checking.

Figure 8-114 Add parameter monitoring definitions

509

ECSS-E-ST-70-41C
15 April 2016

c. For expected-value-checking, the check type dependent criteria field of
the add parameter monitoring definitions request shall have the structure
specified in Figure 8-115.

mask spare
expected

value
event

definition ID

bit-string
(deduced size)

bit-string
(of event

definition ID
field size)

deduced enumerated

optional

NOTE 1 The size of the mask field and the structure and format
of the expected value field are derived from the
monitored parameter identified by the monitored
parameter ID field (refer to Figure 8-114).

NOTE 2 The spare field can be used for harmonising the size of
all check types.

NOTE 3 The value 0 for in the event definition ID field means
"no event report to generate".

Figure 8-115 Add parameter monitoring definitions: expected-value-
checking definition fields

d. For expected-value-checking, the presence of the spare field in the
expected-value-checking definition fields of the requests to add
parameter monitoring definitions shall be declared when specifying the
parameter monitoring subservice.

e. For limit-checking, the check type dependent criteria field of the add
parameter monitoring definitions request shall have the structure
specified in Figure 8-116.

low limit
event

definition ID
high limit

event
definition ID

deduced enumerated deduced enumerated

NOTE 1 The structure and format of the low limit and the high
limit fields are derived from the monitored parameter
identified by the monitored parameter ID field (refer to
Figure 8-114).

NOTE 2 The value 0 for in the event definition ID field means
"no event report to generate".

Figure 8-116 Add parameter monitoring definitions: limit-checking
definition fields

510

ECSS-E-ST-70-41C
15 April 2016

f. For delta-checking, the check type dependent criteria field of the add
parameter monitoring definitions request shall have the structure
specified in Figure 8-117.

low delta
threshold

event
definition ID

high delta
threshold

event
definition ID

number of
consecutive
delta values

deduced enumerated deduced enumerated
unsigned

integer

NOTE 1 The structure and format of the low delta threshold and high
delta threshold are derived from the monitored parameter
identified by the monitored parameter ID field (refer to Figure
8-114).

NOTE 2 The value 0 for in the event definition ID field means "no event
report to generate".

 Figure 8-117 Add parameter monitoring definitions: delta-checking
definition fields

8.12.2.6 TC[12,6] delete parameter monitoring definitions
a. Each telecommand packet transporting a request to delete parameter

monitoring definitions shall be of message subtype 6.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.9.3.

b. For each telecommand packet transporting a request to delete parameter
monitoring definitions, the application data field shall have the structure
specified in Figure 8-118.

 repeated N times

N PMON ID

unsigned integer enumerated

Figure 8-118 Delete parameter monitoring definitions

8.12.2.7 TC[12,7] modify parameter monitoring definitions
a. Each telecommand packet transporting a request to modify parameter

monitoring definitions shall be of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.9.4.

b. For each telecommand packet transporting a request to modify
parameter monitoring definitions, the application data field shall have
the structure specified in Figure 8-119.

511

ECSS-E-ST-70-41C
15 April 2016

 repeated N times

N PMON ID
monitored

parameter ID
repetition
number

check type check type
dependent

criteria
(see below) unsigned

integer
enumerated enumerated unsigned

integer
enumerated

NOTE 1 For the check type enumerated values, refer to requirement 8.12.3.1a.
NOTE 2 The structure of the check type dependent criteria field is driven by requirement

8.12.2.7d for expected-value-checking, requirement 8.12.2.7f for limit-checking
and requirement 8.12.2.7g for delta-checking.

Figure 8-119 Modify parameter monitoring definitions

c. The parameter monitoring subservice shall reject any instruction
contained within a modify parameter monitoring definitions request if:
1. that instruction refers to a check type that is different from the

original check type specified for that parameter monitoring
definition.
NOTE This interface constraint completes requirement

6.12.3.9.4d.

d. For expected-value-checking, the check type dependent criteria field of
the modify parameter monitoring definitions request shall have the
structure specified in Figure 8-120.

mask spare
expected

value
event

definition ID

bit-string
(deduced size)

bit-string
(of event

definition ID
field size)

deduced enumerated

optional

NOTE 1 The size of the mask field and the structure and format
of the expected value field are derived from the
monitored parameter identified by the monitored
parameter ID field (refer to Figure 8-119).

NOTE 2 The spare field can be used for harmonising the size of
all check types.

NOTE 3 The value 0 for in the event definition ID field means
"no event report to generate".

Figure 8-120 Modify parameter monitoring definitions: expected-
value-checking definition fields

e. For expected-value-checking, the presence of the spare field in the
expected-value-checking definition fields of the requests to modify
parameter monitoring definitions shall be declared when specifying the
parameter monitoring subservice.

512

ECSS-E-ST-70-41C
15 April 2016

f. For limit-checking, the check type dependent criteria field of the modify
parameter monitoring definitions request shall have the structure
specified in Figure 8-121.

low limit
event

definition ID
high limit

event
definition ID

deduced enumerated deduced enumerated

NOTE 1 The structure and format of the low limit and the high
limit fields are derived from the monitored parameter
identified by the monitored parameter ID field (refer to
Figure 8-119).

NOTE 2 The value 0 for in the event definition ID field means
"no event report to generate".

Figure 8-121 Modify parameter monitoring definitions: limit-checking
definition fields

NOTE 1 The structure and format of the low limit and the
high limit fields are derived from the monitored
parameter identified by the monitored parameter
ID field (refer to Figure 8-119).

NOTE 2 The value 0 for in the event definition ID field
means "no event report to generate".

g. For delta-checking, the check type dependent criteria field of the modify
parameter monitoring definitions request shall have the structure
specified in Figure 8-122.

low delta
threshold

event
definition ID

high delta
threshold

event
definition ID

number of
consecutive
delta values

deduced enumerated deduced enumerated unsigned
integer

NOTE 1 The structure and format of the low delta threshold and high
delta threshold are derived from the monitored parameter
identified by the monitored parameter ID field (refer to Figure
8-119).

NOTE 2 The value 0 for in the event definition ID field means "no event
report to generate".

Figure 8-122 Modify parameter monitoring definitions: limit-checking
definition fields

8.12.2.8 TC[12,8] report parameter monitoring definitions
a. Each telecommand packet transporting a request to report parameter

monitoring definitions shall be of message subtype 8.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.10.

513

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to report parameter
monitoring definitions, the application data field shall have the structure
specified in Figure 8-123.

 repeated N times

N PMON ID

unsigned integer enumerated

Figure 8-123 Report parameter monitoring definitions

c. To report all parameter monitoring definitions, N shall be set to 0.

8.12.2.9 TM[12,9] parameter monitoring definition report
a. Each telemetry packet transporting a parameter monitoring definition

report shall be of message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.10.

b. For each telemetry packet transporting a parameter monitoring definition
report, the source data field shall have the structure specified in Figure
8-124.

 repeated N times…

max.
transition
reporting

delay

N PMON ID
monitored

parameter ID

check validity condition

validity
parameter ID

mask
expected

value

unsigned
integer

unsigned
integer

enumerated enumerated enumerated
bit-string
(deduced

size)
deduced

optional

optional

 … repeated N times

monitoring

interval
PMON status

repetition
number

check type check type
dependent

criteria
(see below)

unsigned
integer enumerated

unsigned
integer enumerated

optional

 NOTE For the check type enumerated values, refer to requirement 8.12.3.1a.

Figure 8-124 Parameter monitoring definition report

514

ECSS-E-ST-70-41C
15 April 2016

c. For expected-value-checking, the check type dependent criteria field of
the parameter monitoring definition report shall have the structure
specified in Figure 8-125.

mask spare
expected

value
event

definition ID

bit-string
(deduced size)

bit-string
(of event

definition ID
field size)

deduced enumerated

optional

NOTE 1 The size of the mask field and the structure and format
of the expected value field are derived from the
monitored parameter identified by the monitored
parameter ID field (refer to Figure 8-124).

NOTE 2 The spare field can be used for harmonising the size of
all check types.

NOTE 3 The value 0 for in the event definition ID field means
"no event report to generate".

Figure 8-125 Parameter monitoring definition report: expected-value-
checking definition fields

d. For expected-value checking, the presence of the spare field in the
expected-value-checking definition fields of the parameter monitoring
definition reports shall be declared when specifying the parameter
monitoring subservice.

e. For limit-checking, the check type dependent criteria field of the
parameter monitoring definition report shall have the structure specified
in Figure 8-126.

low limit
event

definition ID
high limit

event
definition ID

deduced enumerated deduced enumerated

NOTE 1 The structure and format of the low limit and the high
limit fields are derived from the monitored parameter
identified by the monitored parameter ID field (refer to
Figure 8-124).

NOTE 2 The value 0 for in the event definition ID field means
"no event report to generate".

Figure 8-126 Parameter monitoring definition report: limit-checking
definition fields

515

ECSS-E-ST-70-41C
15 April 2016

f. For delta-checking, the check type dependent criteria field of the
parameter monitoring definition report shall have the structure specified
in Figure 8-127.

low delta
threshold

event
definition ID

high delta
threshold

event
definition ID

number of
consecutive
delta values

deduced enumerated deduced enumerated
unsigned

integer

NOTE 1 The structure and format of the low delta threshold and high delta
threshold are derived from the monitored parameter identified by
the monitored parameter ID field (refer to Figure 8-124).

NOTE 2 The value 0 for in the event definition ID field means "no event
report to generate".

Figure 8-127 Selected parameter monitoring definition list: delta-
checking definition fields

8.12.2.10 TC[12,10] report the out-of-limits
a. Each telecommand packet transporting a request to report the out-of-

limits shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.12.

b. For each telecommand packet transporting a request to report the out-of-
limits, the application data field shall be omitted.

8.12.2.11 TM[12,11] out-of-limits report
a. Each telemetry packet transporting an out-of-limits report shall be of

message subtype 11.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.12.

516

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting an out-of-limits report, the source
data field shall have the structure specified in Figure 8-128.

 repeated N times

N PMON ID
monitored
parameter

ID
check type

expected
value check

mask

parameter
value

limit
crossed

previous
PMON

checking
status

current
PMON

checking
status

transition
time

unsigned
integer enumerated enumerated enumerated

bit-string
(deduced

size)
deduced deduced enumerated enumerated

absolute
time

deduced presencce

NOTE 1 The expected value check mask field is only present when the check type is "expected-value-checking". The size
of the field is specific to the monitored parameter identified by its parameter ID field.

NOTE 2 For the check type enumerated values, refer to requirement 8.12.3.1a
NOTE 3 The format of the parameter value field and limit crossed field is specific to the monitored parameter identified

by its parameter ID field.
NOTE 4 For the PMON checking status enumerated values, refer to requirement 8.12.3.1b.

Figure 8-128 Out-of-limits report

8.12.2.12 TM[12,12] check transition report
a. Each telemetry packet transporting a check transition report shall be of

message subtype 12.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.7.

b. For each telemetry packet transporting a check transition report, the
source data field shall have the structure specified in Figure 8-129.

 repeated N times

N PMON ID
monitored
parameter

ID
check type

expected
value check

mask

parameter
value

limit
crossed

previous
PMON

checking
status

current
PMON

checking
status

transition
time

unsigned
integer

enumerated enumerated enumerated
bit-string
(deduced

size)
deduced deduced enumerated enumerated absolute

time

deduced presence

NOTE 1 The expected value check mask field is only present when the check type is "expected-value-checking". The size
of the field is specific to the monitored parameter identified by its parameter ID field.

NOTE 2 For the check type enumerated values, refer to requirement 8.12.3.1a
NOTE 3 The format of the parameter value field and limit crossed field is specific to the monitored parameter identified

by its parameter ID field.
NOTE 4 For the PMON checking status enumerated values, refer to requirement 8.12.3.1b.

Figure 8-129 Check transition report

517

ECSS-E-ST-70-41C
15 April 2016

8.12.2.13 TC[12,13] report the status of each parameter
monitoring definition

a. Each telecommand packet transporting a request to report the status of
each parameter monitoring definition shall be of message subtype 13.

NOTE For the corresponding system requirements, refer
to clause 6.12.3.11.

b. For each telecommand packet transporting a request to report the status
of each parameter monitoring definition, the application data field shall
be omitted.

8.12.2.14 TM[12,14] parameter monitoring definition status
report

a. Each telemetry packet transporting a parameter monitoring definition
status report shall be of message subtype 14.

NOTE For the corresponding system requirements, refer
to clause 6.12.3.11.

b. For each telemetry packet transporting a parameter monitoring definition
status report, the source data field shall have the structure specified in
Figure 8-130.

 repeated N times

N PMON ID PMON status

unsigned integer enumerated enumerated

NOTE For the PMON status enumerated values,
refer to requirement 8.12.3.1c.

Figure 8-130 Parameter monitoring definition status report

8.12.2.15 TC[12,15] enable the parameter monitoring function
a. Each telecommand packet transporting a request to enable the parameter

monitoring function shall be of message subtype 15.
NOTE For the corresponding system requirements, refer

to clause 6.12.3.5.1.

b. For each telecommand packet transporting a request to enable the
parameter monitoring function, the application data field shall be
omitted.

8.12.2.16 TC[12,16] disable the parameter monitoring
function

a. Each telecommand packet transporting a request to disable the parameter
monitoring function shall be of message subtype 16.

NOTE For the corresponding system requirements, refer
to clause 6.12.3.5.2.

518

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to disable the
parameter monitoring function, the application data field shall be
omitted.

8.12.2.17 TC[12,17] enable the functional monitoring function
a. Each telecommand packet transporting a request to enable the functional

monitoring function shall be of message subtype 17.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.4.1.

b. For each telecommand packet transporting a request to enable the
functional monitoring function, the application data field shall be
omitted.

8.12.2.18 TC[12,18] disable the functional monitoring function
a. Each telecommand packet transporting a request to disable the functional

monitoring function shall be of message subtype 18.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.4.2.

b. For each telecommand packet transporting a request to disable the
functional monitoring function, the application data field shall be
omitted.

8.12.2.19 TC[12,19] enable functional monitoring definitions
a. Each telecommand packet transporting a request to enable functional

monitoring definitions shall be of message subtype 19.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.5.2.

b. For each telecommand packet transporting a request to enable functional
monitoring definitions, the application data field shall have the structure
specified in Figure 8-131.

 repeated N times

N FMON ID

unsigned integer enumerated

Figure 8-131 Enable functional monitoring definitions

8.12.2.20 TC[12,20] disable functional monitoring definitions
a. Each telecommand packet transporting a request to disable functional

monitoring definitions shall be of message subtype 20.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.5.3.

519

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to disable functional
monitoring definitions, the application data field shall have the structure
specified in Figure 8-132.

 repeated N times

N FMON ID

unsigned integer enumerated

Figure 8-132 Disable functional monitoring definitions

8.12.2.21 TC[12,21] protect functional monitoring definitions
a. Each telecommand packet transporting a request to protect functional

monitoring definitions shall be of message subtype 21.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.6.1.

b. For each telecommand packet transporting a request to protect functional
monitoring definitions, the application data field shall have the structure
specified in Figure 8-133.

 repeated N times

N FMON ID

unsigned integer enumerated

Figure 8-133 Protect functional monitoring definitions

8.12.2.22 TC[12,22] unprotect functional monitoring
definitions

a. Each telecommand packet transporting a request to unprotect functional
monitoring definitions shall be of message subtype 22.

NOTE For the corresponding system requirements, refer
to clause 6.12.4.6.2.

b. For each telecommand packet transporting a request to unprotect
functional monitoring definitions, the application data field shall have
the structure specified in Figure 8-134.

 repeated N times

N FMON ID

unsigned integer enumerated

Figure 8-134 Unprotect functional monitoring definitions

520

ECSS-E-ST-70-41C
15 April 2016

8.12.2.23 TC[12,23] add functional monitoring definitions
a. Each telecommand packet transporting a request to add functional

monitoring definitions shall be of message subtype 23.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.7.1.

b. For each telecommand packet transporting a request to add functional
monitoring definitions, the application data field shall have the structure
specified in Figure 8-135.

 repeated N1 times

 repeated N2 times

N1 FMON ID

check validity condition

event
definition ID

minimum
PMON
failing

number

N2 PMON ID validity
parameter

ID
mask

expected
value

unsigned
integer

enumerated enumerated
bit-string
(deduced

size)
deduced enumerated

unsigned
integer

unsigned
integer

enumerated

optional

optional

NOTE In the check validity condition field, the size of the mask field and the format of the expected value field are
specific to the validity parameter identified by its parameter ID field.

Figure 8-135 Add functional monitoring definitions

8.12.2.24 TC[12,24] delete functional monitoring definitions
a. Each telecommand packet transporting a request to delete functional

monitoring definitions shall be of message subtype 24.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.7.2.

b. For each telecommand packet transporting a request to delete functional
monitoring definitions, the application data field shall have the structure
specified in Figure 8-136.

 repeated N times

N FMON ID

unsigned integer enumerated

Figure 8-136 Delete functional monitoring definitions

8.12.2.25 TC[12,25] report functional monitoring definitions
a. Each telecommand packet transporting a request to report functional

monitoring definitions shall be of message subtype 25.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.8.

521

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to report functional
monitoring definitions, the application data field shall have the structure
specified in Figure 8-137.

 repeated N times

N FMON ID

unsigned integer enumerated

Figure 8-137 Report functional monitoring definitions

c. To report all functional monitoring definitions, N shall be set to 0.

8.12.2.26 TM[12,26] functional monitoring definition report
a. Each telemetry packet transporting a functional monitoring definition

report shall be of message subtype 26.
NOTE For the corresponding system requirements, refer

to clause 6.12.4.8.

b. For each telemetry packet transporting a functional monitoring definition
report, the source data field shall have the structure specified in Figure
8-138.

 repeated N1 times

 repeated N2

times

N1 FMON ID

check validity condition
FMON

protection
status

FMON
status

event
definition

ID

minimum
PMON
failing

number

N2 PMON ID validity
parameter

ID
mask

expected
value

unsigned
integer enumerated enumerated

bit-string
(deduced

size)
deduced enumerated enumerated enumerated

unsigned
integer

unsigned
integer enumerated

optional

optional

optional

NOTE 1 In the check validity condition field, the size of the mask field and the format of the expected value field are specific to
the validity parameter identified by its parameter ID field.

NOTE 2 For the FMON protection status enumerated values, refer to requirement 8.12.3.2a.
NOTE 3 For the FMON status enumerated values, refer to requirement 8.12.3.2b.

Figure 8-138 Functional monitoring definition report

8.12.2.27 TC[12,27] report the status of each functional
monitoring definition

a. Each telecommand packet transporting a request to report the status of
each functional monitoring definition shall be of message subtype 27.

NOTE For the corresponding system requirements, refer
to clause 6.12.4.9.

522

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to report the status
of each functional monitoring definition, the application data field shall
be omitted.

8.12.2.28 TM[12,28] functional monitoring definition status
report

a. Each telemetry packet transporting a functional monitoring definition
status report shall be of message subtype 28.

NOTE For the corresponding system requirements, refer
to clause 6.12.4.9.

b. For each telemetry packet transporting a functional monitoring definition
status report, the source data field shall have the structure specified in
Figure 8-139.

 repeated N times

N FMON ID
FMON

protection
status

FMON status
FMON checking

status

unsigned
integer

enumerated enumerated enumerated enumerated

optional

NOTE 1 For the FMON protection status enumerated values, see requirement
8.12.3.2a.

NOTE 2 For the FMON status enumerated values, see requirement 8.12.3.2b.
NOTE 3 For the FMON checking status enumerated values, see requirement

8.12.3.2c.

Figure 8-139 Functional monitoring definition status report

8.12.3 Enumeration

8.12.3.1 Parameter monitoring
a. The values of the check type shall be as specified in Table 8-6.

Table 8-6 Service 12 check type

engineering value raw value

"expected-value-checking" 0

"limit-checking" 1

"delta-checking" 2

b. The values of the PMON checking status shall be:
1. for expected-value-checking, as specified in Table 8-7.

523

ECSS-E-ST-70-41C
15 April 2016

Table 8-7 Service 12 PMON checking status for expected-value-
checking

engineering value raw value

"expected value" 0

"unchecked" 1

"invalid" 2

"unexpected value" 3

2. for limit-checking, as specified in Table 8-8.

Table 8-8 Service 12 PMON checking status for limit-checking

engineering value raw value

"within limits" 0

"unchecked" 1

"invalid" 2

"below low limit" 3

"above high limit" 4

3. for delta-checking, as specified in Table 8-9.

Table 8-9 Service 12 PMON checking status for delta-checking

engineering value raw value

 "within thresholds" 0

"unchecked" 1

"invalid" 2

 "below low threshold" 3

 "above high threshold" 4

c. The values of the PMON status shall be as specified in Table 8-10.

Table 8-10 Service 12 PMON status

engineering value raw value

"disabled" 0

"enabled" 1

8.12.3.2 Functional monitoring
a. The values of the FMON protection status shall be as specified in Table

8-11.

524

ECSS-E-ST-70-41C
15 April 2016

Table 8-11 Service 12 FMON protection status

engineering value raw value

"unprotected" 0

"protected" 1

b. The values of the FMON status shall be as specified in Table 8-12.

Table 8-12 Service 12 FMON status

engineering value raw value

"disabled" 0

"enabled" 1

c. The values of the FMON checking status shall be as specified in Table
8-13.

Table 8-13 Service 12 FMON checking status

engineering value raw value

"unchecked" 0

"running" 1

"invalid" 2

"failed" 3

525

ECSS-E-ST-70-41C
15 April 2016

8.13 ST[13] large packet transfer

8.13.1 General
a. Each packet transporting a large packet transfer message shall be of

service type 13.

8.13.2 Requests and reports

8.13.2.1 TM[13,1] first downlink part report
a. Each telemetry packet transporting a first downlink part report shall be

of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.13.3.3.1.

b. For each telemetry packet transporting a first downlink part report, the
source data field shall have the structure specified in Figure 8-140.

large message
transaction identifier

part sequence
number

part

unsigned integer unsigned integer fixed octet-string

Figure 8-140 First downlink part report

8.13.2.2 TM[13,2] intermediate downlink part report
a. Each telemetry packet transporting an intermediate downlink part report

shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.13.3.3.1.

b. For each telemetry packet transporting an intermediate downlink part
report, the source data field shall have the structure specified in Figure
8-140.

large message
transaction identifier

part sequence
number

part

unsigned integer unsigned integer fixed octet-string

Figure 8-141 Intermediate downlink part report

8.13.2.3 TM[13,3] last downlink part report
a. Each telemetry packet transporting a last downlink part report shall be of

message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.13.3.3.1.

526

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a last downlink part report, the
source data field shall have the structure specified in Figure 8-140.

large message
transaction identifier

part sequence
number

part

unsigned integer unsigned integer fixed octet-string of
deduced size

NOTE The size of the part field is deduced from the size of the
telemetry packet that is transported.

 Figure 8-142 Last downlink part report

8.13.2.4 TC[13,9] uplink the first part
a. Each telecommand packet transporting an uplink the first part shall be of

message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.13.4.3.1.

b. For each telecommand packet transporting an uplink the first part, the
application data field shall have the structure specified in Figure 8-143.

large message
transaction
identifier

part sequence
number

part

unsigned integer unsigned integer fixed octet-string

 Figure 8-143 Uplink the first part

8.13.2.5 TC[13,10] uplink an intermediate part
a. Each telecommand packet transporting an uplink an intermediate part

shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.13.4.3.1.

b. For each telecommand packet transporting an uplink an intermediate
part, the application data field shall have the structure specified in Figure
8-143.

large message
transaction
identifier

part sequence
number

part

unsigned integer unsigned integer fixed octet-string

Figure 8-144 Uplink an intermediate part

527

ECSS-E-ST-70-41C
15 April 2016

8.13.2.6 TC[13,11] uplink the last part
a. Each telecommand packet transporting an uplink the last part shall be of

message subtype 11.
NOTE For the corresponding system requirements, refer

to clause 6.13.4.3.1.

b. For each telecommand packet transporting an uplink the last part, the
application data field shall have the structure specified in Figure 8-143.

large message
transaction
identifier

part sequence
number

part

unsigned integer unsigned integer fixed octet-string
of deduced size

NOTE The size of the part field is deduced from the
size of the large telecommand packet that is
transported.

Figure 8-145 Uplink the last part

8.13.2.7 TM[13,16] large packet uplink abortion report
a. Each telemetry packet transporting a large packet uplink abortion report

shall be of message subtype 16.
NOTE For the corresponding system requirements, refer

to clause 6.13.4.3.3.

b. For each telemetry packet transporting a large packet uplink abortion
report, the source data field shall have the structure specified in Figure
8-146.

large message
transaction
identifier

failure reason

unsigned integer enumerated

Figure 8-146 Large packet uplink abortion report

528

ECSS-E-ST-70-41C
15 April 2016

8.14 ST[14] real-time forwarding control

8.14.1 General
a. Each packet transporting a real-time forwarding control message shall be

of service type 14.

8.14.2 Requests and reports

8.14.2.1 TC[14,1] add report types to the application process
forward-control configuration

a. Each telecommand packet transporting a request to add report types to
the application process forward-control configuration shall be of message
subtype 1.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.4.1.

b. For each telecommand packet transporting a request to add report types
to the application process forward-control configuration, the application
data field shall have the structure specified in Figure 8-147.

 repeated N1 times

 repeated N2 times

 repeated N3 times

N1
application
process ID

N2 service type N3
message
subtype

unsigned
integer

enumerated unsigned
integer

enumerated unsigned
integer

enumerated

Figure 8-147 Add report types to the application process forward-
control configuration

c. To add all report types of an application process to the application
process forward-control configuration, N2 shall be set to 0.

d. To add all report types of a service type to the application process
forward-control configuration, N3 shall be set to 0.

8.14.2.2 TC[14,2] delete report types from the application
process forward-control configuration

a. Each telecommand packet transporting a request to delete report types
from the application process forward-control configuration shall be of
message subtype 2.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.4.2.

529

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete report
types from the application process forward-control configuration, the
application data field shall have the structure specified in Figure 8-148.

 repeated N1 times

 repeated N2 times

 repeated N3 times

N1
application
process ID

N2 service type N3
message
subtype

unsigned
integer enumerated

unsigned
integer enumerated

unsigned
integer enumerated

Figure 8-148 Delete report types from the application process forward-
control configuration

c. To empty the application process forward-control configuration, N1 shall
be set to 0.

d. To delete an application process from the application process forward-
control configuration, N2 shall be set to 0.

e. To delete a service type from the application process forward-control
configuration, N3 shall be set to 0.

8.14.2.3 TC[14,3] report the content of the application
process forward-control configuration

a. Each telecommand packet transporting a request to report the content of
the application process forward-control configuration shall be of message
subtype 3.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.4.3.

b. For each telecommand packet transporting a request to report the content
of the application process forward-control configuration, the application
data field shall be omitted.

8.14.2.4 TM[14,4] application process forward-control
configuration content report

a. Each telemetry packet transporting an application process forward-
control configuration content report shall be of message subtype 4.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.4.3.

530

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting an application process forward-
control configuration content report, the source data field shall have the
structure specified in Figure 8-149.

 repeated N1 times

 repeated N2 times

 repeated N3 times

N1
application
process ID

N2 service type N3
message
subtype

unsigned
integer enumerated

unsigned
integer enumerated

unsigned
integer enumerated

Figure 8-149 Application process forward-control configuration
content report

c. To report that the application process forward-control configuration is
empty, N1 shall be set to 0.

d. To report that no service type of the related application process is in the
application process forward-control configuration, N2 shall be set to 0.

e. To report that no message type of the related application process and
service type is in the application process forward-control configuration,
N3 shall be set to 0.

8.14.2.5 TC[14,5] add structure identifiers to the
housekeeping parameter report forward-control
configuration

a. Each telecommand packet transporting a request to add structure
identifiers to the housekeeping parameter report forward-control
configuration shall be of message subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.5.1.

b. For each telecommand packet transporting a request to add structure
identifiers to the housekeeping parameter report forward-control
configuration, the application data field shall have the structure specified
in Figure 8-150.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2
housekeeping

parameter report
structure ID

subsampling
rate

unsigned
integer

enumerated unsigned
integer

enumerated unsigned integer

optional

Figure 8-150 Add structure identifiers to the housekeeping parameter
report forward-control configuration

531

ECSS-E-ST-70-41C
15 April 2016

c. To add all structure identifiers to the housekeeping parameter report
forward-control configuration, N2 shall be set to 0.

8.14.2.6 TC[14,6] delete structure identifiers from the
housekeeping parameter report forward-control
configuration

a. Each telecommand packet transporting a request to delete structure
identifiers from the housekeeping parameter report forward-control
configuration shall be of message subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.5.2.

b. For each telecommand packet transporting a request to delete structure
identifiers from the housekeeping parameter report forward-control
configuration, the application data field shall have the structure specified
in Figure 8-151.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2

housekeeping
parameter

report structure
ID

unsigned
integer

enumerated unsigned integer enumerated

 Figure 8-151 Delete structure identifiers from the housekeeping
parameter report forward-control configuration

c. To empty the housekeeping parameter report forward-control
configuration, N1 shall be set to 0.

d. To delete an application process from the housekeeping parameter report
forward-control configuration, N2 shall be set to 0.

8.14.2.7 TC[14,7] report the content of the housekeeping
parameter report forward-control configuration

a. Each telecommand packet transporting a request to report the content of
the housekeeping parameter report forward-control configuration shall
be of message subtype 7.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.5.3.

532

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to report the content
of the housekeeping parameter report forward-control configuration, the
application data field shall be omitted.

8.14.2.8 TM[14,8] housekeeping parameter report forward-
control configuration content report

a. Each telemetry packet transporting a housekeeping parameter report
forward-control configuration content report shall be of message subtype
8.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.5.3.

b. For each telemetry packet transporting a housekeeping parameter report
forward-control configuration content report, the source data field shall
have the structure specified in Figure 8-152.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2
housekeeping

parameter report
structure ID

subsampling
rate

unsigned
integer

enumerated
unsigned

integer
enumerated unsigned integer

optional

 Figure 8-152 Housekeeping parameter report forward-control
configuration content report

c. To report that the housekeeping parameter report forward-control
configuration is empty, N1 shall be set to 0.

d. To report that no housekeeping parameter report type of the related
application process is in the housekeeping parameter report forward-
control configuration, N2 shall be set to 0.

8.14.2.9 TC[14,9] add structure identifiers to the diagnostic
parameter report forward-control configuration

a. Each telecommand packet transporting a request to add structure
identifiers to the diagnostic parameter report forward-control
configuration shall be of message subtype 9.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.6.1.

533

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to add structure
identifiers to the diagnostic parameter report forward-control
configuration, the application data field shall have the structure specified
in Figure 8-153.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2
diagnostic

parameter report
structure ID

subsampling
rate

unsigned
integer

enumerated
unsigned

integer
enumerated unsigned integer

optional

 Figure 8-153 Add structure identifiers to the diagnostic parameter
report forward-control configuration

c. To add all structure identifiers to the diagnostic parameter report
forward-control configuration, N2 shall be set to 0.

8.14.2.10 TC[14,10] delete structure identifiers from the
diagnostic parameter report forward-control
configuration

a. Each telecommand packet transporting a request to delete structure
identifiers from the diagnostic parameter report forward-control
configuration shall be of message subtype 10.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.6.2.

b. For each telecommand packet transporting a request to delete structure
identifiers from the diagnostic parameter report forward-control
configuration, the application data field shall have the structure specified
in Figure 8-154.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2

diagnostic
parameter

report structure
ID

unsigned
integer

enumerated unsigned integer enumerated

 Figure 8-154 Delete structure identifiers from the diagnostic
parameter report forward-control configuration

c. To empty the diagnostic parameter report forward-control configuration,
N1 shall be set to 0.

d. To delete an application process from the diagnostic parameter report
forward-control configuration, N2 shall be set to 0.

534

ECSS-E-ST-70-41C
15 April 2016

8.14.2.11 TC[14,11] report the content of the diagnostic
parameter report forward-control configuration

a. Each telecommand packet transporting a request to report the content of
the diagnostic parameter report forward-control configuration shall be of
message subtype 11.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.6.3.

b. For each telecommand packet transporting a request to report the content
of the diagnostic parameter report forward-control configuration, the
application data field shall be omitted.

8.14.2.12 TM[14,12] diagnostic parameter report forward-
control configuration content report

a. Each telemetry packet transporting a diagnostic parameter report
forward-control configuration content report shall be of message subtype
12.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.6.3.

b. For each telemetry packet transporting a diagnostic parameter report
forward-control configuration content report, the source data field shall
have the structure specified in Figure 8-155.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2
diagnostic

parameter report
structure ID

subsampling
rate

unsigned
integer

enumerated unsigned
integer

enumerated unsigned integer

optional

Figure 8-155 Diagnostic parameter report forward-control
configuration content report

c. To report that the diagnostic parameter report forward-control
configuration is empty, N1 shall be set to 0.

d. To report that no diagnostic parameter report type of the related
application process is in the diagnostic parameter report forward-control
configuration, N2 shall be set to 0.

8.14.2.13 TC[14,13] delete event definition identifiers from the
event report blocking forward-control configuration

a. Each telecommand packet transporting a request to delete event
definition identifiers from the event report blocking forward-control
configuration shall be of message subtype 13.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.7.1.

535

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete event
definition identifiers from the event report blocking forward-control
configuration, the application data field shall have the structure specified
in Figure 8-156.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2
event definition

ID

unsigned
integer

enumerated unsigned integer enumerated

Figure 8-156 Delete event definition identifiers from the event report
blocking forward-control configuration

c. To delete an application process from the event report blocking forward-
control configuration, N2 shall be set to 0.

8.14.2.14 TC[14,14] add event definition identifiers to the
event report blocking forward-control configuration

a. Each telecommand packet transporting a request to add event definition
identifiers to the event report blocking forward-control configuration
shall be of message subtype 14.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.7.2.

b. For each telecommand packet transporting a request to add event
definition identifiers to the event report blocking forward-control
configuration, the application data field shall have the structure specified
in Figure 8-157.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2
event definition

ID

unsigned
integer enumerated unsigned integer enumerated

 Figure 8-157 Add event definition identifiers to the event report
blocking forward-control configuration

c. To add all event definition identifiers to the event report blocking
forward-control configuration, N2 shall be set to 0.

536

ECSS-E-ST-70-41C
15 April 2016

8.14.2.15 TC[14,15] report the content of the event report
blocking forward-control configuration

a. Each telecommand packet transporting a request to report the content of
the event report blocking forward-control configuration shall be of
message subtype 15.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.7.3.

b. For each telecommand packet transporting a request to report the content
of the event report blocking forward-control configuration, the
application data field shall be omitted.

8.14.2.16 TM[14,16] event report blocking forward-control
configuration content report

a. Each telemetry packet transporting an event report blocking forward-
control configuration content report shall be of message subtype 16.

NOTE For the corresponding system requirements, refer
to clause 6.14.3.7.3.

b. For each telemetry packet transporting an event report blocking forward-
control configuration content report, the source data field shall have the
structure specified in Figure 8-158.

 repeated N1 times

 repeated N2 times

N1
application
process ID

N2
event definition

ID

unsigned
integer

enumerated unsigned integer enumerated

Figure 8-158 Event report blocking forward-control configuration
content report

c. To report that the event report blocking forward-control configuration is
empty, N1 shall be set to 0.

d. To report that no event definition for the related application process is in
the event report blocking forward-control configuration, N2 shall be set
to 0.

537

ECSS-E-ST-70-41C
15 April 2016

8.15 ST[15] on-board storage and retrieval

8.15.1 General
a. Each packet transporting an on-board storage and retrieval message shall

be of message service type 15.

8.15.2 Requests and reports

8.15.2.1 TC[15,1] enable the storage function of packet
stores

a. Each telecommand packet transporting a request to enable the storage
function of packet stores shall be of message subtype 1.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.3.2.

b. For each telecommand packet transporting a request to enable the
storage function of packet stores, the application data field shall have the
structure specified in Figure 8-159.

 repeated N times

N packet store ID

unsigned integer fixed character-string

Figure 8-159 Enable the storage function of packet stores

c. To enable the storage function of all packet stores, N shall be set to 0.

8.15.2.2 TC[15,2] disable the storage function of packet
stores

a. Each telecommand packet transporting a request to disable the storage
function of packet stores shall be of message subtype 2.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.3.3.

b. For each telecommand packet transporting a request to disable the
storage function of packet stores, the application data field shall have the
structure specified in Figure 8-160.

 repeated N times

N packet store ID

unsigned integer fixed character-string

Figure 8-160 Disable the storage function of packet stores

c. To disable the storage function of all packet stores, N shall be set to 0.

538

ECSS-E-ST-70-41C
15 April 2016

8.15.2.3 TC[15,3] add report types to the application process
storage-control configuration

a. Each telecommand packet transporting a request to add report types to
the application process storage-control configuration shall be of message
subtype 3.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.4.1.

b. For each telecommand packet transporting a request to add report types
to the application process storage-control configuration, the application
data field shall have the structure specified in Figure 8-161.

 repeated N1 times

 repeated N2 times

 repeated N3 times

packet
store ID

N1
application
process ID

N2 service type N3 message subtype

fixed
character-

string

unsigned
integer enumerated

unsigned
integer enumerated

unsigned
integer enumerated

optional

 Figure 8-161 Add report types to the application process storage-
control configuration

c. To add all report types of an application process to the application
process storage-control configuration, N2 shall be set to 0.

d. To add all report types of a service type to the application process
storage-control configuration, N3 shall be set to 0.

8.15.2.4 TC[15,4] delete report types from the application
process storage-control configuration

a. Each telecommand packet transporting a request to delete report types
from the application process storage-control configuration shall be of
message subtype 4.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.4.2.

539

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete report
types from the application process storage-control configuration, the
application data field shall have the structure specified in Figure 8-162.

 repeated N1 times

 repeated N2 times

 repeated N3 times

packet
store ID

N1
application
process ID

N2 service type N3 message subtype

fixed
character-

string

unsigned
integer enumerated

unsigned
integer enumerated

unsigned
integer enumerated

optional

Figure 8-162 Delete report types from the application process storage-
control configuration

c. To empty the application process storage-control configuration, N1 shall
be set to 0.

d. To delete an application process from the application process storage-
control configuration, N2 shall be set to 0.

e. To delete a service type from the application process storage-control
configuration, N3 shall be set to 0.

8.15.2.5 TC[15,5] report the content of the application
process storage-control configuration

a. Each telecommand packet transporting a request to report the content of
the application process storage-control configuration shall be of message
subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.4.3.

b. For each telecommand packet transporting a request to report the content
of the application process storage-control configuration, the application
data field shall have the structure specified in Figure 8-163.

packet store ID

fixed character-string

Figure 8-163 Report the content of the application process storage-
control configuration

540

ECSS-E-ST-70-41C
15 April 2016

8.15.2.6 TM[15,6] application process storage-control
configuration content report

a. Each telemetry packet transporting an application process storage-control
configuration content report shall be of message subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.4.3.

b. For each telemetry packet transporting an application process storage-
control configuration content report, the source data field shall have the
structure specified in Figure 8-164.

 repeated N1 times

 repeated N2 times

 repeated N3 times

packet
store ID

N1
application
process ID

N2 service type N3 message subtype

fixed
character-

string

unsigned
integer

enumerated unsigned
integer

enumerated unsigned
integer

enumerated

optional

 Figure 8-164 Application process storage-control configuration
content report

8.15.2.7 TC[15,9] start the by-time-range retrieval of packet
stores

a. Each telecommand packet transporting a request to start the by-time-
range retrieval of packet stores shall be of message subtype 9.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.5.2.

b. For each telecommand packet transporting a request to start the by-time-
range retrieval of packet stores, the application data field shall have the
structure specified in Figure 8-165.

 repeated N times

N packet store ID retrieval priority from time to time

unsigned
integer

fixed character-
string

enumerated absolute time absolute time

optional

Figure 8-165 Start the by-time-range retrieval of packet stores

541

ECSS-E-ST-70-41C
15 April 2016

8.15.2.8 TC[15,11] delete the content of packet stores up to
the specified time

a. Each telecommand packet transporting a request to delete the content of
packet stores up to the specified time shall be of message subtype 11.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.7.1.

b. For each telecommand packet transporting a request to delete the content
of packet stores up to the specified time, the application data field shall
have the structure specified in Figure 8-166.

 repeated N times

storage time N packet store ID

absolute time unsigned integer fixed character-string

 Figure 8-166 Delete the content of packet stores up to the specified
time

c. To delete the content of all packet stores up to the specified time, N shall
be set to 0.

8.15.2.9 TC[15,12] summary-report the content of packet
stores

a. Each telecommand packet transporting a request to summary-report the
content of packet stores shall be of message subtype 12.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.10.1.

b. For each telecommand packet transporting a request to summary-report
the content of packet stores, the application data field shall have the
structure specified in Figure 8-167.

 repeated N times

N packet store ID

unsigned integer fixed character-string

Figure 8-167 Summary-report the content of packet stores

c. To summary-report the content of each packet store, N shall be set to 0.

8.15.2.10 TM[15,13] packet store content summary report
a. Each telemetry packet transporting a packet store content summary

report shall be of message subtype 13.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.10.1.

542

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a packet store content summary
report, the source data field shall have the structure specified in Figure
8-168.

 repeated N times

N
packet store

ID

oldest
stored

packet time

newest
stored

packet time

current open
retrieval start

time tag

percentage
filled

from open
retrieval start

time tag
percentage

filled

unsigned
integer

fixed character-
string

absolute time absolute time absolute time
unsigned

integer
unsigned

integer

Figure 8-168 Packet store content summary report

8.15.2.11 TC[15,14] change the open retrieval start time tag of
packet stores

a. Each telecommand packet transporting a request to change the open
retrieval start time tag of packet stores shall be of message subtype 14.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.4.2.

b. For each telecommand packet transporting a request to change the open
retrieval start time tag of packet stores, the application data field shall
have the structure specified in Figure 8-169.

 repeated N times

open retrieval
start time tag

N packet store ID

absolute time unsigned integer fixed character-
string

Figure 8-169 Change the open retrieval start time tag of packet stores

c. To change the open retrieval start time tag of all packet stores, N shall be
set to 0.

8.15.2.12 TC[15,15] resume the open retrieval of packet
stores

a. Each telecommand packet transporting a request to resume the open
retrieval of packet stores shall be of message subtype 15.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.4.3.

543

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to resume the open
retrieval of packet stores, the application data field shall have the
structure specified in Figure 8-170.

 repeated N times

N packet store ID retrieval priority

unsigned integer fixed character-
string

enumerated

optional

Figure 8-170 Resume the open retrieval of packet stores

c. To resume the open retrieval of all packet stores, N shall be set to 0.

8.15.2.13 TC[15,16] suspend the open retrieval of packet
stores

a. Each telecommand packet transporting a request to suspend the open
retrieval of packet stores shall be of message subtype 16.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.4.4.

b. For each telecommand packet transporting a request to suspend the open
retrieval of packet stores, the application data field shall have the
structure specified in Figure 8-171.

 repeated N times

N packet store ID

unsigned integer fixed character-string

Figure 8-171 Suspend the open retrieval of packet stores

c. To suspend the open retrieval of all packet stores, N shall be set to 0.

8.15.2.14 TC[15,17] abort the by-time-range retrieval of packet
stores

a. Each telecommand packet transporting a request to abort the by-time-
range retrieval of packet stores shall be of message subtype 17.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.5.3.

b. For each telecommand packet transporting a request to abort the by-time-
range retrieval of packet stores, the application data field shall have the
structure specified in Figure 8-172.

 repeated N times

N packet store ID

unsigned integer fixed character-string

Figure 8-172 Abort the by-time-range retrieval of packet stores

544

ECSS-E-ST-70-41C
15 April 2016

c. To abort the by-time-range retrieval of all packet stores, N shall be set to
0.

8.15.2.15 TC[15,18] report the status of each packet store
a. Each telecommand packet transporting a request to report the status of

each packet store shall be of message subtype 18.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.6.

b. For each telecommand packet transporting a request to report the status
of each packet store, the application data field shall be omitted.

8.15.2.16 TM[15,19] packet store status report
a. Each telemetry packet transporting a packet store status report shall be of

message subtype 19.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.6.

b. For each telemetry packet transporting a packet store status report, the
source data field shall have the structure specified in Figure 8-173.

 repeated N times

N
packet store

ID
packet store

status

packet store
open

retrieval
status

packet store by-
time-range

retrieval status

unsigned integer
fixed

character-
string

enumerated enumerated enumerated

optional

Figure 8-173 Packet store status report

8.15.2.17 TC[15,20] create packet stores
a. Each telecommand packet transporting a request to create packet stores

shall be of message subtype 20.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.8.1.

545

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to create packet
stores, the application data field shall have the structure specified in
Figure 8-174.

 repeated N times

N
packet store

ID
packet store size

packet store
type

packet store
virtual channel

unsigned integer
fixed

character-
string

unsigned integer enumerated enumerated

optional

optional

Figure 8-174 Create packet stores

8.15.2.18 TC[15,21] delete packet stores
a. Each telecommand packet transporting a request to delete packet stores

shall be of message subtype 21.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.8.2.

b. For each telecommand packet transporting a request to delete packet
stores, the application data field shall have the structure specified in
Figure 8-175.

 repeated N times

N packet store ID

unsigned integer fixed character-string

Figure 8-175 Delete packet stores

c. To delete all packet stores, N shall be set to 0.

8.15.2.19 TC[15,22] report the configuration of each packet
store

a. Each telecommand packet transporting a request to report the
configuration of each packet store shall be of message subtype 22.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.8.3.

b. For each telecommand packet transporting a request to report the
configuration of each packet store, the application data field shall be
omitted.

546

ECSS-E-ST-70-41C
15 April 2016

8.15.2.20 TM[15,23] packet store configuration report
a. Each telemetry packet transporting a packet store configuration report

shall be of message subtype 23.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.8.3.

b. For each telemetry packet transporting a packet store configuration
report, the source data field shall have the structure specified in Figure
8-176.

 repeated N times

N
packet store

ID
packet store size

packet store
type

packet store
virtual channel

unsigned integer
fixed

character-
string

unsigned integer enumerated enumerated

optional

optional

Figure 8-176 Packet store configuration report

8.15.2.21 TC[15,24] copy the packets contained in a packet
store selected by time window

a. Each telecommand packet transporting a request to copy the packets
contained in a packet store selected by time window shall be of message
subtype 24.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.8.4.

b. For each telecommand packet transporting a request to copy the packets
contained in a packet store selected by time window, the application data
field shall have the structure specified in Figure 8-177.

time window from packet
store ID

to packet
store ID type time tag 1 time tag 2

enumerated
absolute

time
absolute

time

fixed
character-

string

fixed
character-

string

deduced
presence

deduced
presence

 Figure 8-177 Copy the packets contained in a packet store selected by
time window

8.15.2.22 TC[15,25] resize packet stores
a. Each telecommand packet transporting a request to resize packet stores

shall be of message subtype 25.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.9.1.

547

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to resize packet
stores, the application data field shall have the structure specified in
Figure 8-178.

 repeated N times

N packet store ID
packet store

size

unsigned integer
fixed character-

string unsigned integer

Figure 8-178 Resize packet stores

8.15.2.23 TC[15,26] change a packet store type to circular
a. Each telecommand packet transporting a request to change a packet store

type to circular shall be of message subtype 26.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.9.2.

b. For each telecommand packet transporting a request to change a packet
store type to circular, the application data field shall have the structure
specified in Figure 8-179.

packet store ID

fixed character-string

Figure 8-179 Change a packet store type to circular

8.15.2.24 TC[15,27] change a packet store type to bounded
a. Each telecommand packet transporting a request to change a packet store

type to bounded shall be of message subtype 27.
NOTE For the corresponding system requirements, refer

to clause 6.15.3.9.3.

b. For each telecommand packet transporting a request to change a packet
store type to bounded, the application data field shall have the structure
specified in Figure 8-180.

packet store ID

fixed character-string

Figure 8-180 Change a packet store type to bounded

8.15.2.25 TC[15,28] change the virtual channel used by a
packet store

a. Each telecommand packet transporting a request to change the virtual
channel used by a packet store shall be of message subtype 28.

NOTE For the corresponding system requirements, refer
to clause 6.15.3.9.4.

548

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to change the
virtual channel used by a packet store, the application data field shall
have the structure specified in Figure 8-181.

packet store ID
packet store virtual

channel

fixed character-string enumerated

Figure 8-181 Change the virtual channel used by a packet store

8.15.2.26 TC[15,29] add structure identifiers to the
housekeeping parameter report storage-control
configuration

a. Each telecommand packet transporting a request to add structure
identifiers to the housekeeping parameter report storage-control
configuration shall be of message subtype 29.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.5.1.

b. For each telecommand packet transporting a request to add structure
identifiers to the housekeeping parameter report storage-control
configuration, the application data field shall have the structure specified
in Figure 8-182.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2

housekeeping
parameter

report
structure ID

subsampling
rate

fixed character-
string

unsigned
integer enumerated

unsigned
integer enumerated unsigned integer

optional

optional

Figure 8-182 Add structure identifiers to the housekeeping parameter
report storage-control configuration

c. To add all structure identifiers to the housekeeping parameter report
storage-control configuration, N2 shall be set to 0.

8.15.2.27 TC[15,30] delete structure identifiers from the
housekeeping parameter report storage-control
configuration

a. Each telecommand packet transporting a request to delete structure
identifiers from the housekeeping parameter report storage-control
configuration shall be of message subtype 30.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.5.2.

549

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete structure
identifiers from the housekeeping parameter report storage-control
configuration, the application data field shall have the structure specified
in Figure 8-183.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2
housekeeping

parameter report
structure ID

fixed
character-

string

unsigned
integer

enumerated unsigned
integer

enumerated

optional

Figure 8-183 Delete structure identifiers from the housekeeping
parameter report storage-control configuration

c. To empty the housekeeping parameter report storage-control
configuration, N1 shall be set to 0.

d. To delete an application process from the housekeeping parameter report
storage-control configuration, N2 shall be set to 0.

8.15.2.28 TC[15,31] add structure identifiers to the diagnostic
parameter report storage-control configuration

a. Each telecommand packet transporting a request to add structure
identifiers to the diagnostic parameter report storage-control
configuration shall be of message subtype 31.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.6.1.

b. For each telecommand packet transporting a request to add structure
identifiers to the diagnostic parameter report storage-control
configuration, the application data field shall have the structure specified
in Figure 8-184.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2

diagnostic
parameter

report
structure ID

subsampling
rate

fixed character-
string

unsigned
integer enumerated

unsigned
integer enumerated unsigned integer

optional

optional

Figure 8-184 Add structure identifiers to the diagnostic parameter
report storage-control configuration

550

ECSS-E-ST-70-41C
15 April 2016

c. To add all structure identifiers to the diagnostic parameter report
storage-control configuration, N2 shall be set to 0.

8.15.2.29 TC[15,32] delete structure identifiers from the
diagnostic parameter report storage-control
configuration

a. Each telecommand packet transporting a request to delete structure
identifiers from the diagnostic parameter report storage-control
configuration shall be of message subtype 32.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.6.2.

b. For each telecommand packet transporting a request to delete structure
identifiers from the diagnostic parameter report storage-control
configuration, the application data field shall have the structure specified
in Figure 8-185.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2
diagnostic

parameter report
structure ID

fixed
character-

string

unsigned
integer

enumerated unsigned
integer

enumerated

optional

Figure 8-185 Delete structure identifiers from the diagnostic parameter
report storage-control configuration

c. To empty the diagnostic parameter report storage-control configuration,
N1 shall be set to 0.

d. To delete an application process from the diagnostic parameter report
storage-control configuration, N2 shall be set to 0.

8.15.2.30 TC[15,33] delete event definition identifiers from the
event report blocking storage-control configuration

a. Each telecommand packet transporting a request to delete event
definition identifiers from the event report blocking storage-control
configuration shall be of message subtype 33.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.7.2.

551

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete event
definition identifiers from the event report blocking storage-control
configuration, the application data field shall have the structure specified
in Figure 8-186.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2
event definition

ID

fixed
character-

string

unsigned
integer enumerated

unsigned
integer enumerated

optional

Figure 8-186 Delete event definition identifiers from the event report
blocking storage-control configuration

c. To empty empty the event report blocking storage-control configuration,
N1 shall be set to 0.

d. To delete an application process from the event report blocking storage-
control configuration, N2 shall be set to 0.

8.15.2.31 TC[15,34] add event definition identifiers to the
event report blocking storage-control configuration

a. Each telecommand packet transporting a request to add event definition
identifiers to the event report blocking storage-control configuration shall
be of message subtype 34.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.7.1.

b. For each telecommand packet transporting a request to add event
definition identifiers to the event report blocking storage-control
configuration, the application data field shall have the structure specified
in Figure 8-187.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2
event definition

ID

fixed
character-

string

unsigned
integer

enumerated unsigned
integer

enumerated

optional

Figure 8-187 Add event definition identifiers to the event report
blocking storage-control configuration

c. To add all event definition identifiers to the event report blocking
storage-control configuration, N2 shall be set to 0.

552

ECSS-E-ST-70-41C
15 April 2016

8.15.2.32 TC[15,35] report the content of the housekeeping
parameter report storage-control configuration

a. Each telecommand packet transporting a request to report the content of
the housekeeping parameter report storage-control configuration shall be
of message subtype 35.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.5.3.

b. For each telecommand packet transporting a request to report the content
of the housekeeping parameter report storage-control configuration, the
application data field shall have the structure specified in Figure 8-188.

packet store ID

fixed character-string

Figure 8-188 Report the content of the housekeeping parameter report
storage-control configuration

8.15.2.33 TM[15,36] housekeeping parameter report storage-
control configuration content report

a. Each telemetry packet transporting a housekeeping parameter report
storage-control configuration content report shall be of message subtype
36.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.5.3.

b. For each telemetry packet transporting a housekeeping parameter report
storage-control configuration content report, the source data field shall
have the structure specified in Figure 8-189.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2

housekeeping
parameter

report
structure ID

subsampling
rate

fixed character-
string

unsigned
integer enumerated

unsigned
integer enumerated unsigned integer

optional

optional

 Figure 8-189 Housekeeping parameter report storage-control
configuration content report

553

ECSS-E-ST-70-41C
15 April 2016

8.15.2.34 TC[15,37] report the content of the diagnostic
parameter report storage-control configuration

a. Each telecommand packet transporting a request to report the content of
the diagnostic parameter report storage-control configuration shall be of
message subtype 37.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.6.3.

b. For each telecommand packet transporting a request to report the content
of the diagnostic parameter report storage-control configuration, the
application data field shall have the structure specified in Figure 8-190.

packet store ID

fixed character-string

Figure 8-190 Report the content of the diagnostic parameter report
storage-control configuration

8.15.2.35 TM[15,38] diagnostic parameter report storage-
control configuration content report

a. Each telemetry packet transporting a diagnostic parameter report
storage-control configuration content report shall be of message subtype
38.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.6.3.

b. For each telemetry packet transporting a diagnostic parameter report
storage-control configuration content report, the source data field shall
have the structure specified in Figure 8-191.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2

diagnostic
parameter

report
structure ID

subsampling
rate

fixed character-
string

unsigned
integer enumerated

unsigned
integer enumerated unsigned integer

optional

optional

 Figure 8-191 Diagnostic parameter report storage-control
configuration content report

554

ECSS-E-ST-70-41C
15 April 2016

8.15.2.36 TC[15,39] report the content of the event report
blocking storage-control configuration

a. Each telecommand packet transporting a request to report the content of
the event report blocking storage-control configuration shall be of
message subtype 39.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.7.3.

b. For each telecommand packet transporting a request to report the content
of the event report blocking storage-control configuration, the application
data field shall have the structure specified in Figure 8-192.

packet store ID

fixed character-string

Figure 8-192 Report the content of the event report blocking storage-
control configuration

8.15.2.37 TM[15,40] event report blocking storage-control
configuration content report

a. Each telemetry packet transporting an event report blocking storage-
control configuration content report shall be of message subtype 40.

NOTE For the corresponding system requirements, refer
to clause 6.15.4.7.3.

b. For each telemetry packet transporting an event report blocking storage-
control configuration content report, the source data field shall have the
structure specified in Figure 8-193.

 repeated N1 times

 repeated N2 times

packet store
ID

N1
application
process ID

N2
event definition

ID

fixed
character-

string

unsigned
integer

enumerated
unsigned

integer
enumerated

optional

Figure 8-193 Event report blocking storage-control configuration
content report

555

ECSS-E-ST-70-41C
15 April 2016

8.15.3 Enumeration
a. The values of the packet store type shall be as specified in Table 8-14.

Table 8-14 Service 15 packet store type

engineering value raw value

"circular type" 0

"bounded type" 1

b. The values of the packet store time ranged retrieval status shall be as
specified in Table 8-15.

Table 8-15 Service 15 packet store time range retrieval status

engineering value raw value

"disabled" 0

"enabled" 1

c. The values of the packet store open retrieval status shall be as specified in
Table 8-16.

Table 8-16 Service 15 packet store open retrieval status

engineering value raw value

"suspended" 0

"in progress" 1

556

ECSS-E-ST-70-41C
15 April 2016

8.16 ST[16] (reserved)

557

ECSS-E-ST-70-41C
15 April 2016

8.17 ST[17] test

8.17.1 General
a. Each packet transporting a test message shall be of service type 17.

8.17.2 Requests and reports

8.17.2.1 TC[17,1] perform an are-you-alive connection test
a. Each telecommand packet transporting a request to perform an are-you-

alive connection test shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.17.3.

b. For each telecommand packet transporting a request to perform an are-
you-alive connection test, the application data field shall be omitted.

8.17.2.2 TM[17,2] are-you-alive connection test report
a. Each telemetry packet transporting an are-you-alive connection test

report shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.17.3.

b. For each telemetry packet transporting an are-you-alive connection test
report, the source data field shall be omitted.

8.17.2.3 TC[17,3] perform an on-board connection test
a. Each telecommand packet transporting a request to perform an on-board

connection test shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.17.4.2.

b. For each telecommand packet transporting a request to perform an on-
board connection test, the application data field shall have the structure
specified in Figure 8-194.

application process ID

enumerated

Figure 8-194 Perform an on-board connection test

558

ECSS-E-ST-70-41C
15 April 2016

8.17.2.4 TM[17,4] on-board connection test report
a. Each telemetry packet transporting an on-board connection test report

shall be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.17.4.2.

b. For each telemetry packet transporting an on-board connection test
report, the source data field shall have the structure specified in Figure
8-195.

application process ID

enumerated

Figure 8-195 On-board connection test report

559

ECSS-E-ST-70-41C
15 April 2016

8.18 ST[18] on-board control procedure

8.18.1 General
a. Each packet transporting an on-board control procedure message shall be

of service type 18.

8.18.2 Requests and reports

8.18.2.1 TC[18,1] direct-load an OBCP
a. Each telecommand packet transporting a request to direct-load an OBCP

shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.2.

b. For each telecommand packet transporting a request to direct-load an
OBCP, the application data field shall have the structure specified in
Figure 8-196.

OBCP ID
OBCP code

checksum
length data

fixed character-
string

variable octet-string
bit-string
(16 bits)

optional

NOTE The PFC of the length field of the OBCP code is
driven by requirement 7.3.8d.

Figure 8-196 Direct-load an OBCP

8.18.2.2 TC[18,2] unload an OBCP
a. Each telecommand packet transporting a request to unload an OBCP

shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.4.

b. For each telecommand packet transporting a request to unload an OBCP,
the application data field shall have the structure specified in Figure
8-197.

OBCP ID

fixed character-string

Figure 8-197 Unload an OBCP

560

ECSS-E-ST-70-41C
15 April 2016

8.18.2.3 TC[18,3] activate an OBCP
a. Each telecommand packet transporting a request to activate an OBCP

shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.5.

b. For each telecommand packet transporting a request to activate an OBCP,
the application data field shall have the structure specified in Figure
8-198.

OBCP ID observability level argument values

fixed character-
string enumerated deduced

optional

deduced presence

NOTE 1 For the observability level enumerated values, refer to
requirement 8.18.3.1b.

NOTE 2 The presence and structure of the argument values field
is driven by the definition of the OBCP indicated by the
OBCP ID.

Figure 8-198 Activate an OBCP

8.18.2.4 TC[18,4] stop an OBCP
a. Each telecommand packet transporting a request to stop an OBCP shall

be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.7.

b. For each telecommand packet transporting a request to stop an OBCP,
the application data field shall have the structure specified in Figure
8-199.

OBCP ID step ID

fixed character-
string enumerated

Figure 8-199 Stop an OBCP

c. To stop an OBCP at the end of current step, the step ID field shall be set
to 0.

8.18.2.5 TC[18,5] suspend an OBCP
a. Each telecommand packet transporting a request to suspend an OBCP

shall be of message subtype 5.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.6.1.

561

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to suspend an
OBCP, the application data field shall have the structure specified in
Figure 8-200.

OBCP ID step ID

fixed character-
string

enumerated

Figure 8-200 Suspend an OBCP

c. To suspend an OBCP at the end of current step, the step ID field shall be
set to 0.

8.18.2.6 TC[18,6] resume an OBCP
a. Each telecommand packet transporting a request to resume an OBCP

shall be of message subtype 6.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.6.2.

b. For each telecommand packet transporting a request to resume an OBCP,
the application data field shall have the structure specified in Figure
8-201.

OBCP ID

fixed character-string

Figure 8-201 Resume an OBCP

8.18.2.7 TC[18,7] communicate parameters to an OBCP
a. Each telecommand packet transporting a request to communicate

parameters to an OBCP shall be of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.7.1.

b. For each telecommand packet transporting a request to communicate
parameters to an OBCP, the application data field shall have the structure
specified in Figure 8-202.

OBCP ID argument values

fixed character-string deduced

NOTE The structure of the argument values
field is driven by the definition of the
OBCP indicated by the OBCP ID.

Figure 8-202 Communicate parameters to an OBCP

562

ECSS-E-ST-70-41C
15 April 2016

8.18.2.8 TC[18,8] report the execution status of each OBCP
a. Each telecommand packet transporting a request to report the execution

status of each OBCP shall be of message subtype 8.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.5.1.

b. For each telecommand packet transporting a request to report the
execution status of each OBCP, the application data field shall be
omitted.

8.18.2.9 TM[18,9] OBCP execution status report
a. Each telemetry packet transporting an OBCP execution status report shall

be of message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.5.1.

b. For each telemetry packet transporting an OBCP execution status report,
the source data field shall have the structure specified in Figure 8-203.

 repeated N times

N OBCP ID OBCP checksum
OBCP

execution
status

unsigned
integer

fixed character-
string

bit-string
(16 bits)

enumerated

optional

NOTE For the OBCP execution status enumerated values,
refer to requirement 8.18.3.1a.

Figure 8-203 OBCP execution status report

8.18.2.10 TC[18,12] abort an OBCP
a. Each telecommand packet transporting a request to abort an OBCP shall

be of message subtype 12.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.9.

b. For each telecommand packet transporting a request to abort an OBCP,
the application data field shall have the structure specified in Figure
8-204.

OBCP ID

fixed character-string

Figure 8-204 Abort an OBCP

563

ECSS-E-ST-70-41C
15 April 2016

8.18.2.11 TC[18,13] load an OBCP by reference
a. Each telecommand packet transporting a request to load an OBCP by

reference shall be of message subtype 13.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.3.

b. For each telecommand packet transporting a request to load an OBCP by
reference, the application data field shall have the structure specified in
Figure 8-205.

OBCP ID
file path

repository path file name

fixed character-string variable character-string
variable character-

string

optional

Figure 8-205 Load an OBCP by reference

8.18.2.12 TC[18,14] activate and execute one OBCP step
a. Each telecommand packet transporting a request to activate and execute

one OBCP step shall be of message subtype 14.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.6.3.

b. For each telecommand packet transporting a request to activate and
execute one OBCP step, the application data field shall have the structure
specified in Figure 8-206.

OBCP ID observability level argument values

fixed character-
string

enumerated deduced

optional

deduced presence

NOTE 1 For the observability level enumerated values,
refer to requirement 8.18.3.1b.

NOTE 2 The presence and structure of the argument
values field is driven by the definition of the
OBCP indicated by the OBCP ID.

Figure 8-206 Activate and execute one OBCP step

8.18.2.13 TC[18,15] resume and execute one OBCP step
a. Each telecommand packet transporting a request to resume and execute

one OBCP step shall be of message subtype 15.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.6.4.

564

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to resume and
execute one OBCP step, the application data field shall have the structure
specified in Figure 8-207.

OBCP ID

fixed character-string

Figure 8-207 Resume and execute one OBCP step

8.18.2.14 TC[18,16] set the observability level of OBCPs
a. Each telecommand packet transporting a request to set the observability

level of OBCPs shall be of message subtype 16.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.8.1.

b. For each telecommand packet transporting a request to set the
observability level of OBCPs, the application data field shall have the
structure specified in Figure 8-208.

 repeated N times

N OBCP ID
observability

level

unsigned integer fixed character-
string

enumerated

NOTE For the observability level enumerated
values, refer to requirement 8.18.3.1b.

Figure 8-208 Set the observability level of OBCPs

8.18.2.15 TC[18,17] abort all OBCPs and report
a. Each telecommand packet transporting a request to abort all OBCPs and

report shall be of message subtype 17.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.10.

b. For each telecommand packet transporting a request to abort all OBCPs
and report, the application data field shall be omitted.

8.18.2.16 TM[18,18] aborted OBCP report
a. Each telemetry packet transporting an aborted OBCP report shall be of

message subtype 18.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.10.

565

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting an aborted OBCP report, the
source data field shall have the structure specified in Figure 8-209.

 repeated N times

N OBCP ID

unsigned integer fixed character-string

Figure 8-209 Aborted OBCP report

8.18.2.17 TC[18,19] load by reference and activate an OBCP
a. Each telecommand packet transporting a request to load by reference and

activate an OBCP shall be of message subtype 19.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.6.

b. For each telecommand packet transporting a request to load by reference
and activate an OBCP, the application data field shall have the structure
specified in Figure 8-210.

OBCP ID
file path observability

level
argument

values repository path file name

fixed
character-

string

variable
character-string

variable
character-

string
enumerated deduced

optional

optional

deduced presence

NOTE 1 For the observability level enumerated values, refer to requirement
8.18.3.1b.

NOTE 2 The presence and structure of the argument values field is driven by
the definition of the OBCP indicated by the OBCP ID.

Figure 8-210 Load by reference and activate an OBCP

8.18.2.18 TC[18,20] stop and unload an OBCP
a. Each telecommand packet transporting a request to stop and unload an

OBCP shall be of message subtype 20.
NOTE For the corresponding system requirements, refer

to clause 6.18.4.4.8.

b. For each telecommand packet transporting a request to stop and unload
an OBCP, the application data field shall have the structure specified in
Figure 8-211.

OBCP ID step ID

fixed character-
string enumerated

Figure 8-211 Stop and unload an OBCP

c. To stop and unload an OBCP at the end of current step, the step ID field
shall be set to 0.

566

ECSS-E-ST-70-41C
15 April 2016

8.18.2.19 TC[18,21] start the OBCP engine
a. Each telecommand packet transporting a request to start the OBCP

engine shall be of message subtype 21.
NOTE For the corresponding system requirements, refer

to clause 6.18.5.1.1.

b. For each telecommand packet transporting a request to start the OBCP
engine, the application data field shall be omitted.

8.18.2.20 TC[18,22] stop the OBCP engine
a. Each telecommand packet transporting a request to stop the OBCP

engine shall be of message subtype 22.
NOTE For the corresponding system requirements, refer

to clause 6.18.5.1.2.

b. For each telecommand packet transporting a request to stop the OBCP
engine, the application data field shall be omitted.

8.18.3 Enumeration

8.18.3.1 OBCP management
a. The OBCP execution status values shall be as specified in Table 8-17.

Table 8-17 Service 18 OBCP execution status

engineering value raw value

"inactive" 0

"active and running" 1

"active and held" 2

b. The observability level values shall be as specified in Table 8-18.

Table 8-18 Service 18 Observability level

engineering value raw value

"no-observability" 0

"at-procedure-level" 1

"at-step-level" 2

"at-detailed-level" 3

NOTE For the meaning of the observability levels, refer to
clause 6.18.4.2.

567

ECSS-E-ST-70-41C
15 April 2016

8.19 ST[19] event-action

8.19.1 General
a. Each packet transporting an event-action message shall be of service type 19.

8.19.2 Requests and reports

8.19.2.1 TC[19,1] add event-action definitions
a. Each telecommand packet transporting a request to add event-action

definitions shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.19.8.1.

b. For each telecommand packet transporting a request to add event-action
definitions, the application data field shall have the structure specified in
Figure 8-212.

 repeated N times

N

event definition system ID

request application
process ID

event definition
ID

unsigned
integer enumerated enumerated TC packet

optional

Figure 8-212 Add event-action definitions

8.19.2.2 TC[19,2] delete event-action definitions
a. Each telecommand packet transporting a request to delete event-action

definitions shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.19.8.3.

568

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete event-
action definitions, the application data field shall have the structure
specified in Figure 8-213.

 repeated N times

N
event definition system ID

application
process ID

event definition
ID

unsigned
integer

enumerated enumerated

optional

Figure 8-213 Delete event-action definitions

8.19.2.3 TC[19,3] delete all event-action definitions
a. Each telecommand packet transporting a request to delete all event-

action definitions shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.19.8.4.

b. For each telecommand packet transporting a request to delete all event-
action definitions the application data field shall be omitted.

8.19.2.4 TC[19,4] enable event-action definitions
a. Each telecommand packet transporting a request to enable event-action

definitions shall be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.19.7.1.

b. For each telecommand packet transporting a request to enable event-
action definitions, the application data field shall have the structure
specified in Figure 8-214.

 repeated N times

N
event definition system ID

application
process ID

event definition
ID

unsigned
integer enumerated enumerated

optional

Figure 8-214 Enable event-action definitions

8.19.2.5 TC[19,5] disable event-action definitions
a. Each telecommand packet transporting a request to disable event-action

definitions shall be of message subtype 5.
NOTE For the corresponding system requirements, refer

to clause 6.19.7.2.

569

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to disable event-
action definitions, the application data field shall have the structure
specified in Figure 8-215.

 repeated N times

N
event definition system ID

application
process ID

event definition
ID

unsigned
integer

enumerated enumerated

optional

Figure 8-215 Disable event-action definitions

8.19.2.6 TC[19,6] report the status of each event-action
definition

a. Each telecommand packet transporting a request to report the status of
each event-action definition shall be of message subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.19.8.5.

b. For each telecommand packet transporting a request to report the status
of each event-action definition, the application data field shall be omitted.

8.19.2.7 TM[19,7] event-action status report
a. Each telemetry packet transporting an event-action status report shall be

of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.19.8.5.

b. For each telemetry packet transporting an event-action status report, the
source data field shall contain the structure specified in Figure 8-216.

 repeated N times

N

event definition system ID
event-action

status application
process ID

event definition
ID

unsigned
integer enumerated enumerated enumerated

optional

NOTE For the event-action status enumerated values,
refer to requirement 8.19.3b.

Figure 8-216 Event-action status report

570

ECSS-E-ST-70-41C
15 April 2016

8.19.2.8 TC[19,8] enable the event-action function
a. Each telecommand packet transporting a request to enable the event-

action function shall be of message subtype 8.
NOTE For the corresponding system requirements, refer

to clause 6.19.6.1.

b. For each telecommand packet transporting a request to enable the event-
action function, the application data field shall be omitted.

8.19.2.9 TC[19,9] disable the event-action function
a. Each telecommand packet transporting a request to disable the event-

action function shall be of message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.19.6.2.

b. For each telecommand packet transporting a request to disable the event-
action function, the application data field shall be omitted.

8.19.2.10 TC[19,10] report event-action definitions
a. Each telecommand packet transporting a request to report event-action

definitions shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.19.8.6.

b. For each telecommand packet transporting a request to report event-
action definitions, the application data field shall contain the structure
specified in Figure 8-217.

 repeated N times

N
event definition system ID

application
process ID

event definition
ID

unsigned
integer

enumerated enumerated

optional

Figure 8-217 Report event-action definitions

c. To report all event-action definitions, N shall be set to 0.

8.19.2.11 TM[19,11] event-action definition report
a. Each telemetry packet transporting an event-action status report shall be

of message subtype 11.
NOTE For the corresponding system requirements, refer

to clause 6.19.8.6.

571

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting an event-action status report, the
source data field shall contain the structure specified in Figure 8-218.

 repeated N times

N

event definition system ID
event-action

status
request application

process ID
event definition

ID

unsigned
integer

enumerated enumerated enumerated TC packet

optional

NOTE For the event-action status enumerated values, refer to
requirement 8.19.3b.

Figure 8-218 Event-action definition report

8.19.3 Enumeration
a. The values of the event-action function status shall be as specified in

Table 8-19.

Table 8-19 Service 19 event-action function status

engineering value raw value

"disabled" 0

"enabled" 1

b. The values of the event-action status shall be as specified in Table 8-20.

Table 8-20 Service 19 event-action status

engineering value raw value

"disabled" 0

"enabled" 1

572

ECSS-E-ST-70-41C
15 April 2016

8.20 ST[20] on-board parameter management

8.20.1 General
a. Each packet transporting a parameter management message shall be of

service type 20.

8.20.2 Requests and reports

8.20.2.1 TC[20,1] report parameter values
a. Each telecommand packet transporting a request to report parameter

values shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.20.4.1.

b. For each telecommand packet transporting a request to report parameter
values, the application data field shall have the structure specified in
Figure 8-219.

 repeated N times

N parameter ID

unsigned integer enumerated

Figure 8-219 Report parameter values

8.20.2.2 TM[20,2] parameter value report
a. Each telemetry packet transporting a parameter value report shall be of

message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.20.4.1.

b. For each telemetry packet transporting a parameter value report, the
source data field shall have the structure specified in Figure 8-220.

 repeated N times

N parameter ID value

unsigned integer enumerated deduced

NOTE The format of the value field is specific to
the parameter identified by the associated
parameter ID field.

Figure 8-220 Parameter value report

573

ECSS-E-ST-70-41C
15 April 2016

8.20.2.3 TC[20,3] set parameter values
a. Each telecommand packet transporting a request to set parameter values

shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.20.4.2.

b. For each telecommand packet transporting a request to set parameter
values, the application data field shall have the structure specified in
Figure 8-221.

 repeated N times

N parameter ID value

unsigned integer enumerated deduced

NOTE The format of the value field is specific to
the parameter identified by the associated
parameter ID field.

Figure 8-221 Set parameter values

8.20.2.4 TC[20,4] change raw memory parameter definitions
a. Each telecommand packet transporting a request to change raw memory

parameter definitions shall be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.20.5.2.

b. For each telecommand packet transporting a request to change raw
memory parameter definitions, the application data field shall have the
structure specified in Figure 8-222.

 repeated N times

N
parameter

ID
memory ID

absolute
address

PTC PFC

unsigned
integer

enumerated enumerated unsigned
integer

enumerated enumerated

optional

Figure 8-222 Change raw memory parameter definitions

8.20.2.5 TC[20,5] change object memory parameter
definitions

a. Each telecommand packet transporting a request to change object
memory parameter definitions shall be of message subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.20.5.3.

574

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to change object
memory parameter definitions, the application data field shall have the
structure specified in Figure 8-222.

repeated N times

N
parameter

ID
memory ID base offset PTC PFC

unsigned
integer

enumerated enumerated deduced unsigned
integer

enumerated enumerated

optional

Figure 8-223 Change object memory parameter definitions

8.20.2.6 TC[20,6] report parameter definitions
a. Each telecommand packet transporting a request to report parameter

definitions shall be of message subtype 6.
NOTE For the corresponding system requirements, refer

to clause 6.20.5.4.

b. For each telecommand packet transporting a request to report parameter
definitions, the application data field shall have the structure specified in
Figure 8-224.

 repeated N times

N parameter ID

unsigned integer enumerated

Figure 8-224 Report parameter definitions

8.20.2.7 TM[20,7] parameter definition report
a. Each telemetry packet transporting a parameter definition report shall be

of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.20.5.4.

b. For each telemetry packet transporting a parameter definition report, the
source data field shall have the structure specified in Figure 8-225.

 repeated N times

N parameter ID memory ID
addressing

scheme
addressing

scheme
dependent

address
(see below)

PTC PFC

unsigned
integer enumerated enumerated enumerated enumerated enumerated

optional

optional

NOTE For the addressing scheme enumerated values, refer to requirement 8.20.3a.

 Figure 8-225 Parameter definition report

575

ECSS-E-ST-70-41C
15 April 2016

c. For absolute address addressing scheme, the addressing scheme
dependent address field of the parameter definition report shall have the
structure specified in Figure 8-226.

absolute address

unsigned integer

Figure 8-226 Parameter definition report: absolute address addressing
scheme field

d. For base plus offset addressing scheme, the addressing scheme
dependent address field of the parameter definition report shall have the
structure specified in Figure 8-227.

base offset

deduced unsigned integer

Figure 8-227 Parameter definition report: base plus offset addressing
scheme field

8.20.3 Enumeration
a. The values of the addressing scheme shall be as specified in Table 8-21.

Table 8-21 Service 20 addressing scheme

engineering value raw value

"absolute addressing
scheme"

0

"base plus offset addressing
scheme"

1

576

ECSS-E-ST-70-41C
15 April 2016

8.21 ST[21] request sequencing

8.21.1 General
a. Each packet transporting a request sequencing message shall be of

service type 21.

8.21.2 Requests and reports

8.21.2.1 TC[21,1] direct-load a request sequence
a. Each telecommand packet transporting a request to direct-load a request

sequence shall be of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.21.5.2.

b. For each telecommand packet transporting a request to direct-load a
request sequence, the application data field shall have the structure
specified in Figure 8-228.

 repeated N times

request
sequence ID

N request delay

fixed character-
string

unsigned
integer TC packet relative time

Figure 8-228 Direct-load a request sequence

8.21.2.2 TC[21,2] load a request sequence by reference
a. Each telecommand packet transporting a request to load a request

sequence by reference shall be of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.21.5.3.

b. For each telecommand packet transporting a request to load a request
sequence by reference, the application data field shall have the structure
specified in Figure 8-229.

request sequence ID
file path

repository path file name

fixed character-string
variable character-

string
variable character-

string

optional

Figure 8-229 Load a request sequence by reference

577

ECSS-E-ST-70-41C
15 April 2016

8.21.2.3 TC[21,3] unload a request sequence
a. Each telecommand packet transporting a request to unload a request

sequence shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.21.5.4.

b. For each telecommand packet transporting a request to unload a request
sequence, the application data field shall have the structure specified in
Figure 8-230.

request sequence ID

fixed character-string

Figure 8-230 Unload a request sequence

8.21.2.4 TC[21,4] activate a request sequence
a. Each telecommand packet transporting a request to activate a request

sequence shall be of message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.21.5.5.

b. For each telecommand packet transporting a request to activate a request
sequence, the application data field shall have the structure specified in
Figure 8-231.

request sequence ID

fixed character-string

Figure 8-231 Activate a request sequence

8.21.2.5 TC[21,5] abort a request sequence
a. Each telecommand packet transporting a request to abort a request

sequence shall be of message subtype 5.
NOTE For the corresponding system requirements, refer

to clause 6.21.5.7.

b. For each telecommand packet transporting a request to abort a request
sequence, the application data field shall have the structure specified in
Figure 8-232.

request sequence ID

fixed character-string

Figure 8-232 Abort a request sequence

578

ECSS-E-ST-70-41C
15 April 2016

8.21.2.6 TC[21,6] report the execution status of each request
sequence

a. Each telecommand packet transporting a request to report the execution
status of each request sequence shall be of message subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.21.6.

b. For each telecommand packet transporting a request to report the
execution status of each request sequence, the application data field shall
be omitted.

8.21.2.7 TM[21,7] request sequence execution status report
a. Each telemetry packet transporting a request sequence execution status

report shall be of message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.21.6.

b. For each telemetry packet transporting a request sequence execution
status report, the source data field shall have the structure specified in
Figure 8-233.

 repeated N times

N
request

sequence ID
execution

status

unsigned integer fixed character-
string

enumerated

NOTE For the execution status enumerated
values, refer to requirement 8.21.3a.

Figure 8-233 Request sequence execution status report

8.21.2.8 TC[21,8] load by reference and activate a request
sequence

a. Each telecommand packet transporting a request to load by reference and
activate a request sequence shall be of message subtype 8.

NOTE For the corresponding system requirements, refer
to clause 6.21.5.6.

b. For each telecommand packet transporting a request to load by reference
and activate a request sequence, the application data field shall have the
structure specified in Figure 8-234.

request sequence ID
file path

repository path file name

fixed character-string
variable character-

string
variable character-

string

optional

Figure 8-234 Load by reference and activate a request sequence

579

ECSS-E-ST-70-41C
15 April 2016

8.21.2.9 TC[21,9] checksum a request sequence
a. Each telecommand packet transporting a request to checksum a request

sequence shall be of message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.21.7.

b. For each telecommand packet transporting a request to checksum a
request sequence, the application data field shall have the structure
specified in Figure 8-235.

request sequence ID

fixed character-string

Figure 8-235 Checksum a request sequence

8.21.2.10 TM[21,10] request sequence checksum report
a. Each telemetry packet transporting a request sequence checksum report

shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.21.7.

b. For each telemetry packet transporting a request sequence checksum
report, the source data field shall have the structure specified in Figure
8-236.

request sequence ID
calculated

checksum value

fixed character-string
bit-string
(16 bits)

Figure 8-236 Request sequence checksum report

8.21.2.11 TC[21,11] report the content of a request sequence
a. Each telecommand packet transporting a request to report the content of

a request sequence shall be of message subtype 11.
NOTE For the corresponding system requirements, refer

to clause 6.21.8.

b. For each telecommand packet transporting a request to report the content
of a request sequence, the application data field shall have the structure
specified in Figure 8-237.

request sequence ID

fixed character-string

Figure 8-237 Report the content of a request sequence

580

ECSS-E-ST-70-41C
15 April 2016

8.21.2.12 TM[21,12] request sequence content report
a. Each telemetry packet transporting a request sequence content report

shall be of message subtype 12.
NOTE For the corresponding system requirements, refer

to clause 6.21.8.

b. For each telemetry packet transporting a request sequence content report,
the source data field shall have the structure specified in Figure 8-238.

 repeated N times

request
sequence ID

N request delay

fixed character-
string

unsigned
integer

TC packet relative time

NOTE For the execution status enumerated values, refer to
requirement 8.21.3a.

 Figure 8-238 Request sequence content report

8.21.2.13 TC[21,13] abort all request sequences and report
a. Each telecommand packet transporting a request to abort all request

sequences and report shall be of message subtype 13.
NOTE For the corresponding system requirements, refer

to clause 6.21.5.8.

b. For each telecommand packet transporting a request to abort all request
sequences and report, the application data field shall be omitted.

8.21.2.14 TM[21,14] aborted request sequence report
a. Each telemetry packet transporting an aborted request sequence report

shall be of message subtype 14.
NOTE For the corresponding system requirements, refer

to clause 6.21.5.8.

b. For each telemetry packet transporting an aborted request sequence
report, the source data field shall have the structure specified in Figure
8-239.

 repeated N times

N request sequence ID

unsigned integer fixed character-string

Figure 8-239 Aborted request sequence report

581

ECSS-E-ST-70-41C
15 April 2016

8.21.3 Enumeration
a. The values of the request sequence execution status shall be as specified

in Table 8-22.

Table 8-22 Service 21 execution status of the request sequence

engineering value raw value

"inactive" 0

"under execution" 1

582

ECSS-E-ST-70-41C
15 April 2016

8.22 ST[22] position-based scheduling

8.22.1 General
a. Each packet transporting a position-based scheduling message shall be of

service type 22.

b. The structure and format of the fields that contain an orbit position shall
be declared when specifying the position-based scheduling subservice.

NOTE Refer to clause 6.22.4.

c. The structure and format of the fields that contain a delta position shall
be declared when specifying the position-based scheduling subservice.

NOTE Refer to clause 6.22.4.

8.22.2 Requests and reports

8.22.2.1 TC[22,1] enable the position-based schedule
execution function

a. Each telecommand packet transporting a request to enable the position-
based schedule execution function shall be of message subtype 1.

NOTE For the corresponding system requirements, refer
to clause 6.22.6.3.2.

b. For each telecommand packet transporting a request to enable the
position-based schedule execution function, the application data field shall
be omitted.

8.22.2.2 TC[22,2] disable the position-based schedule
execution function

a. Each telecommand packet transporting a request to disable the position-
based schedule execution function shall be of message subtype 2.

NOTE For the corresponding system requirements, refer
to clause 6.22.6.3.3.

b. For each telecommand packet transporting a request to disable the
position-based schedule execution function, the application data field
shall be omitted.

8.22.2.3 TC[22,3] reset the position-based schedule
a. Each telecommand packet transporting a request to reset the position-

based schedule shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.22.6.5.

583

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to reset the position-
based schedule, the application data field shall be omitted.

8.22.2.4 TC[22,4] insert activities into the position-based
schedule

a. Each telecommand packet transporting a request to insert activities into
the position-based schedule shall be of message subtype 4.

NOTE For the corresponding system requirements, refer
to clause 6.22.6.6.

b. For each telecommand packet transporting a request to insert activities
into the position-based schedule, the application data field shall have the
structure specified in Figure 8-240.

 repeated N times

sub-
schedule ID

N group ID
position

tag

activity
persistency

status

persistent activity
periodicity

request

enumerated unsigned
integer

enumerated deduced enumerated unsigned integer TC packet

deduced presence

optional

optional

optional

NOTE 1 The structure of the position tag field is driven by requirement 8.22.1b.
NOTE 2 For the activity persistency status enumerated values, refer to requirement 8.22.3d.

Figure 8-240 Insert activities into the position-based schedule

8.22.2.5 TC[22,5] delete position-based scheduled activities
identified by request identifier

a. Each telecommand packet transporting a request to delete position-based
scheduled activities identified by request identifier shall be of message
subtype 5.

NOTE For the corresponding system requirements, refer
to clause 6.22.11.2.

b. For each telecommand packet transporting a request to delete position-
based scheduled activities identified by request identifier, the application
data field shall have the structure specified in Figure 8-241.

 repeated N times

N
request ID

source ID
application
process ID

sequence count

unsigned
integer enumerated enumerated unsigned integer

Figure 8-241 Delete position-based scheduled activities identified by
request identifier

584

ECSS-E-ST-70-41C
15 April 2016

8.22.2.6 TC[22,6] delete the position-based scheduled
activities identified by a filter

a. Each telecommand packet transporting a request to delete the position-
based scheduled activities identified by a filter shall be of message
subtype 6.

NOTE For the corresponding system requirements, refer
to clause 6.22.12.3.

b. For each telecommand packet transporting a request to delete the
position-based scheduled activities identified by a filter, the application
data field shall have the structure specified in Figure 8-242.

 repeated N1 times

 repeated N2 times

position window
N1

sub-
schedule ID

N2 group ID
type tag 1 tag 2

enumerated deduced deduced unsigned
integer

enumerated unsigned
integer

enumerated

deduced
presence

deduced
presence

optional

optional

NOTE 1 For the type enumerated values, refer to requirement 8.22.3c.
NOTE 2 The structure of the position tag fields is driven by requirement 8.22.1b.

Figure 8-242 Delete the position-based scheduled activities identified
by a filter

8.22.2.7 TC[22,7] position-shift scheduled activities
identified by request identifier

a. Each telecommand packet transporting a request to position-shift
scheduled activities identified by request identifier shall be of message
subtype 7.

NOTE For the corresponding system requirements, refer
to clause 6.22.11.3.

b. For each telecommand packet transporting a request to position-shift
scheduled activities identified by request identifier, the application data
field shall have the structure specified in Figure 8-243.

 repeated N times

delta
position

N
request ID

source ID
application
process ID

sequence count

deduced
unsigned

integer enumerated enumerated unsigned integer

NOTE The structure and format of the delta position field are driven by
requirement 8.22.1c.

Figure 8-243 Position-shift scheduled activities identified by request
identifier

585

ECSS-E-ST-70-41C
15 April 2016

8.22.2.8 TC[22,8] position-shift the scheduled activities
identified by a filter

a. Each telecommand packet transporting a request to position-shift the
scheduled activities identified by a filter shall be of message subtype 8.

NOTE For the corresponding system requirements, refer
to clause 6.22.12.4.

b. For each telecommand packet transporting a request to position-shift the
scheduled activities identified by a filter, the application data field shall
have the structure specified in Figure 8-244.

 repeated N1 times

 repeated N2 times

delta
position

position window
N1

sub-
schedule ID

N2 group ID
type tag 1 tag 2

deduced enumerated deduced deduced
unsigned

integer
enumerated

unsigned
integer

enumerated

deduced
presence

deduced
presence

optional

optional

NOTE 1 The structure and format of the delta position field are driven by requirement 8.22.1c.
NOTE 2 For the type enumerated values, refer to requirement 8.22.3c.
NOTE 3 The structure of the position tag fields is driven by requirement 8.22.1b.

Figure 8-244 Position-shift the scheduled activities identified by a
filter

8.22.2.9 TC[22,9] detail-report position-based scheduled
activities identified by request identifier

a. Each telecommand packet transporting a request to detail-report
position-based scheduled activities identified by request identifier shall
be of message subtype 9.

NOTE For the corresponding system requirements, refer
to clause 6.22.11.5.

b. For each telecommand packet transporting a request to detail-report
position-based scheduled activities identified by request identifier, the
application data field shall have the structure specified in Figure 8-245.

 repeated N times

N
request ID

source ID
application
process ID

sequence count

unsigned
integer

enumerated enumerated unsigned integer

Figure 8-245 Detail-report position-based scheduled activities
identified by request identifier

586

ECSS-E-ST-70-41C
15 April 2016

8.22.2.10 TM[22,10] position-based schedule detail report
a. The telemetry packet transporting a position-based schedule detail report

shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.22.9.2.

b. For each telemetry packet transporting a position-based schedule detail
report, the source data field shall have the structure specified in Figure
8-246.

repeated N times

N
sub-

schedule
ID

group ID
position

tag

activity
persistency

status

persistent
activity

periodicity
request

enumerated enumerated enumerated deduced enumerated unsigned integer TC packet

deduced presence

optional

optional

optional

NOTE 1 The structure of the position tag field is driven by requirement 8.22.1b.
NOTE 2 For the activity persistency status enumerated values, refer to requirement 8.22.3d.

Figure 8-246 Position-based schedule detail report

8.22.2.11 TC[22,11] detail-report the position-based
scheduled activities identified by a filter

a. Each telecommand packet transporting a request to detail-report the
position-based scheduled activities identified by a filter shall be of
message subtype 11.

NOTE For the corresponding system requirements, refer
to clause 6.22.12.6.

b. For each telecommand packet transporting a request to detail-report the
position-based scheduled activities identified by a filter, the application
data field shall have the structure specified in Figure 8-247.

587

ECSS-E-ST-70-41C
15 April 2016

 repeated N1 times

 repeated N2 times

position window
N1

sub-
schedule ID

N2 group ID
type tag 1 tag 2

enumerated deduced deduced
unsigned

integer
enumerated

unsigned
integer

enumerated

 deduced
presence

deduced
presence

optional

optional

NOTE 1 For the type enumerated values, refer to requirement 8.22.3c.
NOTE 2 The structure of the position tag fields is driven by requirement 8.22.1b.

Figure 8-247 Detail-report the position-based scheduled activities
identified by a filter

8.22.2.12 TC[22,12] summary-report position-based
scheduled activities identified by request identifier

a. Each telecommand packet transporting a request to summary-report
position-based scheduled activities identified by request identifier shall
be of message subtype 12.

NOTE For the corresponding system requirements, refer
to clause 6.22.11.4.

b. For each telecommand packet transporting a request to summary-report
position-based scheduled activities identified by request identifier, the
application data field shall have the structure specified in Figure 8-248.

 repeated N times

N
request ID

source ID
application
process ID

sequence count

unsigned
integer

enumerated enumerated unsigned integer

Figure 8-248 Summary-report position-based scheduled activities
identified by request identifier

8.22.2.13 TM[22,13] position-based schedule summary report
a. The telemetry packet transporting a position-based schedule summary

report shall be of message subtype 13.
NOTE For the corresponding system requirements, refer

to clause 6.22.9.1.

588

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a position-based schedule
summary report, the source data field shall have the structure specified
in Figure 8-249.

Figure 8-249 Position-based schedule summary report

8.22.2.14 TC[22,14] summary-report the position-based
scheduled activities identified by a filter

a. Each telecommand packet transporting a request to summary-report the
position-based scheduled activities identified by a filter shall be of
message subtype 14.

NOTE For the corresponding system requirements, refer
to clause 6.22.12.5.

b. For each telecommand packet transporting a request to summary-report
the position-based scheduled activities identified by a filter, the
application data field shall have the structure specified in Figure 8-250.

 repeated N1 times

 repeated N2 times

position window
N1

sub-
schedule ID

N2 group ID
type tag 1 tag 2

enumerated deduced deduced unsigned
integer

enumerated unsigned
integer

enumerated

deduced
presence

deduced
presence

optional

optional

NOTE 1 For the type enumerated values, refer to requirement 8.22.3c.
NOTE 2 The structure of the position tag fields is driven by requirement 8.22.1b.

Figure 8-250 Summary-report the position-based scheduled activities
identified by a filter

 repeated N times

N
sub-schedule

ID group ID
position

tag
persistency

status

persistent
activity

periodicity

request ID

source ID application
process ID

sequence
count

unsigned
integer

enumerated enumerated deduced enumerated unsigned
integer

enumerated enumerated unsigned
integer

 deduced presence

 optional optional optional

NOTE 1 The structure of the position tag field is driven by requirement 8.22.1b.
NOTE 2 For the activity persistency status enumerated values, refer to requirement 8.22.3d.

589

ECSS-E-ST-70-41C
15 April 2016

8.22.2.15 TC[22,15] position-shift all scheduled activities
a. Each telecommand packet transporting a request to position-shift all

scheduled activities shall be of message subtype 15.
NOTE For the corresponding system requirements, refer

to clause 6.22.10.2.

b. For each telecommand packet transporting a request to position-shift all
scheduled activities, the application data field shall have the structure
specified in Figure 8-251.

delta position

deduced

NOTE The structure and format of the
delta position are driven
requirement 8.22.1c

Figure 8-251 Position-shift all scheduled activities

8.22.2.16 TC[22,16] detail-report all position-based scheduled
activities

a. Each telecommand packet transporting a request to detail-report all
position-based scheduled activities shall be of message subtype 16.

NOTE For the corresponding system requirements, refer
to clause 6.22.10.4.

b. For each telecommand packet transporting a request to detail-report all
position-based scheduled activities, the application data field shall be
omitted.

8.22.2.17 TC[22,17] summary-report all position-based
scheduled activities

a. Each telecommand packet transporting a request to summary-report all
position-based scheduled activities shall be of message subtype 17.

NOTE For the corresponding system requirements, refer
to clause 6.22.10.3.

b. For each telecommand packet transporting a request to summary-report
all position-based scheduled activities, the application data field shall be
omitted.

8.22.2.18 TC[22,18] report the status of each position-based
sub-schedule

a. Each telecommand packet transporting a request to report the status of
each position-based sub-schedule shall be of message subtype 18.

NOTE For the corresponding system requirements, refer
to clause 6.22.7.2.3.

590

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to report the status
of each position-based sub-schedule, the application data field shall be
omitted.

8.22.2.19 TM[22,19] position-based sub-schedule status
report

a. Each telemetry packet transporting a position-based sub-schedule status
report shall be of message subtype 19.

NOTE For the corresponding system requirements, refer
to clause 6.22.7.2.3.

b. For each telemetry packet transporting a position-based sub-schedule
status report, the source data field shall have the structure specified in
Figure 8-252.

 repeated N times

N sub-schedule ID
sub-schedule

status

unsigned integer enumerated enumerated

NOTE For the sub-schedule status values, refer to
requirement 8.22.3a.

Figure 8-252 Position-based sub-schedule status report

8.22.2.20 TC[22,20] enable position-based sub-schedules
a. Each telecommand packet transporting a request to enable position-

based sub-schedules shall be of message subtype 20.
NOTE For the corresponding system requirements, refer

to clause 6.22.7.2.1.

b. For each telecommand packet transporting a request to enable position-
based sub-schedules, the application data field shall have the structure
specified in Figure 8-253.

 repeated N times

N sub-schedule ID

unsigned integer enumerated

Figure 8-253 Enable position-based sub-schedules

c. To enable all position-based sub-schedules, N shall be set to 0.

8.22.2.21 TC[22,21] disable position-based sub-schedules
a. Each telecommand packet transporting a request to disable position-

based sub-schedules shall be of message subtype 21.
NOTE For the corresponding system requirements, refer

to clause 6.22.7.2.2.

591

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to disable position-
based sub-schedules, the application data field shall have the structure
specified in Figure 8-254.

 repeated N times

N sub-schedule ID

unsigned integer enumerated

Figure 8-254 Disable position-based sub-schedules

c. To disable all position-based sub-schedules, N shall be set to 0.

8.22.2.22 TC[22,22] create position-based scheduling groups
a. Each telecommand packet transporting a request to create position-based

scheduling groups shall be of message subtype 22.
NOTE For the corresponding system requirements, refer

to clause 6.22.8.2.1.

b. For each telecommand packet transporting a request to create position-
based scheduling groups, the application data field shall have the
structure specified in Figure 8-255.

 repeated N times

N group ID group status

unsigned integer enumerated enumerated

NOTE For the group status values, refer to
requirement 8.22.3b.

Figure 8-255 Create position-based scheduling groups

8.22.2.23 TC[22,23] delete position-based scheduling groups
a. Each telecommand packet transporting a request to delete position-based

scheduling groups shall be of message subtype 23.
NOTE For the corresponding system requirements, refer

to clause 6.22.8.2.2.

b. For each telecommand packet transporting a request to delete position-
based scheduling groups, the application data field shall have the
structure specified in Figure 8-256.

 repeated N times

N group ID

unsigned integer enumerated

Figure 8-256 Delete position-based scheduling groups

c. To delete all position-based scheduling groups, N shall be set to 0.

592

ECSS-E-ST-70-41C
15 April 2016

8.22.2.24 TC[22,24] enable position-based scheduling groups
a. Each telecommand packet transporting a request to enable position-

based scheduling groups shall be of message subtype 24.
NOTE For the corresponding system requirements, refer

to clause 6.22.8.3.1.

b. For each telecommand packet transporting a request to enable position-
based scheduling groups, the application data field shall have the
structure specified in Figure 8-257.

 repeated N times

N group ID

unsigned integer enumerated

Figure 8-257 Enable position-based scheduling groups

c. To enable all position-based scheduling groups, N shall be set to 0.

8.22.2.25 TC[22,25] disable position-based scheduling
groups

a. Each telecommand packet transporting a request to disable position-
based scheduling groups shall be of message subtype 25.

NOTE For the corresponding system requirements, refer
to clause 6.22.8.3.2.

b. For each telecommand packet transporting a request to disable position-
based scheduling groups, the application data field shall have the
structure specified in Figure 8-258.

 repeated N times

N group ID

unsigned integer enumerated

Figure 8-258 Disable position-based scheduling groups

c. To disable all position-based scheduling groups, N shall be set to 0.

8.22.2.26 TC[22,26] report the status of each position-based
scheduling group

a. Each telecommand packet transporting a request to report the status of
each position-based scheduling group shall be of message subtype 26.

NOTE For the corresponding system requirements, refer
to clause 6.22.8.3.3.

593

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to report the status
of each position-based scheduling group, the application data field shall
be omitted.

8.22.2.27 TM[22,27] position-based scheduling group status
report

a. Each telemetry packet transporting a position-based scheduling group
status report shall be of message subtype 27.

NOTE For the corresponding system requirements, refer
to clause 6.22.8.3.3.

b. For each telemetry packet transporting a position-based scheduling
group status report, the source data field shall have the structure
specified in Figure 8-259.

 repeated N times

N group ID group status

unsigned integer enumerated enumerated

NOTE For the group status enumerated values,
refer to requirement 8.22.3b.

Figure 8-259 Position-based scheduling group status report

8.22.2.28 TC[22,28] set the orbit number
a. Each telecommand packet transporting a request to set the orbit number

shall be of message subtype 28.
NOTE For the corresponding system requirements, refer

to clause 6.22.6.4.

b. For each telecommand packet transporting a request to set the orbit
number, the application data field shall have the structure specified in
Figure 8-260.

orbit number

unsigned integer

Figure 8-260 set the orbit number

8.22.3 Enumeration
a. The values of the sub-schedule status shall be as specified in Table 8-23.

594

ECSS-E-ST-70-41C
15 April 2016

Table 8-23 Service 22 sub-schedule status

engineering value raw value

"disabled" 0

"enabled" 1

b. The values of the group status shall be as specified in Table 8-24.

Table 8-24 Service 22 group status

engineering value raw value

"disabled" 0

"enabled" 1

c. The values of the position window type shall be as specified in Table
8-25.

Table 8-25 Service 22 position window type

engineering value raw value

"all" 0

"between 2 position tags" 1

"from position tag" 2

"to position tag" 3

d. The values of the activity persistency status shall be as specified in Table
8-26:

Table 8-26 Service 22 activity persistency status

engineering value raw value

"non-persistent" 0

"persistent" 1

595

ECSS-E-ST-70-41C
15 April 2016

8.23 ST[23] file management

8.23.1 General
a. Each packet transporting a file management message shall be of service

type 23.

8.23.2 Requests and reports

8.23.2.1 TC[23,1] create a file
a. Each telecommand packet transporting a request to create a file shall be

of message subtype 1.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.1.1.

b. For each telecommand packet transporting a request to create a file, the
application data field shall have the structure specified in Figure 8-261.

 repeated N times

file path
maximum

size
file locked

status
additional file

attributes repository path file name

variable character-
string

variable character-
string

unsigned
integer Boolean deduced

optional

optional

Figure 8-261 Create a file

c. If the size of the file to create is not bounded, the maximum size shall be
set to 0.

NOTE The concept of bounded file size is driven by
requirement 5.4.5c.

8.23.2.2 TC[23,2] delete a file
a. Each telecommand packet transporting a request to delete a file shall be

of message subtype 2.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.1.2.

596

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to delete a file, the
application data field shall have the structure specified in Figure 8-262.

file path

repository path file name

variable character-
string

variable character-
string

Figure 8-262 Delete a file

8.23.2.3 TC[23,3] report the attributes of a file
a. Each telecommand packet transporting a request to report the attributes

of a file shall be of message subtype 3.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.2.

b. For each telecommand packet transporting a request to report the
attributes of a file, the application data field shall have the structure
specified in Figure 8-263.

file path

repository path file name

variable character-
string

variable character-
string

Figure 8-263 Report the attributes of a file

8.23.2.4 TM[23,4] file attribute report
a. Each telemetry packet transporting a file attribute report shall be of

message subtype 4.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.2.

b. For each telemetry packet transporting a file attribute report, the source
data field shall have the structure specified in Figure 8-264.

 repeated N times

file path

file size
file locked

status
additional file

attributes repository path file name

variable character-
string

variable character-
string

unsigned
integer Boolean deduced

optional

optional

Figure 8-264 File attribute report

597

ECSS-E-ST-70-41C
15 April 2016

8.23.2.5 TC[23,5] lock a file
a. Each telecommand packet transporting a request to lock a file shall be of

message subtype 5.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.3.1.

b. For each telecommand packet transporting a request to lock a file, the
application data field shall have the structure specified in Figure 8-265.

file path

repository path file name

variable character-
string

variable character-
string

Figure 8-265 Lock a file

8.23.2.6 TC[23,6] unlock a file
a. Each telecommand packet transporting a request to unlock a file shall be

of message subtype 6.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.3.2.

b. For each telecommand packet transporting a request to unlock a file, the
application data field shall have the structure specified in Figure 8-266.

file path

repository path file name

variable character-
string

variable character-
string

Figure 8-266 Unlock a file

8.23.2.7 TC[23,7] find files
a. Each telecommand packet transporting a request to find files shall be of

message subtype 7.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.4.

b. For each telecommand packet transporting a request to find files, the
application data field shall have the structure specified in Figure 8-267.

repository path search pattern

variable character-
string

variable character-
string

Figure 8-267 Find files

598

ECSS-E-ST-70-41C
15 April 2016

8.23.2.8 TM[23,8] found files report
a. Each telemetry packet transporting a found files report shall be of

message subtype 8.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.4.

b. For each telemetry packet transporting a found files report, the source
data field shall have the structure specified in Figure 8-268.

 repeated N times

repository path search pattern N
matching file

path

variable character-
string

variable character-
string

unsigned
integer

variable character-
string

Figure 8-268 Found files report

8.23.2.9 TC[23,9] create a directory
a. Each telecommand packet transporting a request to create a directory

shall be of message subtype 9.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.5.1.

b. For each telecommand packet transporting a request to create a directory,
the application data field shall have the structure specified in Figure
8-269.

directory path

repository path directory name

variable character-
string

variable character-
string

Figure 8-269 Create a directory

8.23.2.10 TC[23,10] delete a directory
a. Each telecommand packet transporting a request to delete a directory

shall be of message subtype 10.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.5.2.

b. For each telecommand packet transporting a request to delete a directory,
the application data field shall have the structure specified in Figure
8-270.

599

ECSS-E-ST-70-41C
15 April 2016

directory path

repository path directory name

variable character-
string

variable character-
string

Figure 8-270 Delete a directory

8.23.2.11 TC[23,11] rename a directory
a. Each telecommand packet transporting a request to rename a directory

shall be of message subtype 11.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.5.3.

b. For each telecommand packet transporting a request to rename a
directory, the application data field shall have the structure specified in
Figure 8-271.

repository path
old directory

name
new directory

name

variable character-
string

variable character-
string

variable character-
string

Figure 8-271 Rename a directory

8.23.2.12 TC[23,12] summary-report the content of a
repository

a. Each telecommand packet transporting a request to summary-report the
content of a repository shall be of message subtype 12.

NOTE For the corresponding system requirements, refer
to clause 6.23.4.6.

b. For each telecommand packet transporting a request to summary-report
the content of a repository, the application data field shall have the
structure specified in Figure 8-272.

repository path

variable character-string

Figure 8-272 Summary-report the content of a repository

8.23.2.13 TM[23,13] repository content summary report
a. Each telemetry packet transporting a repository content summary report

shall be of message subtype 13.
NOTE For the corresponding system requirements, refer

to clause 6.23.4.6.

600

ECSS-E-ST-70-41C
15 April 2016

b. For each telemetry packet transporting a repository content summary
report, the source data field shall have the structure specified in Figure
8-273.

 repeated N times

repository path N object type object name

variable
character-string

unsigned
integer

enumerated variable
character-string

NOTE For the object type enumerated values, refer to
requirement 8.23.3b.

Figure 8-273 Repository content summary report

8.23.2.14 TC[23,14] copy a file
a. Each telecommand packet transporting a request to copy a file shall be of

message subtype 14.
NOTE For the corresponding system requirements, refer

to clause 6.23.5.2.2.

b. For each telecommand packet transporting a request to copy a file, the
application data field shall have the structure specified in Figure 8-274.

operation ID

source file path target file path

repository
path

file name
repository

path
file name

unsigned
integer

variable
character-string

variable
character-string

variable
character-string

variable
character-string

Figure 8-274 Copy a file

8.23.2.15 TC[23,15] move a file
a. Each telecommand packet transporting a request to move a file shall be

of message subtype 15.
NOTE For the corresponding system requirements, refer

to clause 6.23.5.2.3.

b. For each telecommand packet transporting a request to move a file, the
application data field shall have the structure specified in Figure 8-275.

operation ID

source file path target file path

repository
path

file name
repository

path
file name

unsigned
integer

variable
character-string

variable
character-string

variable
character-string

variable
character-string

Figure 8-275 Move a file

601

ECSS-E-ST-70-41C
15 April 2016

8.23.2.16 TC[23,16] suspend file copy operations
a. Each telecommand packet transporting a request to suspend file copy

operation shall be of message subtype 16.
NOTE For the corresponding system requirements, refer

to clause 6.23.5.3.1.

b. For each telecommand packet transporting a request to suspend file copy
operation, the application data field shall have the structure specified in
Figure 8-276.

 repeated N times

N operation ID

unsigned integer unsigned integer

Figure 8-276 Suspend file copy operation

8.23.2.17 TC[23,17] resume file copy operations
a. Each telecommand packet transporting a request to resume file copy

operation shall be of message subtype 17.
NOTE For the corresponding system requirements, refer

to clause 6.23.5.3.2.

b. For each telecommand packet transporting a request to resume file copy
operation, the application data field shall have the structure specified in
Figure 8-277.

 repeated N times

N operation ID

unsigned integer unsigned integer

Figure 8-277 Resume file copy operation

8.23.2.18 TC[23,18] abort file copy operations
a. Each telecommand packet transporting a request to abort file copy

operations shall be of message subtype 18.
NOTE For the corresponding system requirements, refer

to clause 6.23.5.4.1.

b. For each telecommand packet transporting a request to abort file copy
operations, the application data field shall have the structure specified in
Figure 8-278.

 repeated N times

N operation ID

unsigned integer unsigned integer

Figure 8-278 Abort file copy operations

602

ECSS-E-ST-70-41C
15 April 2016

8.23.2.19 TC[23,19] suspend all file copy operations involving
a repository path

a. Each telecommand packet transporting a request to suspend all file copy
operations involving a repository path shall be of message subtype 19.

NOTE For the corresponding system requirements, refer
to clause 6.23.5.3.3.

b. For each telecommand packet transporting a request to suspend all file
copy operations involving a repository path, the application data field
shall have the structure specified in Figure 8-279.

repository path

variable character-string

Figure 8-279 Suspend all file copy operations involving a repository
path

8.23.2.20 TC[23,20] resume all file copy operations involving
a repository path

a. Each telecommand packet transporting a request to resume all file copy
operations involving a repository path shall be of message subtype 20.

NOTE For the corresponding system requirements, refer
to clause 6.23.5.3.4.

b. For each telecommand packet transporting a request to resume all file
copy operations involving a repository path, the application data field
shall have the structure specified in Figure 8-280.

repository path

variable character-string

Figure 8-280 Resume all file copy operations involving a repository
path

8.23.2.21 TC[23,21] abort all file copy operations involving a
repository path

a. Each telecommand packet transporting a request to abort all file copy
operations involving a repository path shall be of message subtype 21.

NOTE For the corresponding system requirements, refer
to clause 6.23.5.4.2.

603

ECSS-E-ST-70-41C
15 April 2016

b. For each telecommand packet transporting a request to abort all file copy
operations involving a repository path, the application data field shall
have the structure specified in Figure 8-281.

repository path

variable character-string

Figure 8-281 Suspend all file copy operations involving a repository
path

8.23.2.22 TC[23,22] enable the periodic reporting of the file
copy status

a. Each telecommand packet transporting a request to enable the periodic
reporting of the file copy status shall be of message subtype 22.

NOTE For the corresponding system requirements, refer
to clause 6.23.5.5.2.

b. For each telecommand packet transporting a request to enable the
periodic reporting of the file copy status, the application data field shall
have the structure specified in Figure 8-282.

reporting interval

relative time

Figure 8-282 Enable the periodic reporting of the file copy status

8.23.2.23 TM[23,23] file copy status report
a. Each telemetry packet transporting a file copy status report shall be of

message subtype 23.
NOTE For the corresponding system requirements, refer

to clause 6.23.5.5.4.

b. For each telemetry packet transporting a file copy status report, the
source data field shall have the structure specified in Figure 8-283.

 repeated N2 times

N operation ID
operation

status
progress
indicator

unsigned
integer

unsigned
integer

enumerated unsigned integer

optional

Figure 8-283 File copy status report

604

ECSS-E-ST-70-41C
15 April 2016

8.23.2.24 TC[23,24] disable the periodic reporting of the file
copy status

a. Each telecommand packet transporting a request to disable the periodic
reporting of the file copy status shall be of message subtype 24.

NOTE For the corresponding system requirements, refer
to clause 6.23.5.5.3.

b. For each telecommand packet transporting a request to disable the
periodic reporting of the file copy status, the application data field shall
be omitted.

8.23.3 Enumeration
a. The values of the operation status shall be as specified in Table 8-27.

Table 8-27 Service 23 operation status

engineering value raw value

"pending" 0

"in progress" 1

b. The values of the object type shall be as specified in Table 8-28.

Table 8-28 Service 23 object type

engineering value raw value

"file" 0

"directory" 1

605

ECSS-E-ST-70-41C
15 April 2016

9
Command Pulse Distribution Unit

9.1 Scope
 A CPDU is a simple on-board unit designed to provide ground with direct

access to equipment. For example, such direct access is used during
contingency to reset an S-band transponder or a sensor.

 Each CPDU is logically handled as an on-board application process, i.e. there is
an application process identifier that represents that CPDU exclusively.

 Each CPDU can be:

• directly accessed from the ground by addressing:
− a virtual channel that logically links the ground to one or more

multiplexer access points (MAPs), and
− a multiplexer access point that is physically linked to that CPDU;

• indirectly accessed by use of an on-board application process that hosts a
device access subservice, refer to the request to distribute CPDU
commands specified in clause 6.2.6.2

 Each CPDU has a number of addressable outputs. A subset of these addressable
outputs are equipped with output lines that can be physically connected to an
equipment.

 Commanding a CPDU consists of issuing requests that contain CPDU
command pulse instructions, each one identifying the CPDU addressable
output and specifying the duration of the pulse to generate.

9.2 System requirements

9.2.1 CPDU
a. For each CPDU, the pulse duration unit used by that CPDU shall be

declared when specifying that CPDU.

b. Each pulse duration unit shall be greater than or equal to 10 ms, and less
than or equal to 15 ms.

c. The number of addressable outputs exposed by each CPDU shall be
declared when specifying that CPDU.

NOTE This Standard supports CPDUs that expose up to
212 addressable outputs. The CPDU suppliers can

606

ECSS-E-ST-70-41C
15 April 2016

equip a subset of the addressable outputs with
output lines. These equipped addressable outputs
are available for being physically connected.

d. Each CPDU addressable output shall be uniquely identified by an
enumerated value represented by an unsigned integer that is greater than
or equal to 0, and less than 212.

e. The list of CPDU addressable outputs that are equipped with output
lines shall be declared when specifying that CPDU.

NOTE These outputs are named "CPDU equipped
addressable outputs".

f. For each CPDU, the maximum number of command pulse instructions
contained within a CPDU request shall be declared when specifying that
CPDU.

NOTE The maximum number of command pulse
instructions is constrained by the size of the TC
segment, refer to ECSS-E-ST-50-04.

g. For each CPDU, the maximum number of command pulse instructions
contained within a CPDU request that is at least 12 and at most 504 shall
be declared when specifying that CPDU.

NOTE This maximum number of command pulse
instructions determines the maximum size of the
telecommand packet used to transport the related
CPDU request. That maximum telecommand packet
size is constrained by the maximum telecommand
segment size, refer to ECSS-E-ST-50-04.

9.2.2 Accessibility
a. The list of CPDUs available on-board shall be declared when specifying

the spacecraft architecture.

b. For each CPDU, the application process identifier used to refer to that
CPDU shall be declared when specifying the spacecraft architecture.

c. For each CPDU, the list of multiplexer access points physically linked to
that CPDU shall be declared when specifying the spacecraft architecture.

NOTE 1 The multiplexer access point identifier that equals
to 0 is usually associated to a CPDU connected to a
TC decoder without cross-coupling.

NOTE 2 See also clause 7.1.2.3.

d. For each CPDU and associated multiplexer access point, the virtual
channel that is used to carry the associated TC segments shall be declared
when specifying the spacecraft architecture.

NOTE 1 For TC segments, see ECSS-E-ST-50-04.
NOTE 2 The telecommand link to a CPDU is uniquely

identified by the combination of the virtual
channel identifier and the multiplexed access point
identifier.

607

ECSS-E-ST-70-41C
15 April 2016

e. Each CPDU equipped addressable output that is physically connected
shall be declared when specifying the spacecraft architecture.

NOTE These outputs are named "CPDU physically
connected outputs".

f. For each CPDU physically connected output, the minimum pulse
duration and the maximum pulse duration supported by that output
shall be declared when specifying the spacecraft architecture.

NOTE These minimum and maximum pulse durations
are constrained by the characteristic of the
equipment that is physically connected.

9.2.3 CPDU request
a. Each CPDU request shall contain one or more command pulse

instructions.

b. Each command pulse instruction shall contain:

1. the identifier of a CPDU physically connected output;

2. the duration exponential value used to calculate the duration of the
command pulse to emit on that output.
NOTE 1 For item 1, refer to requirements in clause 9.2.1.
NOTE 2 For item 2, the pulse duration unit is specified in

requirement 9.2.1a.

c. The duration exponential value in a command pulse instruction shall be
an unsigned integer greater than or equal to 0, and less than or equal to 7.

NOTE When the CPDU executes a command pulse
instruction, it generates a pulse on the specified
output line of a duration equal to:

Pulse duration unit of that CPDU × 2duration exponential value

9.3 Interface requirements

9.3.1 CPDU request
a. Each telecommand packet transporting a CPDU request shall be a CCSDS

space packet that contains:
1. a packet primary header with:

(a) a packet version number set to 0,
(b) a packet type set to 1,
(c) a secondary header flag set to 0,
(d) the application process identifier of the CPDU addressed by

that request,
(e) the 2 bits of the sequence flags set to "11",
(f) the packet sequence count or packet name set to 0,
(g) the packet data length of the telecommand packet;

608

ECSS-E-ST-70-41C
15 April 2016

2. a packet data field with:
(a) no packet secondary header,
(b) an application data field,
(c) no spare field,
(d) a packet error control field that is a 16-bit CRC identical to

the one used in the frame error control field of the
telecommand protocol of the space data link.

NOTE 1 The structure of the CCSDS space packet is
described in clause 7.4.

NOTE 2 For item 2(d), for the frame error control field of
the telecommand protocol of the space data link,
refer to ECSS-E-ST-50-04.

b. For each telecommand packet transporting a CPDU request, the
application data field shall have the structure specified in Figure 9-1.

repeated n times
with 1 ≤ 𝑁𝑁 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑚𝑚𝑛𝑛𝑖𝑖𝑡𝑡𝑛𝑛𝑚𝑚𝑖𝑖𝑡𝑡𝑚𝑚𝑡𝑡𝑛𝑛𝑖𝑖

output line ID reserved
duration

exponential value

enumerated
(12 bits)

bit-string
(1 bit)

enumerated
(3 bits)

NOTE The CPDU maximum number of
instructions is defined in requirement
9.2.1g.

Figure 9-1 CPDU request

609

ECSS-E-ST-70-41C
15 April 2016

Annex A (informative)
IEEE and MIL-STD real formats

A.1 IEEE standard format

A.1.1 General
 The important features of the IEEE standard simple precision and double

precision formats (refer to "IEEE 754 Standard for binary floating-point
arithmetic" (Reference [7]) are provided below.

 Each format permits the representation of the numerical values of the form:
 (−1)𝑆𝑆 × 2𝐸𝐸 × (𝑛𝑛0 ∙ 𝑛𝑛1𝑛𝑛2. . . 𝑛𝑛𝑝𝑝−1)

 where:

• 𝑛𝑛0 ∙ 𝑛𝑛1𝑛𝑛2. 𝑛𝑛𝑝𝑝−1 means 𝑏𝑏0
20

+ 𝑏𝑏1
21

+ 𝑏𝑏2
22

+. . . + 𝑏𝑏𝑝𝑝−1
2𝑝𝑝−1

• 𝑆𝑆 = 0 𝑡𝑡𝑛𝑛 1

• 𝐸𝐸 = any integer between 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 , inclusive

• 𝑛𝑛𝑚𝑚 = 0 𝑡𝑡𝑛𝑛 1

• 𝑝𝑝 = number of significant bits (precision)

 Each format also permits the representation of two infinities, +∞ and −∞ and
special values which are not numbers. For both formats, the encoding of the
real number values use 3 fields as follows:

• the sign field, on 1 bit, that states whether:
− the value is positive, i.e. sign = 0, or
− the value is negative, i.e. sign = 1;

• the exponent field:
− on 8 bits for single-precision real values, or
− on 11 bits for double-precision real values

• the fraction field, i.e. a bit-string containing the value ∙ 𝑛𝑛1𝑛𝑛2. . . 𝑛𝑛𝑝𝑝−1 with:

− 𝑝𝑝 = 24 for single-precision real values, or
− 𝑝𝑝 = 53 for double-precision real values.

610

ECSS-E-ST-70-41C
15 April 2016

A.1.2 Single-precision
 The encoded value of a single-precision real parameter has the structure

defined in Figure A-1 .

sign exponent fraction

1 bit 8 bits 23 bits

Single-precision real encoded value structure Figure A-1
 The encoded value structure of a single-precision real parameter provides the

capability to represent the values reported in Table A-1 .

Table A-1 Single-precision real parameter encoded values

 value

if exponent = 255 and fraction <> 0 not a number

if exponent = 255 and fraction = 0 (−1)𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 × ∞

if 0 < exponent < 255 (−1)𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 × 2𝑒𝑒𝑚𝑚𝑝𝑝𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒−127 × (1, 𝑜𝑜𝑛𝑛𝑚𝑚𝑖𝑖𝑡𝑡𝑚𝑚𝑡𝑡𝑛𝑛)

if exponent = 0 and fraction <> 0 (−1)𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 × 2−126 × (0,𝑜𝑜𝑛𝑛𝑚𝑚𝑖𝑖𝑡𝑡𝑚𝑚𝑡𝑡𝑛𝑛)

if exponent = 0 and fraction = 0 0

 In the cases where 𝐸𝐸𝑚𝑚𝑝𝑝𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 = 0 and 𝐹𝐹𝑛𝑛𝑚𝑚𝑖𝑖𝑡𝑡𝑚𝑚𝑡𝑡𝑛𝑛 <> 0, the values are said to be
denormalized.

 The range of possible values and precision for a simple-precision real parameter
are as follows:

 1,12 × 10−38 ≤ |𝑣𝑣𝑚𝑚𝑣𝑣𝑚𝑚𝑛𝑛| ≤ 3,40 × 1038(𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑡𝑡𝑛𝑛 1,15 × 10−7)

A.1.3 Double-precision
 The encoded value of a double-precision real parameter has the structure

defined in Figure A-2 .

sign exponent fraction

1 bit 11 bits 52 bits

Double-precision real parameter encoded value structure Figure A-2
 The encoded value structure of a double-precision real parameter provides the

capability to represent the values reported in Table A-2 .

611

ECSS-E-ST-70-41C
15 April 2016

Table A-2 Double-precision real parameter encoded values

 value

if exponent = 2 047 and fraction <>
0

not a number

if exponent = 2 047 and fraction = 0 (−1)𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 × ∞

if 0 < exponent < 2 047 (−1)𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 × 2𝑒𝑒𝑚𝑚𝑝𝑝𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒−1023 × (1,𝑜𝑜𝑛𝑛𝑚𝑚𝑖𝑖𝑡𝑡𝑚𝑚𝑡𝑡𝑛𝑛)

if exponent = 0 and fraction <> 0 (−1)𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 × 2−1022 × (0,𝑜𝑜𝑛𝑛𝑚𝑚𝑖𝑖𝑡𝑡𝑚𝑚𝑡𝑡𝑛𝑛)

if exponent = 0 and fraction = 0 0

 In the cases where 𝐸𝐸𝑚𝑚𝑝𝑝𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 = 0 and 𝐹𝐹𝑛𝑛𝑚𝑚𝑖𝑖𝑡𝑡𝑚𝑚𝑡𝑡𝑛𝑛 <> 0, the values are said to be
denormalized.

 The range of possible values and precision for a double-precision real
parameter are as follows:

 2,22 × 10−308 ≤ |𝑣𝑣𝑚𝑚𝑣𝑣𝑚𝑚𝑛𝑛| ≤ 1,79 × 10308(𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑡𝑡𝑛𝑛 2,22 × 10−16)

612

ECSS-E-ST-70-41C
15 April 2016

A.2 United States Air Force military standard format

A.2.1 General
 The important features of the United States Air Force military standard single-

precision floating-point data and extended-precision floating-point data
formats (refer to "Military Standard Sixteen-Bit Computer Instruction Set
Architecture" MIL-STD-1750a, 2nd July 1980 (Reference [8]) are provided below.

 Floating-point numbers are represented as a fractional mantissa times 2 raised
to the power of the exponent. All floating-point numbers are assumed
normalized or floating-point zero at the beginning of a floating-point operation
and the results of all floating-point operations are normalized (a normalized
floating-point number has the sign of the mantissa and the next bit of opposite
value) or floating-point zero. A floating-point zero is defined as 0000 000016,
that is, a zero mantissa and a zero exponent (0016). An extended floating-point
zero is defined as 0000 0000 000016, that is, a zero mantissa and a zero
exponent.

 For both floating-point and extended floating-point numbers, an overflow is
defined as an exponent overflow and an underflow is defined as an exponent
underflow.

A.2.2 Simple-precision
 As shown in Figure A-3 , simple-precision floating-point data are represented

as a 32-bit quantity consisting of a 24-bit 2’s complement mantissa and an 8-bit
2/s complement exponent.

MSB LSB MSB LSB

sign mantissa exponent
0 1 23 24 31

Single-precision floating-point data structure Figure A-3
 Some examples of the machine representation for 32-bit floating-point numbers

are provided in Table A-3 .

Table A-3 Some examples of 32-bit floating-point numbers
decimal number hexadecimal notation

0,999 999 8 × 2127 7FFF FFFF

0,5 × 2127 4000 007F

0,625 × 24 5000 0004

0,5 × 21 4000 0001

0,5 × 20 4000 0000

0,5 × 2−1 4000 00FF

0,5 × 2−128 4000 0080

613

ECSS-E-ST-70-41C
15 April 2016

decimal number hexadecimal notation

0,0 × 20 0000 0000

−1,0 × 20 8000 0000

−0,500 000 1 × 2−128 BFFF FF80

−0,750 000 1 × 24 9FFF FF04

A.2.3 Extended
 As shown in Figure A-4 , extended floating-point data are represented as a

48-bit quantity consisting of a 40-bit 2’s complement mantissa and an 8-bit 2’s
complement exponent. The exponent bits 24 to 31 lie between the split mantissa
bits 0 to 23 and bits 32 to 47. The most significant bit of the mantissa is the sign
bit 0, and the least significant bit of the mantissa is bit 47.

(sign) mantissa MSB exponent mantissa LSB
0 1 23 24 31 32 47

extended floating-point data structure Figure A-4
 Some examples of the machine representation of 48-bit extended floating-point

numbers are provided in Table A-4 .

Table A-4 Some examples of 48-bit extended floating-point numbers
Decimal Number Mantissa (MSB) Exp Mantissa (LSB)

0,5 × 2127 400000 7F 0000

0,5 × 20 400000 00 0000

0,5 × 2−1 400000 FF 0000

0,5 × 2−128 400000 80 0000

−1,5 × 2127 800000 7F 0000

−1,0 × 20 800000 00 0000

−1,0 × 2−1 800000 FF 0000

−1,0 × 2−128 800000 80 0000

0,0 × 20 000000 00 0000

−0,75 × 2−1 A00000 FF 0000

614

ECSS-E-ST-70-41C
15 April 2016

Annex B (informative)
CRC and ISO checksum

B.1 The cyclic redundancy code (CRC)

B.1.1 General
 The packet error control field provides the capability for detecting data

corruption introduced into a telemetry packet or a telecommand packet by the
lower layers during the transmission, intermediate processing or storage of the
packet. The Cyclic Redundancy Code (CRC), also known as the cyclic
redundancy check, is an error detecting algorithm that uses the polynomial
division to determine the value of the packet error control field.

 The encoding/decoding procedure, which is described in detail in the following
clauses, produces a 16-bit Packet Check Sequence (PCS) that is placed in the
packet error control field. The algorithm used is also known under the name
CRC-16-CCITT (See ITU-T V.41). The basic idea behind the CRC-16-CCITT is to
treat the entire data packet proper as a binary number, which both the sender
and receiver divide using the same divisor. The quotient is discarded. The
remainder forms the 16-bit PCS that is placed in the packet error control field.
The CRC-16-CCITT uses the following generator polynomial (G):

G(x) = x16 + x12 + x5 + 1

 where the + represents the module 2 addition operator. That is, the polynomial
expression is manipulated using modulo 2.

 In the algorithm used, both encoder and decoder are initialized to the "all-ones"
state for each packet.

 The PCS generation is performed over the data that covers the entire packet
including the packet header but excluding the packet error control field.

 The error detection properties of the CRC can be expressed as follows:

 The proportion of all errors in the data that are not detected is approximately
1,53 × 10-5.

 An error in the data affecting an odd number of bits is always detected.

 An error in the data affecting exactly two bits, no more than 65 535 bits apart, is
always detected.

 If an error in the data affects an even number of bits (greater than or equal to 4),
the probability that the error is not detected is approximately 3 × 10-5 for a data
length of 4 096 octets. The probability increases slightly for larger data lengths
and decreases slightly for smaller data lengths.

615

ECSS-E-ST-70-41C
15 April 2016

 A single error burst spanning 16 bits or less of the data is always detected. Not
all intermediate bits in the error burst span need be affected.

 This code is intended only for error detection purposes and no attempt should
be made to utilize it for correction.

B.1.2 Symbols and conventions
 The symbols and conventions defined in Table B-1 are used.

Table B-1 CRC symbols and conventions
symbol meaning

n The number of bits in the data packet proper.

M(x) The (n-16)-bit message to be encoded, expressed as a
polynomial with binary coefficients.

L(x) The pre-setting polynomial. This pre-setting
polynomial is given by:

𝐿𝐿(𝑚𝑚) = � x𝑚𝑚
15

𝑚𝑚=0

G(x) The generating polynomial given by:
𝐺𝐺(𝑚𝑚) = 𝑚𝑚16 + 𝑚𝑚12 + 𝑚𝑚5 + 1

+ The modulo 2 addition operator (exclusive-or)

𝑪𝑪∗(𝒙𝒙) The received block in polynomial form.

S(x) The syndrome polynomial, which is zero if no error
has been detected.

B.1.3 Encoding procedure
 The encoding procedure accepts the (n-16)-bits message and generates a 16-bit-

Packet Check Sequence (PCS) as follows:

𝐶𝐶𝐶𝐶𝑆𝑆 = (𝑚𝑚16 × 𝑀𝑀(𝑚𝑚) + 𝑚𝑚𝑚𝑚−16 × 𝐿𝐿(𝑚𝑚)) 𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑣𝑣𝑡𝑡 𝐺𝐺(𝑚𝑚)

 The encoding procedure differs from that of a conventional cyclic block
encoding operation in that the 𝑚𝑚𝑚𝑚−16 × 𝐿𝐿(𝑚𝑚)term has the effect of pre-setting the
shift register to an "all ones" state (rather than a conventional all zeros state)
prior to encoding.

B.1.4 Decoding procedure
 The error detection syndrome, S(x) is given by:

𝑆𝑆(𝑚𝑚) = �𝑚𝑚16 × 𝐶𝐶∗(𝑚𝑚) + 𝑚𝑚𝑚𝑚 × 𝐿𝐿(𝑚𝑚)� 𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑣𝑣𝑡𝑡 𝐺𝐺(𝑚𝑚)

 If S(x) = 0 then no error is detected.

616

ECSS-E-ST-70-41C
15 April 2016

B.1.5 Verification of compliance
 The binary sequences defined in Table B-2 are provided to the designers of

packet systems as samples for early testing, so that they can verify the
correctness of their CRC error detection implementation.

 All data are given in hexadecimal notation. For a given field (data or CRC) the
leftmost hexadecimal character contains the most significant bit.

Table B-2 Verification of CRC compliance
data CRC

00 00 1D 0F

00 00 00 CC 9C

AB CD EF 01 04 A2

14 56 F8 9A 00 01 7F D5

B.1.6 Software implementation
 CRC codes are particularly efficient when it comes to hardware

implementation. Software implementation, on the other hand, is very complex.
Two CRC calculation examples are implemented in the algorithm below, i.e.:

• a non-optimized calculation, the CRC function that calculates the CRC
for one byte in serial fashion and returns the value of the calculated CRC
checksum.

• an optimized function (approximately ten times faster than the non-
optimised CRC function), the Crc_opt function that generates the CRC
for one byte and returns the value of the new syndrome.

#include <stdio.h>
#include <stdint.h>
#define ERROR_DETECTED 0
#define NO_ERROR_DETECTED 1
/* Look-up table, only required for optimized CRC version */
uint16_t LTbl[256];
/* Unoptimized CRC version */
/* One step unoptimized CRC */
uint16_t Crc(Data, Syndrome)
 uint8_t Data; /* Byte to be encoded */
 uint16_t Syndrome; /* Original CRC syndrome */
{
 uint8_t icrc; /* Loop index */
 for (icrc = 0; icrc < 8; icrc++) {
 if ((Data & 0x80) ^ ((Syndrome & 0x8000) >> 8)) {
 Syndrome = ((Syndrome << 1) ^ 0x1021) & 0xFFFF;
 } else {
 Syndrome = (Syndrome << 1) & 0xFFFF;
 }
 Data = Data << 1;
 }
 return (Syndrome);
}
/* Encoding procedure */
/* NOTE: Assumption is that enough memory has been allocated for byte */
/* stream B to allow for generation of the checksum value. */

617

ECSS-E-ST-70-41C
15 April 2016

/* The two checksum octets are placed in the destination field */
/* (as Nth and Nth + 1 octet of byte stream B). */
/* The destination field is also known as the packet error */
/* control field. */
void crc_encode(B, octets)
 uint8_t* B; /* Buffer */
 uint32_t octets; /* Size of the buffer */
{
 uint32_t index; /* Loop index */
 uint32_t Chk; /* CRC syndrome */
 Chk = 0xFFFF; /* Reset syndrome to all ones */
 for (index = 0; index < octets; index++)
 Chk = Crc (B[index], Chk); /* Unoptimized CRC */
 B[octets + 1] = Chk & 0xff;
 B[octets] = (Chk >> 8) & 0xff;
}
/* Optimized CRC version */
/* Look-up table initialization */
void InitLtbl(table)
 uint16_t table[]; /* Table to initialise */
{
 uint16_t itable; /* Loop index */
 uint16_t tmp; /* Temporary value */
 for (itable = 0; itable < 256; itable++) {
 tmp = 0;
 if ((itable & 1) != 0) tmp = tmp ^ 0x1021;
 if ((itable & 2) != 0) tmp = tmp ^ 0x2042;
 if ((itable & 4) != 0) tmp = tmp ^ 0x4084;
 if ((itable & 8) != 0) tmp = tmp ^ 0x8108;
 if ((itable & 16) != 0) tmp = tmp ^ 0x1231;
 if ((itable & 32) != 0) tmp = tmp ^ 0x2462;
 if ((itable & 64) != 0) tmp = tmp ^ 0x48C4;
 if ((itable & 128) != 0) tmp = tmp ^ 0x9188;
 table[itable] = tmp;
 }
}
/* One step optimized CRC */
uint16_t Crc_opt(D, Chk, table)
 uint8_t D; /* Byte to be encoded */
 uint16_t Chk; /* Syndrome */
 uint16_t table[]; /* Look-up table */
{
 return (((Chk << 8) & 0xFF00) ^ table[(((Chk >> 8) ^ D) & 0x00FF)]);
}
/* Encoding optimized procedure */
/* NOTE: Assumption is that enough memory has been allocated for byte */
/* stream B to allow for generation of the checksum value. */
/* The two checksum octets are placed in the destination field */
/* (as Nth and Nth + 1 octet of byte stream B). */
/* The destination field is also known as the packet error */
/* control field. */
void crc_encode_opt(B, octets)
 uint8_t* B; /* Buffer */
 uint32_t octets; /* Size of the buffer */
{
 uint32_t index; /* Loop index */
 uint32_t Chk; /* CRC syndrome */
 Chk = 0xFFFF; /* Reset syndrome to all ones */
 for (index = 0; index < octets; index++)
 {
 Chk = Crc_opt (B[index], Chk, LTbl); /* Optimized CRC */
 }

618

ECSS-E-ST-70-41C
15 April 2016

 B[octets + 1] = Chk & 0xff;
 B[octets] = (Chk >> 8) & 0xff;
}
/* Decoding function using unoptimized CRC version */
uint8_t crc_decode(B, octets)
 uint8_t* B; /* Buffer to be checked */
 uint32_t octets; /* Length of the buffer inclduing the crc */
{
 /* Decoding procedure */
 /* The error detection syndrome, S(x) is given by: */
 /* S(x)=(x^16 * C¤(x) + x^n * L(x)) modulo G(x) */
 /* If S(x) = 0 then no error is detected. */

 uint32_t index; /* Loop index */
 uint8_t result; /* Result of the decoding */
 uint16_t Chk; /* CRC syndrome */
 Chk = 0xFFFF; /* Reset syndrome to all ones */
 for (index = 0; index < octets; index++) {
 Chk = Crc (B[index], Chk); /* Unoptimized CRC */
 }
 if (Chk == 0)
 result = NO_ERROR_DETECTED;
 else
 result = ERROR_DETECTED;
 return result;
}
/* Print a buffer in hexadecimal format */
static void print_buffer(B, octets, method)
 uint8_t* B; /* Buffer to display */
 uint32_t octets; /* Length of the buffer in bytes */
 char* method; /* Method's string */
{
 uint32_t index; /* Loop index */
 printf ("%sCRC - Data field with calculated CRC checksum is: ", method);
 for (index = 0; index < octets; index++)
 printf ("%02X ", B[index]);
}
/* Display the message related to the result of a decoding of the buffer */
static void print_status(result)
 uint8_t result; /* Result, should be ERROR_DETECTED or NO_ERROR_DETECTED */
{
 if (result == ERROR_DETECTED)
 printf(" - Error-Detected decoding checksum\n");
 else
 printf(" - No-Error-Detected decoding checksum\n");
}
/* Simple program to test both CRC generating functions */
int main(void)
{
 uint32_t N; /* Size of the buffer - only the data part */
 uint8_t status; /* Status of the decoding */
 /* Declaration of test data (note that two extra octets are declared */
 /* for each data sequence to reserve room for the two checksum octets) */
 uint8_t VData1[] = {0x00, 0x00, 0x00, 0x00};
 uint8_t VData2[] = {0x00, 0x00, 0x00, 0x00, 0x00};
 uint8_t VData3[] = {0xab, 0xcd, 0xef, 0x01, 0x00, 0x00};
 uint8_t VData4[] = {0x14, 0x56, 0xf8, 0x9a, 0x00, 0x01, 0x00, 0x00};
 /* Initiate look-up table */
 InitLtbl (LTbl);
 /* Encode VData1 unoptimized version */
 N = 2;
 crc_encode(VData1, N);

619

ECSS-E-ST-70-41C
15 April 2016

 /* The last 2 octets of VData1 now contain the crc */
 print_buffer(VData1, N + 2, "Unoptimized ");
 /* Decode VData1 */
 status = crc_decode(VData1, N + 2);
 print_status(status);
 /* Encode VData1 optimized version */
 N = 2;
 crc_encode_opt(VData1, N);
 /* The last 2 octets of VData1 now contain the crc */
 print_buffer(VData1, N + 2, " Optimized ");
 /* Decode VData1 */
 status = crc_decode(VData1, N + 2);
 print_status(status);
 /* Encode VData2 unoptimized version */
 N = 3;
 crc_encode(VData2, N);
 /* The last 2 octets of VData2 now contain the crc */
 print_buffer(VData2, N + 2, "Unoptimized ");
 /* Decode VData2 */
 status = crc_decode(VData2, N + 2);
 print_status(status);
 /* Encode VData2 optimized version */
 N = 3;
 crc_encode_opt(VData2, N);
 /* The last 2 octets of VData2 now contain the crc */
 print_buffer(VData2, N + 2, " Optimized ");
 /* Decode VData2 */
 status = crc_decode(VData2, N + 2);
 print_status(status);
 /* Encode VData3 unoptimized version */
 N = 4;
 crc_encode(VData3, N);
 /* The last 2 octets of VData3 now contain the crc */
 print_buffer(VData3, N + 2, "Unoptimized ");
 /* Decode VData3 */
 status = crc_decode(VData3, N + 2);
 print_status(status);
 /* Encode VData3 optimized version */
 N = 4;
 crc_encode_opt(VData3, N);
 /* The last 2 octets of VData3 now contain the crc */
 print_buffer(VData3, N + 2, " Optimized ");
 /* Decode VData3 */
 status = crc_decode(VData3, N + 2);
 print_status(status);
 /* Encode VData4 unoptimized version */
 N = 6;
 crc_encode(VData4, N);
 /* The last 2 octets of VData4 now contain the crc */
 print_buffer(VData4, N + 2, "Unoptimized ");
 /* Decode VData4 */
 status = crc_decode(VData4, N + 2);
 print_status(status);
 /* Encode VData4 optimized version */
 N = 6;
 crc_encode_opt(VData4, N);
 /* The last 2 octets of VData4 now contain the crc */
 print_buffer(VData4, N + 2, " Optimized ");
 /* Decode VData4 */
 status = crc_decode(VData4, N + 2);
 print_status(status);
 return 0;

620

ECSS-E-ST-70-41C
15 April 2016

}
/* This program results in the following output:
Unoptimized CRC - Data field with calculated CRC checksum is: 00 00 1D 0F - No-Error-
Detected decoding checksum
 Optimized CRC - Data field with calculated CRC checksum is: 00 00 1D 0F - No-Error-
Detected decoding checksum
Unoptimized CRC - Data field with calculated CRC checksum is: 00 00 00 CC 9C - No-
Error-Detected decoding checksum
 Optimized CRC - Data field with calculated CRC checksum is: 00 00 00 CC 9C - No-
Error-Detected decoding checksum
Unoptimized CRC - Data field with calculated CRC checksum is: AB CD EF 01 04 A2 - No-
Error-Detected decoding checksum
 Optimized CRC - Data field with calculated CRC checksum is: AB CD EF 01 04 A2 - No-
Error-Detected decoding checksum
Unoptimized CRC - Data field with calculated CRC checksum is: 14 56 F8 9A 00 01 7F D5
- No-Error-Detected decoding checksum
 Optimized CRC - Data field with calculated CRC checksum is: 14 56 F8 9A 00 01 7F D5
- No-Error-Detected decoding checksum
*/

621

ECSS-E-ST-70-41C
15 April 2016

B.2 The ISO checksum

B.2.1 General
 The ISO checksum is an error-detecting algorithm that uses integer arithmetic

to determine the value of the packet error control field.

 The encoding/decoding procedure, which is described in detail in the following
clauses, produces a 16-bit packet checksum (2 octets) that is placed in the packet
error field. The ISO checksum algorithm (See ISO 8473-1:1998) uses two main
computations, one based on the value of the data octets in the data packet and
the other is a weighted value of the data octets, whereby the weight is
determined by the position of the octet in the data packet proper. The
combination of both octets provides the 16-bit packet checksum.

 The ISO checksum procedure can be easily implemented in software on
processors using a compact and efficient algorithm. In contrast to the CRC
algorithm (see clause B.1), it does not require a look-up table and it does not
perform bitwise operations on the data to be checked.

 This Standard specifies that the ISO checksum procedure can be used to check
the contents of an on-board memory area using the services of the memory
management service (see clause 6.6). All octets of the on-board memory area are
processed in turn and the calculated ISO checksum value is placed in the
checksum field of the Memory Check Report.

 This Standard also specifies that the ISO checksum procedure can be used to
detect errors which have been introduced into a telemetry packet or a
telecommand packet) during the transmission, intermediate processing or
storage of the packet. All octets of the entire packet including the packet header
but excluding the final packet error control field are processed in turn and the
calculated ISO checksum value is placed in the packet error control field. The
error detection properties of the ISO checksum procedure are almost equal to
those of the CRC. The error detection properties can be expressed as follows:

 The proportion of all errors in the data that are not detected is approximately
1,54 × 10−5, i.e. the checksum detects virtually the same proportion of all errors
as does the CRC.

 A single bit in error is always detected.

 In contrast to the CRC, an error in the data that affects an odd number of bits is
not always detected. However, since the checksum has essentially the same
overall detection capability as the CRC, this is compensated by more detections
of an error in the data that affects an even number of bits.

 An error in the data affecting exactly two bits, no more than 2 040 bits apart, is
always detected.

 The probability that a single error burst spanning 16 bits or less of the data is
not detected is approximately 1,9 × 10−7. Not all intermediate bits in the error
burst span need be affected.

 This probability is non-zero because the algorithm does not detect an error
burst which causes 8 consecutive bits to change from all zeros to all ones or
vice-versa.

622

ECSS-E-ST-70-41C
15 April 2016

 This code is intended only for error detection purposes and no attempt should
be made to utilize it for correction.

B.2.2 Symbols and conventions
 The symbols and conventions defined in Table B-3 are used.

Table B-3 ISO symbols and conventions

symbol meaning

C0, C1 Variables used in the encoding and decoding
procedures. C0 represents the calculation based on
the value of the octets, C1 represents the weighted

calculations.

Bi The integer value of the ith octet to be checked.

N The number of octets of data to be checked.

CK1 The value of the left most octet of the calculated
checksum.

CK2 The value of the right most octet of the calculated
checksum.

B.2.3 Encoding procedure
 The encoding procedure takes as input N octets of data to be checked and

generates a 16-bit checksum value. This checksum value is placed in the packet
error control field.

 The algorithm used is:

Initialize C0 and C1 to zero.

Process each octet of the data to be checked, sequentially from i = 1 to N
as follows:

C0 = (C0 + Bi) modulo 255

C1 = (C1 + C0) modulo 255

Calculate an intermediate checksum value as:

CK1 = ~(C0 + C1) //The bits are flipped.

CK2 = C1

If CK1 = 0, then CK1 = 255.

If CK2 = 0, then CK1 = 255.

Place the resulting values of CK1 and CK2 in their destination fields.

623

ECSS-E-ST-70-41C
15 April 2016

B.2.4 Decoding procedure
 The decoding procedure takes as input N+ 2 octets of data to be checked and

reports whether an error is detected or not. The N+2 octets consist of:

• the N octets of data to be checked (the data packet proper), and

• the 2 checksum octets that are appended to the N octets of data.

 The algorithm used is:

If either, but not both, checksum octets contain the value zero, then
report Error-Detected.

Initialize C0 and C1 to zero.

Process each octet of the data to be checked, sequentially from i = 1 to
N+2 as follows:

C0 = (C0 + Bi) modulo 255

C1 = (C1 + C0) modulo 255

When all the octets have been processed, if the values of C0 and C1 are
both zero, then report No-Error-Detected; otherwise report Error-
Detected.

B.2.5 Verification of compliance
 The binary sequences defined in Table B-4 are provided to the designers as

samples for early testing, so that they can verify the correctness of their ISO
Checksum error-detection implementation.

 All data are given in hexadecimal notation. For a given field (data or ISO
Checksum) the leftmost hexadecimal character contains the most significant bit.

Table B-4 Verification of ISO compliance

data CRC

00 00 FF FF

00 00 00 FF FF

AB CD EF 01 9C F8

14 56 F8 9A 00 01 24 DC

B.2.6 Software implementation
#include <stdio.h>
#include <stdint.h>
#define ERROR_DETECTED 0
#define NO_ERROR_DETECTED 1
/* Encoding procedure */
/* NOTE: Assumption is that enough memory has been allocated for byte */
/* stream B to allow for generation of the checksum value. */
/* The two checksum octets are placed in the destination field */
/* (as Nth and Nth + 1 octet of byte stream B). */
/* The destination field is also known as the packet error */
/* control field. */
void iso16_encode(B, octets)

624

ECSS-E-ST-70-41C
15 April 2016

 uint8_t* B; /* Buffer to be checked */
 uint32_t octets; /* Length of the buffer */
{
 uint8_t C0;
 uint8_t C1;
 uint8_t CK1;
 uint8_t CK2;
 uint32_t index;
 /* Initialize C0 and C1 to zero */
 C0 = 0;
 C1 = 0;
 /* Process each octet of the data to be checked, sequentially from index = 1 to
octets as follows: */
 for (index = 0; index < octets; index++) {
 /* C0 = (C0 + Bi) modulo 255 */
 C0 = ((C0 + B[index]) % 255);
 /* C1 = (C1 + C0) modulo 255 */
 C1 = (C1 + C0) % 255;
 }
 /* Calculate an intermediate checksum value as: */
 /* CK1 = ~((C0 + C1) % 255); // flip the bits (~) for negative 1's complement */
 /* CK2 = C1; */
 /* if (0 == CK1) CK1 = 255; */
 /* if (0 == CK2) CK2 = 255; */
 CK1 = ~((C0 + C1) % 255); /* flip the bits (~) for negative 1's complement */
 CK2 = C1;
 if (0 == CK1) CK1 = 255;
 if (0 == CK2) CK2 = 255;
 /* Place the resulting values of CK1 and CK2 in their destination fields. */
 B[octets] = CK1;
 B[octets + 1] = CK2;
}
/* Decoding procedure of the buffer including the calculated ISO checksum in the last
two octets */
uint16_t iso16_decode(B, octets)
 uint8_t* B; /* Buffer to be decoded */
 uint32_t octets; /* Length of the buffer */
{
 uint8_t C0;
 uint8_t C1;
 uint32_t index;
 /* The last two octets (at position octets-2 and octets-1) contain the calculated
checksum. */
 /* If either, but not both, checksum octets contains the value zero, then report
Error-Detected. */
 if ((B[octets-2] == 0 && B[octets-1] !=0) || (B[octets-1] == 0 && B[octets-2] !=
0))
 return ERROR_DETECTED;
 /* Initialize C0 and C1 to zero */
 C0 = 0;
 C1 = 0;
 /* Process each octet of the data to be checked, sequentially from index = 1 to
octets+2 as follows: */
 for (index = 0; index < octets; index++) {
 /* C0 = (C0 + Bi) modulo 255 */
 C0 = (C0 + B[index]) % 255;
 /* C1 = (C1 + C0) modulo 255 */
 C1 = (C1 + C0) % 255;
 }
 /* When all the octets have been processed, if the values of C0 and C1 are both
zero, then */
 /* report No-Error-Detected; otherwise report Error-Detected. */

625

ECSS-E-ST-70-41C
15 April 2016

 if (C0 == 0 && C1 == 0)
 return NO_ERROR_DETECTED;
 else
 return ERROR_DETECTED;
}
/* Print a buffer in hexadecimal format */
void print_buffer(B, octets)
 uint8_t* B; /* Buffer to be displayed */
 uint32_t octets; /* Length of the buffer */
{
 uint32_t index;
 printf("Data field with calculated ISO Checksum is: ");
 for (index = 0; index < octets; index++)
 printf("%02X ", B[index]);
}
/* Display the message related to the result of a decoding of the buffer */
void print_status(result)
 uint32_t result; /* Result to be displayed */
{
 if (result == ERROR_DETECTED) {
 printf(" - Error-Detected decoding checksum\n");
 printf(" This can mean that either:\n");
 printf(" 1. One of the two checksum octets initially contains the value 0,
or\n");
 printf(" 2. The calculated checksum does not result in two octets with value
0\n");
 } else {
 printf(" - No-Error-Detected decoding checksum\n");
 }
}
/* Verification of compliance */
int main()
{
 uint32_t N;
 uint16_t result;
 /* Declaration of test data (note that two extra octets are declared */
 /* for each data sequence to reserve room for the two checksum octets) */
 uint8_t VData1[] = {0x00, 0x00, 0x00, 0x00};
 uint8_t VData2[] = {0x00, 0x00, 0x00, 0x00, 0x00};
 uint8_t VData3[] = {0xab, 0xcd, 0xef, 0x01, 0x00, 0x00};
 uint8_t VData4[] = {0x14, 0x56, 0xf8, 0x9a, 0x00, 0x01, 0x00, 0x00};
 /* Encode VData1 */
 N = 2;
 iso16_encode(VData1, N);
 /* The last 2 octets of VData1 now contain the checksum */
 print_buffer(VData1, N + 2);
 /* Decode VData1 */
 result = iso16_decode(VData1, N + 2);
 print_status(result);
 /* Encode VData2 */
 N = 3;
 iso16_encode(VData2, N);
 /* The last 2 octets of VData2 now contain the checksum */
 print_buffer(VData2, N + 2);
 /* Decode VData2 */
 result = iso16_decode(VData2, N + 2);
 print_status(result);
 /* Encode VData3 */
 N = 4;
 iso16_encode(VData3, N);
 /* The last 2 octets of VData3 now contain the checksum */
 print_buffer(VData3, N + 2);

626

ECSS-E-ST-70-41C
15 April 2016

 /* Decode VData3 */
 result = iso16_decode(VData3, N + 2);
 print_status(result);
 /* Encode VData4 */
 N = 6;
 iso16_encode(VData4, N);
 /* The last 2 octets of VData4 now contain the checksum */
 print_buffer(VData4, N + 2);
 /* Decode VData4 */
 result = iso16_decode(VData4, N + 2);
 print_status(result);
 return 0;
}
/* This program results in the following output:
Data field with calculated ISO Checksum is: 00 00 FF FF - No-Error-Detected decoding
checksum
Data field with calculated ISO Checksum is: 00 00 00 FF FF - No-Error-Detected
decoding checksum
Data field with calculated ISO Checksum is: AB CD EF 01 9C F8 - No-Error-Detected
decoding checksum
Data field with calculated ISO Checksum is: 14 56 F8 9A 00 01 24 DC - No-Error-
Detected decoding checksum
*/

627

ECSS-E-ST-70-41C
15 April 2016

Annex C(informative)
Summary of requests and reports for PUS

standard services

C.1 Convention
 This annex provides a summary of the message types defined in this Standard.

 The summary is organised per service and subservice types.

 The tailoring rules used during the deployment of the service type model for a
given mission, i.e. to identify what message type applies to what service are
also reported in that annex.

 Each message type is associated to its applicability constraint (refer to the
applicability constraint of the related capability type, requirement 5.3.4b).

C.2 Requests and reports

C.2.1 ST[01] request verification

C.2.1.1. Acceptance and reporting
 Table C-1 shows the message types of the acceptance and reporting subservice

type.

Table C-1 Acceptance and reporting message types

system interface message type

6.1.4.2 8.1.2.1 TM[1,1] successful acceptance verification report minimum

6.1.4.3 8.1.2.2 TM[1,2] failed acceptance verification report minimum

C.2.1.2. Execution reporting
 Table C-2 shows the message types of the execution reporting subservice type.

Table C-2 Execution reporting message types

system interface message type

6.1.5.1.1 8.1.2.3 TM[1,3] successful start of execution verification minimum

628

ECSS-E-ST-70-41C
15 April 2016

system interface message type

report

6.1.5.1.2 8.1.2.4 TM[1,4] failed start of execution verification report minimum

6.1.5.2.1 8.1.2.5 TM[1,5]
successful progress of execution verification
report

minimum

6.1.5.2.2 8.1.2.6 TM[1,6]
failed progress of execution verification
report

minimum

6.1.5.3.1 8.1.2.7 TM[1,7]
successful completion of execution
verification report

minimum

6.1.5.3.2 8.1.2.8 TM[1,8]
failed completion of execution verification
report

minimum

C.2.1.3. Routing and reporting
 Table C-3 shows the message types of the routing and reporting subservice

type.

Table C-3 Routing and reporting message types

system interface message type

6.1.3.3 8.1.2.9 TM[1,10] failed routing verification report minimum

C.2.2 ST[02] device access

C.2.2.1. Device access
 Table C-4 shows the message types of the device access subservice type.

Table C-4 Device access message types

system interface message type

6.2.3a

at least one of:
• TC[2,1]
• TC[2,2]
• TC[2,4]
• TC[2,7]

minimum

6.2.4.2 8.2.2.1 TC[2,1] distribute on/off device commands
by

declaration

6.2.5.2 8.2.2.2 TC[2,2] distribute register load commands
by

declaration

6.2.5.3 8.2.2.4 TC[2,5] distribute register dump commands
requires
TC[2,2]

629

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.2.5.3 8.2.2.5 TM[2,6] register dump report
TC[2,5]

response

6.2.6.2 8.2.2.3 TC[2,4] distribute CPDU commands
by

declaration

6.2.7.1.2 8.2.2.6 TC[2,7] distribute physical device commands
by

declaration

6.2.7.1.3 8.2.2.7 TC[2,8] acquire data from physical devices
implied by

TC[2,7]

6.2.7.1.3 8.2.2.8 TM[2,9] physical device data report
TC[2,8]

response

6.2.7.2.2 8.2.2.9 TC[2,10] distribute logical device commands
requires
TC[2,7]

6.2.7.2.3 8.2.2.10 TC[2,11] acquire data from logical devices
implied by

TC[2,10]

6.2.7.2.3 8.2.2.11 TM[2,12] logical device data report
TC[2,11]
response

C.2.3 ST[03] housekeeping

C.2.3.1. Housekeeping reporting
 Table C-5 shows the message types of the housekeeping reporting subservice

type.

Table C-5 Housekeeping reporting message types

system interface message type

6.3.3.3 8.3.2.13 TM[3,25] housekeeping parameter report minimum

6.3.3.4.1 8.3.2.5 TC[3,5]
enable the periodic generation of
housekeeping parameter reports

by declaration

6.3.3.4.2 8.3.2.6 TC[3,6]
disable the periodic generation of
housekeeping parameter reports

implied by
TC[3,5]

6.3.3.5.1 8.3.2.1 TC[3,1]
create a housekeeping parameter report
structure

by declaration

6.3.3.5.2 8.3.2.3 TC[3,3]
delete housekeeping parameter report
structures

implied by
TC[3,1]

6.3.3.6 8.3.2.9 TC[3,9]
report housekeeping parameter report
structures

requires
TC[3,1]

6.3.3.6 8.3.2.10 TM[3,10] housekeeping parameter report TC[3,9]

630

ECSS-E-ST-70-41C
15 April 2016

system interface message type

structure report response

6.3.3.8 8.3.2.17 TC[3,29]
append parameters to a housekeeping
parameter report structure

requires
TC[3,1]

6.3.3.9 8.3.2.19 TC[3,31]
modify the collection interval of
housekeeping parameter report
structures

by declaration

6.3.3.10 8.3.2.21 TC[3,33]
report the periodic generation
properties of housekeeping parameter
report structures

by declaration

6.3.3.10 8.3.2.23 TM[3,35]
housekeeping parameter report
periodic generation properties report

TC[3,33]
response

6.3.3.7 8.3.2.15 TC[3,27]
generate a one shot report for
housekeeping parameter report
structures

by declaration

6.3.3.3 8.3.2.13 TM[3,25] housekeeping parameter report
TC[3,27]
response

C.2.3.2. Diagnostic reporting
 Table C-6 shows the message types of the diagnostic reporting subservice type.

Table C-6 Diagnostic reporting message types

system interface message type

6.3.4.3 8.3.2.14 TM[3,26] diagnostic parameter report minimum

6.3.4.4 8.3.2.7 TC[3,7]
enable the periodic generation of diagnostic
parameter reports

minimum

6.3.4.5 8.3.2.8 TC[3,8]
disable the periodic generation of
diagnostic parameter reports

minimum

6.3.4.6 8.3.2.2 TC[3,2]
create a diagnostic parameter report
structure

minimum

6.3.4.7 8.3.2.4 TC[3,4]
delete diagnostic parameter report
structures

minimum

6.3.4.8 8.3.2.11 TC[3,11]
report diagnostic parameter report
structures

requires
TC[3,2]

6.3.4.8 8.3.2.12 TM[3,12]
diagnostic parameter report structure
report

TC[3,11]
response

6.3.4.10 8.3.2.18 TC[3,30]
append parameters to a diagnostic
parameter report structure

requires
TC[3,2]

631

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.3.4.11 8.3.2.20 TC[3,32]
modify the collection interval of diagnostic
parameter report structures

by
declaration

6.3.4.12 8.3.2.22 TC[3,34]
report the periodic generation properties of
diagnostic parameter report structures

by
declaration

6.3.4.12 8.3.2.24 TM[3,36]
diagnostic parameter report periodic
generation properties report

TC[3,34]
response

6.3.4.9 8.3.2.16 TC[3,28]
generate a one shot report for diagnostic
parameter report structures

by
declaration

6.3.4.3 8.3.2.14 TM[3,26] diagnostic parameter report
TC[3,28]
response

C.2.3.3. Parameter functional reporting configuration
 Table C-7 shows the message types of the parameter functional reporting

configuration subservice type.

Table C-7 Parameter functional reporting configuration message types

system interface message type

6.3.5.3 8.3.2.25 TC[3,37]
apply parameter functional reporting
configurations

minimum

6.3.5.4.1 8.3.2.26 TC[3,38]
create a parameter functional reporting
definition

by
declaration

6.3.5.4.2 8.3.2.27 TC[3,39]
delete parameter functional reporting
definitions

implied by
TC[3,38]

6.3.5.5 8.3.2.28 TC[3,40]
report parameter functional reporting
definitions

requires
TC[3,38]

6.3.5.5 8.3.2.29 TM[3,41]
parameter functional reporting definition
report

TC[3,40]
response

6.3.5.6.1 8.3.2.30 TC[3,42]
add parameter report definitions to a
parameter functional reporting definition

requires
TC[3,38]

6.3.5.6.2 8.3.2.31 TC[3,43]
remove parameter report definitions from a
parameter functional reporting definition

implied by
TC[3,42]

6.3.5.6.3 8.3.2.32 TC[3,44]
modify the periodic generation properties
of parameter report definitions of a
parameter functional reporting definition

by
declaration

632

ECSS-E-ST-70-41C
15 April 2016

C.2.4 ST[04] parameter statistics reporting

C.2.4.1. Parameter statistics reporting
 Table C-8 shows the message types of the parameter statistics reporting

subservice type.

Table C-8 Parameter statistics reporting message types

system interface message type

6.4.4 8.4.2.3 TC[4,3] reset the parameter statistics minimum

6.4.5.2 8.4.2.1 TC[4,1] report the parameter statistics minimum

6.4.5.3 8.4.2.2 TM[4,2] parameter statistics report
TC[4,1]

response

6.4.6.1a
support for the periodic reporting of the results of the
parameter statistics evaluation

by
declaration

6.4.6.2 8.4.2.4 TC[4,4]
enable the periodic parameter statistics
reporting

implied by
6.4.6.1a

6.4.6.3 8.4.2.5 TC[4,5]
disable the periodic parameter statistics
reporting

implied by
6.4.6.1a

6.4.7.1 8.4.2.6 TC[4,6]
add or update parameter statistics
definitions

by
declaration

6.4.7.2 8.4.2.7 TC[4,7] delete parameter statistics definitions
implied by

TC[4,6]

6.4.7.3 8.4.2.8 TC[4,8] report the parameter statistics definitions
requires
TC[4,6]

6.4.7.3 8.4.2.9 TM[4,9] parameter statistics definition report
TC[4,8]

response

C.2.5 ST[05] event reporting

C.2.5.1. Event reporting
 Table C-9 shows the message types of the event reporting subservice type.

Table C-9 Event reporting message types

system interface message type

6.5.4 8.5.2.1 TM[5,1] informative event report minimum

6.5.4 8.5.2.2 TM[5,2] low severity anomaly report minimum

6.5.4 8.5.2.3 TM[5,3] medium severity anomaly report minimum

633

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.5.4 8.5.2.4 TM[5,4] high severity anomaly report minimum

6.5.5.2 8.5.2.5 TC[5,5]
enable the report generation of event
definitions

by
declaration

6.5.5.3 8.5.2.6 TC[5,6]
disable the report generation of event
definitions

implied by
TC[5,5]

6.5.5.4 8.5.2.7 TC[5,7] report the list of disabled event definitions
requires
TC[5,5]

6.5.5.4 8.5.2.8 TM[5,8] disabled event definitions list report
TC[5,7]

response

C.2.6 ST[06] memory management

C.2.6.1. Raw data memory management
 Table C-10 shows the message types of the raw data memory management

subservice type.

Table C-10 Raw data memory management message types

system interface message type

6.6.3.3.1 8.6.2.2 TC[6,2] load raw memory data areas minimum

6.6.3.4 8.6.2.5 TC[6,5] dump raw memory data minimum

6.6.3.4 8.6.2.6 TM[6,6] dumped raw memory data report
TC[6,5]

response

6.6.3.5 8.6.2.9 TC[6,9] check raw memory data
by

declaration

6.6.3.5 8.6.2.10 TM[6,10] checked raw memory data report
TC[6,9]

response

6.6.3.6 8.6.2.19 TC[6,19] load raw memory data areas by reference
by

declaration

6.6.3.7 8.6.2.20 TC[6,20] dump raw memory data areas to file
by

declaration

6.6.3.3.2 8.6.2.11 TC[6,11]
load a raw memory atomic data area in a
non-interruptible transaction

by
declaration

634

ECSS-E-ST-70-41C
15 April 2016

C.2.6.2. Structured data memory management
 Table C-11 shows the message types of the structured data memory

management subservice type.

Table C-11 Structured data memory management message types

system interface message type

6.6.4.4 8.6.2.1 TC[6,1] load object memory data minimum

6.6.4.5 8.6.2.3 TC[6,3] dump object memory data minimum

6.6.4.5 8.6.2.4 TM[6,4] dumped object memory data report
TC[6,3]

response

6.6.4.6 8.6.2.7 TC[6,7] check object memory data
by

declaration

6.6.4.6 8.6.2.8 TM[6,8] checked object memory data report
TC[6,7]

response

6.6.4.7 8.6.2.17 TC[6,17] check an object memory object
by

declaration

6.6.4.7 8.6.2.18 TM[6,18] checked object memory object report
TC[6,17]
response

6.6.4.8 8.6.2.21 TC[6,21] load object memory data areas by reference
by

declaration

6.6.4.9 8.6.2.22 TC[6,22] dump object memory data areas to file
by

declaration

C.2.6.3. Common memory management
 Table C-12 shows the message types of the common memory management

subservice type.

Table C-12 Common memory management message types

system interface message type

6.6.5.1 8.6.2.12 TC[6,12] abort all memory dumps minimum

C.2.6.4. Memory configuration
 Table C-13 shows the message types of the memory configuration subservice

type.

Table C-13 Memory configuration message types

system interface message type

6.6.6.1.1a scrubbing memories support
by

declaration

635

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.6.6.1.4 8.6.2.13 TC[6,13] enable the scrubbing of a memory
implied by
6.6.6.1.1a

6.6.6.1.5 8.6.2.14 TC[6,14] disable the scrubbing of a memory
implied by
6.6.6.1.1a

6.6.6.2.1a write protecting memories support
by

declaration

6.6.6.2.4 8.6.2.15 TC[6,15] enable the write protection of a memory
implied by
6.6.6.2.1a

6.6.6.2.5 8.6.2.16 TC[6,16] disable the write protection of a memory
implied by
6.6.6.2.1a

C.2.7 ST[07] (reserved)

C.2.8 ST[08] function management

C.2.8.1. Function management
 Table C-14 shows the message types of the function management subservice

type.

Table C-14 Function management message types

system interface message type

6.8.4 8.8.2.1 TC[8,1] perform a function minimum

C.2.9 ST[09] time management

C.2.9.1. Time reporting
 Table C-15 shows the message types of the time reporting subservice type.

Table C-15 Time reporting message types

system interface message type

6.9.4.1a
 exactly one of:

• TM[9,2]
• TM[9,3]

minimum

6.9.4.2 8.9.2.2
TM[9,2] CUC time report

by
declaration

6.9.4.3 8.9.2.3
TM[9,3] CDS time report

by
declaration

636

ECSS-E-ST-70-41C
15 April 2016

C.2.9.2. Time reporting control
 Table C-16 shows the message types of the time reporting control subservice

type.

Table C-16 Time reporting control message types

system interface message type

6.9.5.1.1 8.9.2.1 TC[9,1] set the time report generation rate minimum

C.2.10 ST[10] (reserved)

C.2.11 ST[11] time-based scheduling

C.2.11.1. Time-based scheduling
 Table C-17 shows the message types of the time-based scheduling subservice

type.

Table C-17 Time-based scheduling message types

system interface message type

6.11.4.3.2 8.11.2.1 TC[11,1]
enable the time-based schedule execution
function

minimum

6.11.4.3.3 8.11.2.2 TC[11,2]
disable the time-based schedule execution
function

minimum

6.11.4.4 8.11.2.3 TC[11,3] reset the time-based schedule minimum

6.11.4.5 8.11.2.4 TC[11,4]
insert activities into the time-based
schedule

minimum

6.11.5.2.1 8.11.2.20 TC[11,20] enable time-based sub-schedules
by

declaration

6.11.5.2.2 8.11.2.21 TC[11,21] disable time-based sub-schedules
implied by
TC[11,20]

6.11.5.2.3 8.11.2.18 TC[11,18]
report the status of each time-based sub-
schedule

requires
TC[11,20]

6.11.5.2.3 8.11.2.19 TM[11,19] time-based sub-schedule status report
TC[11,18]
response

6.11.6.2.1 8.11.2.22 TC[11,22] create time-based scheduling groups
by

declaration

6.11.6.2.2 8.11.2.23 TC[11,23] delete time-based scheduling groups
implied by
TC[11,22]

6.11.6.3.1 8.11.2.24 TC[11,24] enable time-based scheduling groups implied by

637

ECSS-E-ST-70-41C
15 April 2016

system interface message type

TC[11,22]

6.11.6.3.2 8.11.2.25 TC[11,25] disable time-based scheduling groups
implied by
TC[11,24]

6.11.6.3.3 8.11.2.26 TC[11,26]
report the status of each time-based
scheduling group

requires
TC[11,22]

6.11.6.3.3 8.11.2.27 TM[11,27] time-based scheduling group status report
TC[11,26]
response

6.11.8.1 8.11.2.15 TC[11,15] time-shift all scheduled activities
by

declaration

6.11.8.2 8.11.2.17 TC[11,17]
summary-report all time-based scheduled
activities

by
declaration

6.11.7.1 8.11.2.13 TM[11,13] time-based schedule summary report
TC[11,17]
response

6.11.8.3 8.11.2.16 TC[11,16]
detail-report all time-based scheduled
activities

by
declaration

6.11.7.2 8.11.2.10 TM[11,10] time-based schedule detail report
TC[11,10]
response

6.11.9.2 8.11.2.5 TC[11,5]
delete time-based scheduled activities
identified by request identifier

by
declaration

6.11.9.3 8.11.2.7 TC[11,7]
time-shift scheduled activities identified by
request identifier

by
declaration

6.11.9.4 8.11.2.12 TC[11,12]
Summary-report time-based scheduled
activities identified by request identifier

by
declaration

6.11.7.1 8.11.2.13 TM[11,13] time-based schedule summary report
TC[11,12]
response

6.11.9.5 8.11.2.9 TC[11,9]
detail-report time-based scheduled
activities identified by request identifier

by
declaration

6.11.7.2 8.11.2.10 TM[11,10] time-based schedule detail report
TC[11,9]
response

6.11.10.3 8.11.2.6 TC[11,6]
delete the time-based scheduled activities
identified by a filter

by
declaration

6.11.10.4 8.11.2.8 TC[11,8]
time-shift the scheduled activities identified
by a filter

by
declaration

6.11.10.5 8.11.2.14 TC[11,14]
summary-report the time-based scheduled
activities identified by a filter

by
declaration

6.11.7.1 8.11.2.13 TM[11,13] time-based schedule summary report
TC[11,14]
response

638

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.11.10.6 8.11.2.11 TC[11,11]
detail-report the time-based scheduled
activities identified by a filter

by
declaration

6.11.7.2 8.11.2.10 TM[11,10] time-based schedule detail report
TC[11,11]
response

C.2.12 ST[12] on-board monitoring

C.2.12.1. Parameter monitoring
 Table C-18 shows the message types of the parameter monitoring subservice

type.

Table C-18 Parameter monitoring message types

system interface message type

6.12.3.5.1 8.12.2.15 TC[12,15] enable the parameter monitoring function minimum

6.12.3.5.2 8.12.2.16 TC[12,16]
disable the parameter monitoring
function

minimum

6.12.3.6.1 8.12.2.1 TC[12,1] enable parameter monitoring definitions minimum

6.12.3.6.2 8.12.2.2 TC[12,2] disable parameter monitoring definitions minimum

6.12.3.7 8.12.2.12 TM[12,12] check transition report minimum

6.12.3.8 8.12.2.3 TC[12,3]
change the maximum transition reporting
delay

by declaration

6.12.3.9.1 8.12.2.5 TC[12,5] add parameter monitoring definitions by declaration

6.12.3.9.1b
if TC[12,5], at least one of:
• TC[12,4]
• TC[12,5]

implied by
TC[12,5]

6.12.3.9.2 8.12.2.4 TC[12,4]
delete all parameter monitoring
definitions

by declaration

6.12.3.9.3 8.12.2.6 TC[12,6] delete parameter monitoring definitions by declaration

6.12.3.9.4 8.12.2.7 TC[12,7] modify parameter monitoring definitions by declaration

6.12.3.10 8.12.2.8 TC[12,8] report parameter monitoring definitions
requires

TC[12,5] or
TC[12,7]

6.12.3.10 8.12.2.9 TM[12,9] parameter monitoring definition report
TC[12,8]
response

6.12.3.11 8.12.2.13 TC[12,13]
report the status of each parameter
monitoring definition

requires
TC[12,1]

639

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.12.3.11 8.12.2.14 TM[12,14]
parameter monitoring definition status
report

TC[12,13]
response

6.12.3.12 8.12.2.10 TC[12,10] report the out-of-limits by declaration

6.12.3.12 8.12.2.11 TM[12,11] out-of-limits report
TC[12,10]
response

C.2.12.2. Functional monitoring
 Table C-19 shows the message types of the functional monitoring subservice

type.

Table C-19 Functional monitoring message types

system interface message type

6.12.4.4.1 8.12.2.17 TC[12,17] enable the functional monitoring function minimum

6.12.4.4.2 8.12.2.18 TC[12,18] disable the functional monitoring function minimum

6.12.4.5.2 8.12.2.19 TC[12,19] enable functional monitoring definitions minimum

6.12.4.5.3 8.12.2.20 TC[12,20] disable functional monitoring definitions minimum

6.12.4.6.1 8.12.2.21 TC[12,21] protect functional monitoring definitions
by

declaration

6.12.4.6.2 8.12.2.22 TC[12,22] unprotect functional monitoring definitions
implied by
TC[12,21]

6.12.4.7.1 8.12.2.23 TC[12,23] add functional monitoring definitions
by

declaration

6.12.4.7.2 8.12.2.24 TC[12,24] delete functional monitoring definitions
implied by
TC[12,23]

6.12.4.8 8.12.2.25 TC[12,25] report functional monitoring definitions
requires

TC[12,23]

6.12.4.8 8.12.2.26 TM[12,26] functional monitoring definition report
TC[12,25]
response

6.12.4.9 8.12.2.27 TC[12,27]
report the status of each functional
monitoring definition

by
declaration

6.12.4.9 8.12.2.28 TM[12,28]
functional monitoring definition status
report

TC[12,27]
response

640

ECSS-E-ST-70-41C
15 April 2016

C.2.13 ST[13] large packet transfer

C.2.13.1. Large packet downlink
 Table C-20 shows the message types of the large packet downlink subservice type.

Table C-20 Large packet downlink message types

system interface message type

6.13.3.3.1 8.13.2.1 TM[13,1] first downlink part report" for the first part minimum

6.13.3.3.1 8.13.2.2 TM[13,2]
intermediate downlink part report" for the
intermediate parts

minimum

6.13.3.3.1 8.13.2.3 TM[13,3] last downlink part report" for the last part minimum

C.2.13.2. Large packet uplink
 Table C-21 shows the message types of the large packet uplink subservice type.

Table C-21 Large packet uplink message types

system interface message type

6.13.4.3.1 8.13.2.4 TC[13,9] uplink the first part" for the first part minimum

6.13.4.3.1 8.13.2.5 TC[13,10]
uplink an intermediate part" for the
intermediate parts

minimum

6.13.4.3.1 8.13.2.6 TC[13,11] uplink the last part" for the last part minimum

6.13.4.3.3 8.13.2.7 TM[13,16] large packet uplink abortion report minimum

C.2.14 ST[14] real-time forwarding control

C.2.14.1. Real-time forwarding control
 Table C-22 shows the message types of the real-time forwarding control

subservice type.

Table C-22 Real-time forwarding control message types

system interface message type

6.14.3.4.1 8.14.2.1 TC[14,1]
add report types to the application process
forward-control configuration

minimum

6.14.3.4.2 8.14.2.2 TC[14,2]
delete report types from the application
process forward-control configuration

minimum

6.14.3.4.3 8.14.2.3 TC[14,3]
report the content of the application process
forward-control configuration

requires
TC[14,1]

6.14.3.4.3 8.14.2.4 TM[14,4] application process forward-control TC[14,3]

641

ECSS-E-ST-70-41C
15 April 2016

system interface message type

configuration content report response

6.14.3.2.1a
capability to control, per housekeeping parameter report
structure, the forwarding of housekeeping parameter reports

by
declaration

6.14.3.5.1 8.14.2.5 TC[14,5]
add structure identifiers to the
housekeeping parameter report forward-
control configuration

implied by
6.14.3.2.1a

6.14.3.5.2 8.14.2.6 TC[14,6]
delete structure identifiers from the
housekeeping parameter report forward-
control configuration

implied by
6.14.3.2.1a

6.14.3.5.3 8.14.2.7 TC[14,7]
report the content of the housekeeping
parameter report forward-control
configuration

requires
TC[14,5]

6.14.3.5.3 8.14.2.8 TM[14,8]
housekeeping parameter report forward-
control configuration content report

TC[14,7]
response

6.14.3.2.1b
capability to control, per diagnostic parameter report
structure, the forwarding of diagnostic parameter reports

by
declaration

6.14.3.6.1 8.14.2.9 TC[14,9]
add structure identifiers to the diagnostic
parameter report forward-control
configuration

implied by
6.14.3.2.1b

6.14.3.6.2 8.14.2.10 TC[14,10]
delete structure identifiers from the
diagnostic parameter report forward-
control configuration

implied by
6.14.3.2.1b

6.14.3.6.3 8.14.2.11 TC[14,11]
report the content of the diagnostic
parameter report forward-control
configuration

requires
TC[14,9]

6.14.3.6.3 8.14.2.12 TM[14,12]
diagnostic parameter report forward-
control configuration content report

TC[14,11]
response

6.14.3.2.1c
capability to control, per event definition, the forwarding of
event reports

by
declaration

6.14.3.7.2 8.14.2.14 TC[14,14]
add event definition identifiers to the event
report blocking forward-control
configuration

implied by
6.14.3.2.1c

6.14.3.7.1 8.14.2.13 TC[14,13]
delete event definition identifiers from the
event report blocking forward-control
configuration

implied by
6.14.3.2.1c

6.14.3.7.3 8.14.2.15 TC[14,15]
report the content of the event report
blocking forward-control configuration

requires
TC[14,14]

6.14.3.7.3 8.14.2.16 TM[14,16]
event report blocking forward-control
configuration content report

TC[14,15]
response

642

ECSS-E-ST-70-41C
15 April 2016

C.2.15 ST[15] on-board storage and retrieval

C.2.15.1. Storage and retrieval
 Table C-23 shows the message types of the storage and retrieval subservice

type.

Table C-23 Storage and retrieval message types

system interface message type

6.15.3.3.2 8.15.2.1 TC[15,1] enable the storage function of packet stores minimum

6.15.3.3.3 8.15.2.2 TC[15,2] disable the storage function of packet stores minimum

6.15.3.4.2 8.15.2.11 TC[15,14]
change the open retrieval start time tag of
packet stores

minimum

6.15.3.4.3 8.15.2.12 TC[15,15] resume the open retrieval of packet stores minimum

6.15.3.4.4 8.15.2.13 TC[15,16] suspend the open retrieval of packet stores implied by
TC[15,15]

6.15.3.5.1a by-time-range retrieval function support by
declaration

6.15.3.5.2 8.15.2.7 TC[15,9]
start the by-time-range retrieval of packet
stores

implied by
6.15.3.5.1a

6.15.3.5.3 8.15.2.14 TC[15,17]
abort the by-time-range retrieval of packet
stores

implied by
6.15.3.5.1a

6.15.3.6 8.15.2.15 TC[15,18] report the status of each packet store by
declaration

6.15.3.6 8.15.2.16 TM[15,19] packet store status report TC[15,18]
response

6.15.3.7.1 8.15.2.8 TC[15,11]
delete the content of packet stores up to the
specified time

by
declaration

6.15.3.8.1 8.15.2.17 TC[15,20] create packet stores by
declaration

6.15.3.8.2 8.15.2.18 TC[15,21] delete packet stores implied by
TC[15,20]

6.15.3.8.3 8.15.2.19 TC[15,22]
report the configuration of each packet
store

requires
TC[15,20]

6.15.3.8.3 8.15.2.20 TM[15,23] packet store configuration report TC[15,22]
response

6.15.3.8.4 8.15.2.21 TC[15,24]
copy the packets contained in a packet store
selected by time window

requires
TC[15,20]

6.15.3.9.1 8.15.2.22 TC[15,25] resize packet stores by
declaration

643

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.15.3.9.2 8.15.2.23 TC[15,26] change a packet store type to circular implied by
TC[15.25]

6.15.3.9.3 8.15.2.24 TC[15,27] change a packet store type to bounded implied by
TC[15.25]

6.15.3.9.4 8.15.2.25 TC[15,28]
change the virtual channel used by a packet
store

implied by
TC[15.25]

6.15.3.10.1 8.15.2.9 TC[15,12]
summary-report the content of packet
stores

by
declaration

6.15.3.10.1 8.15.2.10 TM[15,13] packet store content summary report TC[15,12]
response

C.2.15.2. Packet selection
 Table C-24 shows the message types of the packet selection subservice type.

Table C-24 Packet selection message types

system interface message type

6.15.4.4.1 8.15.2.3 TC[15,3]
add report types to the application process
storage-control configuration

minimum

6.15.4.4.2 8.15.2.4 TC[15,4]
delete report types from the application
process storage-control configuration

minimum

6.15.4.4.3 8.15.2.5 TC[15,5]
report the content of the application process
storage-control configuration

requires
TC[15,3]

6.15.4.4.3 8.15.2.6
TM[15,6] application process storage-control

configuration content report
TC[15,5]
response

6.15.4.2.1a
control, per housekeeping parameter report structure, the
storage of housekeeping parameter reports

by
declaration

6.15.4.5.1 8.15.2.26 TC[15,29]
add structure identifiers to the
housekeeping parameter report storage-
control configuration

implied by
6.15.4.2.1a

6.15.4.5.2 8.15.2.27 TC[15,30]
delete structure identifiers from the
housekeeping parameter report storage-
control configuration

implied by
6.15.4.2.1a

6.15.4.5.3 8.15.2.32 TC[15,35]
report the content of the housekeeping
parameter report storage-control
configuration

requires
TC[15,29]

6.15.4.5.3 6.15.4.5.3
TM[15,36] housekeeping parameter report storage-

control configuration content report
TC[15,36]
response

6.15.4.2.1b control, per diagnostic parameter report structure, the storage by

644

ECSS-E-ST-70-41C
15 April 2016

system interface message type

of diagnostic parameter reports declaration

6.15.4.6.1 8.15.2.28 TC[15,31]
add structure identifiers to the diagnostic
parameter report storage-control
configuration

implied by
6.15.4.2.1b

6.15.4.6.2 8.15.2.29 TC[15,32]
delete structure identifiers from the
diagnostic parameter report storage-control
configuration

implied by
6.15.4.2.1b

6.15.4.6.3 8.15.2.34 TC[15,37]
report the content of the diagnostic
parameter report storage-control
configuration

requires
TC[15,31]

6.15.4.6.3 8.15.2.35
TM[15,38] diagnostic parameter report storage-control

configuration content report
TC[15,37]
response

6.15.4.2.1c control, per event definition, the storage of event reports
by

declaration

6.15.4.7.1 8.15.2.31 TC[15,34]
add event definition identifiers to the event
report blocking storage-control
configuration

implied by
6.15.4.2.1c

6.15.4.7.2 8.15.2.30 TC[15,33]
delete event definition identifiers from the
event report blocking storage-control
configuration

implied by
6.15.4.2.1c

6.15.4.7.3 8.15.2.36 TC[15,39]
report the content of the event report
blocking storage-control configuration

requires
TC[15,33]

6.15.4.7.3 8.15.2.37
TM[15,40] event report blocking storage-control

configuration content report
TC[15,39]
response

C.2.16 ST[16] (reserved)

645

ECSS-E-ST-70-41C
15 April 2016

C.2.17 ST[17] test

C.2.17.1. Test
 Table C-25 shows the message types of the test subservice type.

Table C-25 Test message types

system interface message type

6.17.3 8.17.2.1 TC[17,1] perform an are-you-alive connection test minimum

6.17.3 8.17.2.2 TM[17,2] are-you-alive connection test report
TC[17,1]
response

6.17.4.2 8.17.2.3 TC[17,3] perform an on-board connection test minimum

6.17.4.2 8.17.2.4 TM[17,4] on-board connection test report
TC[17,4]
response

C.2.18 ST[18] on-board operations procedure

C.2.18.1. OBCP management
 Table C-26 shows the message types of the OBCP management subservice type.

Table C-26 OBCP management message types

system interface message type

6.18.4.4.1a

at least one of:
• TC[18,1]
• TC[18,13]
• TC[18,19]

minimum

6.18.4.4.2 8.18.2.1 TC[18,1] direct-load an OBCP
by

declaration

6.18.4.4.3 8.18.2.11 TC[18,13] load an OBCP by reference
by

declaration

6.18.4.4.4 8.18.2.2 TC[18,2] unload an OBCP
implied by
TC[18,1] or
TC[18,13]

6.18.4.4.5 8.18.2.3 TC[18,3] activate an OBCP minimum

6.18.4.4.6 8.18.2.17 TC[18,19] load by reference and activate an OBCP
by

declaration

6.18.4.4.7 8.18.2.4 TC[18,4] stop an OBCP minimum

6.18.4.4.8 8.18.2.18 TC[18,20] stop and unload an OBCP by

646

ECSS-E-ST-70-41C
15 April 2016

system interface message type

declaration

6.18.4.4.9 8.18.2.10 TC[18,12] abort an OBCP minimum

6.18.4.4.10 8.18.2.15 TC[18,17] abort all OBCPs and report
by

declaration

6.18.4.4.10 8.18.2.16 TM[18,18] aborted OBCP report
TC[18,17]
response

6.18.4.5.1 8.18.2.8 TC[18,8] report the execution status of each OBCP minimum

6.18.4.5.1 8.18.2.9 TM[18,9] OBCP execution status report
TC[18,8]
response

6.18.4.6.1 8.18.2.5 TC[18,5] suspend an OBCP
by

declaration

6.18.4.6.2 8.18.2.6 TC[18,6] resume an OBCP
implied by

TC[18,5]

6.18.4.6.3 8.18.2.12 TC[18,14] activate and execute one OBCP step
by

declaration

6.18.4.6.4 8.18.2.13 TC[18,15] resume and execute one OBCP step
implied by
TC[18,14]

6.18.4.7.1 8.18.2.7 TC[18,7] communicate parameters to an OBCP
by

declaration

6.18.4.8.1 8.18.2.14 TC[18,16] set the observability level of OBCPs
by

declaration

C.2.18.2. OBCP engine management
 Table C-27 shows the message types of the OBCP engine management

subservice type.

Table C-27 OBCP engine management message types

system interface message type

6.18.5.1.1 8.18.2.19 TC[18,21] start the OBCP engine minimum

6.18.5.1.2 8.18.2.20 TC[18,22] stop the OBCP engine minimum

647

ECSS-E-ST-70-41C
15 April 2016

C.2.19 ST[19] event-action

C.2.19.1. Event-action
 Table C-28 shows the message types of the event-action subservice type.

Table C-28 Event-action message types

system interface message type

6.19.6.1 8.19.2.8 TC[19,8] enable the event-action function minimum

6.19.6.2 8.19.2.9 TC[19,9] disable the event-action function minimum

6.19.7.1 8.19.2.4 TC[19,4] enable event-action definitions minimum

6.19.7.2 8.19.2.5 TC[19,5] disable event-action definitions minimum

6.19.8.1 8.19.2.1 TC[19,1] add event-action definitions minimum

6.19.8.2a
at least one of:
TC[19,2]
TC[19,3]

implied by
TC[19,1]

6.19.8.3 8.19.2.2 TC[19,2] delete event-action definitions
by

declaration

6.19.8.4 8.19.2.3 TC[19,3] delete all event-action definitions
by

declaration

6.19.8.5 8.19.2.6 TC[19,6]
report the status of each event-action
definition

by
declaration

6.19.8.5 8.19.2.7 TM[19,7] event-action status report
TC[19,6]
response

6.19.8.6 8.19.2.10 TC[19,10] report event-action definitions
requires
TC[19,1]

6.19.8.6 8.19.2.11 TM[19,11] event-action definition report
TC[19,10]
response

648

ECSS-E-ST-70-41C
15 April 2016

C.2.20 ST[20] Parameter management

C.2.20.1. Parameter management
 Table C-29 shows the message types of the parameter management subservice

type.

Table C-29 Parameter management message types

system interface message type

6.20.4.1 8.20.2.1 TC[20,1] report parameter values minimum

6.20.4.1 8.20.2.2 TM[20,2] parameter value report
TC[20,1]
response

6.20.4.2 8.20.2.3 TC[20,3] set parameter values
by

declaration

6.20.5.2 8.20.2.4 TC[20,4] change raw memory parameter definitions
by

declaration

6.20.5.3 8.20.2.5 TC[20,5] change object memory parameter definitions
by

declaration

6.20.5.4 8.20.2.6 TC[20,6] report parameter definitions
requires

TC[20,4] or
TC[20,5]

6.20.5.4 8.20.2.7 TM[20,7] parameter definition report
TC[20,6]
response

C.2.21 ST[21] request sequencing

C.2.21.1. Request sequencing
 Table C-30 shows the message types of the request sequencing subservice type.

Table C-30 Request sequencing message types

system interface message type

6.21.5.1a

at least one of:
• TC[21,1]
• TC[21,2]
• TC[21,8]

minimum

6.21.5.2 8.21.2.1 TC[21,1] direct-load a request sequence
by

declaration

6.21.5.3 8.21.2.2 TC[21,2] load a request sequence by reference
by

declaration

649

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.21.5.4 8.21.2.3 TC[21,3] unload a request sequence
implied by
TC[21,1] or

TC[21,2]

6.21.5.6 8.21.2.8 TC[21,8]
load by reference and activate a request
sequence

by
declaration

6.21.5.5 8.21.2.4 TC[21,4] activate a request sequence minimum

6.21.5.7 8.21.2.5 TC[21,5] abort a request sequence minimum

6.21.5.8 8.21.2.13 TC[21,13] abort all request sequences and report
by

declaration

6.21.5.8 8.21.2.14 TM[21,14] aborted request sequence report
TC[21,13]
response

6.21.6 8.21.2.6 TC[21,6]
report the execution status of each request
sequence

by
declaration

6.21.6 8.21.2.7 TM[21,7] request sequence execution status report
TC[21,6]
response

6.21.7 8.21.2.9 TC[21,9] checksum a request sequence
by

declaration

6.21.7 8.21.2.10 TM[21,10] request sequence checksum report
TC[21,9]
response

6.21.8 8.21.2.11 TC[21,11] report the content of a request sequence
by

declaration

6.21.8 8.21.2.12 TM[21,12] request sequence content report
TC[21,11]
response

650

ECSS-E-ST-70-41C
15 April 2016

C.2.22 ST[22] position-based scheduling

C.2.22.1. Position-based scheduling
 Table C-31 shows the message types of the position-based scheduling

subservice type.

Table C-31 Position-based scheduling message types

system interface message type

6.22.6.3.2 8.22.2.1 TC[22,1]
enable the position-based schedule
execution function

minimum

6.22.6.3.3 8.22.2.2 TC[22,2]
disable the position-based schedule
execution function

minimum

6.22.6.4 8.22.2.28 TC[22,28] set the orbit number
by

declaration

6.22.6.5 8.22.2.3 TC[22,3] reset the position-based schedule minimum

6.22.6.6 8.22.2.4 TC[22,4]
insert activities into the position-based
schedule

minimum

6.22.7.2.1 8.22.2.20 TC[22,20] enable position-based sub-schedules
by

declaration

6.22.7.2.2 8.22.2.21 TC[22,21] disable position-based sub-schedules
implied by
TC[22,20]

6.22.7.2.3 8.22.2.18 TC[22,18]
report the status of each position-based sub-
schedule

by
declaration

6.22.7.2.3 8.22.2.19 TM[22,19] position-based sub-schedule status report
TC[22,18]
response

6.22.8.2.1 8.22.2.22 TC[22,22] create position-based scheduling groups
by

declaration

6.22.8.2.2 8.22.2.23 TC[22,23] delete position-based scheduling groups
implied by
TC[22,22]

6.22.8.3.1 8.22.2.24 TC[22,24] enable position-based scheduling groups
implied by
TC[22,22]

6.22.8.3.2 8.22.2.25 TC[22,25] disable position-based scheduling groups
implied by
TC[22,24]

6.22.8.3.3 8.22.2.26 TC[22,26]
report the status of each position-based
scheduling group

requires
TC[22,22]

6.22.8.3.3 8.22.2.27 TM[22,27]
position-based scheduling group status
report

TC[22,26]
response

651

ECSS-E-ST-70-41C
15 April 2016

system interface message type

6.22.10.2 8.22.2.15 TC[22,15] position-shift all scheduled activities
by

declaration

6.22.10.3 8.22.2.17 TC[22,17]
summary-report all position-based
scheduled activities

by
declaration

6.22.9.1 8.22.2.13 TM[22,13] position-based schedule summary report
TC[22,17]
response

6.22.10.4 8.22.2.16 TC[22,16]
detail-report all position-based scheduled
activities

by
declaration

6.22.9.2 8.22.2.10 TM[22,10] position-based schedule detail report
TC[22,16]
response

6.22.11.2 8.22.2.5 TC[22,5]
delete position-based scheduled activities
identified by request identifier

by
declaration

6.22.11.3 8.22.2.7 TC[22,7]
position-shift scheduled activities identified
by request identifier

by
declaration

6.22.11.4 8.22.2.12 TC[22,12]
summary-report position-based scheduled
activities identified by request identifier

by
declaration

6.22.9.1 8.22.2.13 TM[22,13] position-based schedule summary report
TC[22,12]
response

6.22.11.5 8.22.2.9 TC[22,9]
detail-report position-based scheduled
activities identified by request identifier

by
declaration

6.22.9.2 8.22.2.10 TM[22,10] position-based schedule detail report
TC[22,9]
response

6.22.12.3 8.22.2.6 TC[22,6]
delete the position-based scheduled
activities identified by a filter

by
declaration

6.22.12.4 8.22.2.8 TC[22,8]
position-shift the scheduled activities
identified by a filter

by
declaration

6.22.12.5 8.22.2.14 TC[22,14]
summary-report the position-based
scheduled activities identified by a filter

by
declaration

6.22.9.1 8.22.2.13 TM[22,13] position-based schedule summary report
TC[22,14]
response

6.22.12.6 8.22.2.11 TC[22,11]
detail-report the position-based scheduled
activities identified by a filter

by
declaration

6.22.9.2 8.22.2.10 TM[22,10] position-based schedule detail report
TC[22,11]
response

652

ECSS-E-ST-70-41C
15 April 2016

C.2.23 ST[23] file management

C.2.23.1. File handling
 Table C-32 shows the message types of the file handling subservice type.

Table C-32 File handling message types

system interface message type

6.23.4.1.1 8.23.2.1 TC[23,1] create a file minimum

6.23.4.1.2 8.23.2.2 TC[23,2] delete a file minimum

6.23.4.2 8.23.2.3 TC[23,3] report the attributes of a file minimum

6.23.4.2 8.23.2.4 TM[23,4] file attribute report
TC[23,3]
response

6.23.4.3.1 8.23.2.5 TC[23,5] lock a file
by

declaration

6.23.4.3.2 8.23.2.6 TC[23,6] unlock a file
implied by

TC[23,5]

6.23.4.4 8.23.2.7 TC[23,7] find files
by

declaration

6.23.4.4 8.23.2.8 TM[23,8] found files report
TC[23,7]
response

6.23.4.5.1 8.23.2.9 TC[23,9] create a directory
by

declaration

6.23.4.5.2 8.23.2.10 TC[23,10] delete a directory
implied by

TC[23,9]

6.23.4.5.3 8.23.2.11 TC[23,11] rename a directory
implied by

TC[23,9]

6.23.4.6 8.23.2.12 TC[23,12] summary-report the content of a repository
by

declaration

6.23.4.6 8.23.2.13 TM[23,13] repository content summary report
TC[23,12]
response

653

ECSS-E-ST-70-41C
15 April 2016

C.2.23.2. File copy
 Table C-33 shows the message types of the file copy subservice type.

Table C-33 File copy message types

system interface message type

6.23.5.2.2 8.23.2.14 TC[23,14] copy a file minimum

6.23.5.2.3 8.23.2.15 TC[23,15] move a file
by

declaration

6.23.5.3.1 8.23.2.16 TC[23,16] suspend file copy operations
by

declaration

6.23.5.3.2 8.23.2.17 TC[23,17] resume file copy operations
implied by
TC[23,16]

6.23.5.3.3 8.23.2.19 TC[23,19]
suspend all file copy operations involving a
repository path

by
declaration

6.23.5.3.4 8.23.2.20 TC[23,20]
resume all file copy operations involving a
repository path

implied by
TC[23,19]

6.23.5.4.1 8.23.2.18 TC[23,18] abort file copy operations
by

declaration

6.23.5.4.2 8.23.2.21 TC[23,21]
abort all file copy operations involving a
repository path

by
declaration

6.23.5.5.2 8.23.2.22 TC[23,22]
enable the periodic reporting of the file
copy status

by
declaration

6.23.5.5.3 8.23.2.24 TC[23,24]
disable the periodic reporting of the file
copy status

implied by
TC[23,22]

6.23.5.5.4 8.23.2.23 TM[23,23] file copy status report
TC[23,22]
response

654

ECSS-E-ST-70-41C
15 April 2016

Annex D (informative)
System and interface specification index

service type name
service
type ID

system interface
see page

Request verification 1 55 445
Device access 2 64 451
Housekeeping 3 78 456
Parameter statistics reporting 4 111 473
Event reporting 5 121 477
Memory management 6 127 481
(reserved) 7
Function management 8 157 492
Time management 9 160 493
(reserved) 10
Time-based scheduling 11 168 496
On-board monitoring 12 198 508
Large packet transfer 13 229 526
Real-time forwarding control 14 237 529
On-board storage and retrieval 15 265 538
(reserved) 16
Test 17 318 558
On-board operations procedure 18 321 560
Event-action 19 342 568
On-board parameter management 20 352 573
Request sequencing 21 358 577
Position-based scheduling 22 369 583
File management 23 403 596

655

ECSS-E-ST-70-41C
15 April 2016

Bibliography

CCSDS A30.0-G-3 CCSDS Glossary, July 1997

CCSDS 102.0-B-5 Packet Telemetry, Issue 5, November 2000

CCSDS 200.0-G-6 Telecommand Summary of Concept and Rationale, January 1987

CCSDS 202.0-B-3 Telecommand Part 2 – Data Routing Service, Issue 3, June 2001

CCSDS 727.0-B-4 CCSDS File Delivery Protocol (CFDP), Issue 4, January 2007

CCSDS 732.0-B-2 AOS Space Data Link Protocol, issue 2, 23 May 2007

CCSDS 910.2-G-1 Standard Terminology, Conventions and Methodology (TCM) for defining Data
Services, November 1994

ECSS-S-ST-00 ECSS system – Description, implementation and general requirements

ECSS-E-ST-50-03 Space engineering – Space data links – Telemetry transfer frame protocol

ECSS-E-ST-50-04 Space engineering – Space data links – Telecommand protocols synchronization
and channel coding

ESA PSS-04-151 Telecommand Decoder Specification, Issue 1, September 1993

ESA PSS-07-101 Packet utilization standard, Issue 1, May 1994

ITU-T V.41 Code-Independent Error Control System – Data Communication over the
Telephone Network, 1989
(before renaming known as Information Technology - CCITT V.41)

ISO 8473-1:1998 Information Technology - Protocol for Providing the Connectionless-Mode
Network Service: Protocol specification second edition

SANA Space Assigned Numbers Authority, http://sanaregistry.org

656

	Telemetry and telecommand packet utilization
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms from other standards
	3.2 Terms specific to the present standard
	3.3 Abbreviated terms
	3.4 Nomenclature

	4 Context and background
	4.1 Introduction
	4.2 Modelling the PUS
	4.2.1 General
	4.2.2 The PUS foundation model
	4.2.3 The service type model
	4.2.3.1 Introduction
	4.2.3.2 Standard service types
	4.2.3.3 Mission-specific service types

	4.2.4 The space system service model

	5 The PUS foundation model
	5.1 Introduction
	5.2 Convention
	5.3 The generic service type abstraction level
	5.3.1 General
	5.3.2 Subservice type
	5.3.3 Message type
	5.3.3.1 General
	5.3.3.2 Request type
	5.3.3.3 Report type

	5.3.4 Capability type
	5.3.5 Transaction type
	5.3.5.1 General
	5.3.5.2 Request related transaction type
	5.3.5.2.1 General
	5.3.5.2.2 Response type
	5.3.5.2.3 Execution verification profile

	5.3.5.3 Autonomous data reporting transaction type
	5.3.5.4 Event reporting transaction type

	5.3.6 Tailoring the generic service type abstraction level

	5.4 The generic service deployment abstraction level
	5.4.1 Introduction
	5.4.2 Application process
	5.4.2.1 General

	5.4.3 Interfaced system objects
	5.4.3.1 Introduction
	5.4.3.2 On-board parameter
	5.4.3.3 On-board memory
	5.4.3.3.1 General
	5.4.3.3.2 Addressing scheme

	5.4.3.4 Virtual channel

	5.4.4 Checksum algorithm
	5.4.5 On-board file system
	5.4.6 Service
	5.4.7 Subservice
	5.4.7.1 General
	5.4.7.2 Subservice entity
	5.4.7.2.1 General
	5.4.7.2.2 Subservice provider
	5.4.7.2.3 Subservice user

	5.4.8 Capability
	5.4.9 Failed progress of execution
	5.4.10 Transaction
	5.4.11 Message
	5.4.11.1 General
	5.4.11.2 Request
	5.4.11.2.1 General
	5.4.11.2.2 Acknowledgement
	5.4.11.2.3 Request execution verification

	5.4.11.3 Report
	5.4.11.3.1 General
	5.4.11.3.2 Response
	5.4.11.3.3 Data report

	5.4.12 Building the space system architecture

	6 Service type system requirements
	6.1 ST[01] request verification
	6.1.1 Scope
	6.1.1.1 General
	6.1.1.2 Routing and reporting subservice
	6.1.1.3 Acceptance and reporting subservice
	6.1.1.4 Execution reporting subservice

	6.1.2 Service layout
	6.1.2.1 Subservice
	6.1.2.2 Application process
	6.1.2.2.1 Destination of verification reports
	6.1.2.2.2 Application process that routes requests
	6.1.2.2.3 Application process that executes requests

	6.1.3 Routing and reporting subservice
	6.1.3.1 Accessibility
	6.1.3.1.1 Application process

	6.1.3.2 Routing verification of a request
	6.1.3.3 Reporting failed routing
	6.1.3.4 Subservice observables

	6.1.4 Acceptance and reporting subservice
	6.1.4.1 Acceptance verification of a request
	6.1.4.2 Reporting successful acceptance
	6.1.4.3 Reporting failed acceptance
	6.1.4.4 Subservice observables

	6.1.5 Execution reporting subservice
	6.1.5.1 Reporting the start of execution of a request
	6.1.5.1.1 Reporting successful start of execution
	6.1.5.1.2 Reporting failed start of execution

	6.1.5.2 Reporting the progress of execution of a request
	6.1.5.2.1 Reporting successful progress of execution
	6.1.5.2.2 Reporting failed progress of execution

	6.1.5.3 Reporting the completion of execution of a request
	6.1.5.3.1 Reporting successful completion of execution
	6.1.5.3.2 Reporting failed completion of execution

	6.1.5.4 Subservice observables

	6.2 ST[02] device access
	6.2.1 Scope
	6.2.1.1 General
	6.2.1.2 Device access subservice

	6.2.2 Service layout
	6.2.2.1 Subservice
	6.2.2.1.1 Device access subservice

	6.2.2.2 Application process

	6.2.3 Capability
	6.2.4 On/off device
	6.2.4.1 General
	6.2.4.2 Distribute on/off device commands

	6.2.5 Register
	6.2.5.1 General
	6.2.5.2 Distribute register load commands
	6.2.5.3 Distribute register dump commands

	6.2.6 CPDU
	6.2.6.1 General
	6.2.6.2 Distribute CPDU commands

	6.2.7 Physical and logical device access
	6.2.7.1 Physical device commanding and data acquisition
	6.2.7.1.1 Physical devices
	6.2.7.1.2 Distribute physical device commands
	6.2.7.1.3 Acquire data from physical devices

	6.2.7.2 Logical device commanding and data acquisition
	6.2.7.2.1 Logical devices
	6.2.7.2.2 Distribute logical device commands
	6.2.7.2.3 Acquire data from logical devices

	6.2.8 Subservice observables

	6.3 ST[03] housekeeping
	6.3.1 Scope
	6.3.1.1 General
	6.3.1.2 Housekeeping reporting and diagnostic reporting subservices
	6.3.1.3 Parameter functional reporting configuration subservice

	6.3.2 Service layout
	6.3.2.1 Subservice
	6.3.2.1.1 Housekeeping reporting subservice
	6.3.2.1.2 Diagnostic reporting subservice
	6.3.2.1.3 Parameter functional reporting configuration subservice

	6.3.2.2 Application process
	6.3.2.2.1 Housekeeping reporting subservice
	6.3.2.2.2 Diagnostic reporting subservice
	6.3.2.2.3 Parameter functional reporting configuration subservice

	6.3.3 Housekeeping reporting subservice
	6.3.3.1 Parameter accessibility
	6.3.3.2 Housekeeping parameter report structure
	6.3.3.3 Housekeeping parameter report
	6.3.3.4 Managing the periodic generation of housekeeping parameter reports
	6.3.3.4.1 Enable the periodic generation of housekeeping parameter reports
	6.3.3.4.2 Disable the periodic generation of housekeeping parameter reports

	6.3.3.5 Creating and deleting housekeeping parameter report structures
	6.3.3.5.1 Create a housekeeping parameter report structure
	6.3.3.5.2 Delete housekeeping parameter report structures

	6.3.3.6 Report housekeeping parameter report structures
	6.3.3.7 Generate a one shot report for housekeeping parameter report structures
	6.3.3.8 Append parameters to a housekeeping parameter report structure
	6.3.3.9 Modify the collection interval of housekeeping parameter report structures
	6.3.3.10 Report the periodic generation properties of housekeeping parameter report structures
	6.3.3.11 Subservice observables

	6.3.4 Diagnostic reporting subservice
	6.3.4.1 Parameter accessibility
	6.3.4.2 Diagnostic parameter report structure
	6.3.4.3 Diagnostic parameter report
	6.3.4.4 Enable the periodic generation of diagnostic parameter reports
	6.3.4.5 Disable the periodic generation of diagnostic parameter reports
	6.3.4.6 Create a diagnostic parameter report structure
	6.3.4.7 Delete diagnostic parameter report structures
	6.3.4.8 Report diagnostic parameter report structures
	6.3.4.9 Generate a one shot report for diagnostic parameter report structures
	6.3.4.10 Append parameters to a diagnostic parameter report structure
	6.3.4.11 Modify the collection interval of diagnostic parameter report structures
	6.3.4.12 Report the periodic generation properties of diagnostic parameter report structures
	6.3.4.13 Subservice observables

	6.3.5 Parameter functional reporting configuration subservice
	6.3.5.1 Accessibility
	6.3.5.2 Parameter functional reporting definition
	6.3.5.3 Apply parameter functional reporting configurations
	6.3.5.4 Managing parameter functional reporting definitions
	6.3.5.4.1 Create a parameter functional reporting definition
	6.3.5.4.2 Delete parameter functional reporting definitions

	6.3.5.5 Report parameter functional reporting definitions
	6.3.5.6 Modifying the parameter functional reporting definitions
	6.3.5.6.1 Add parameter report definitions to a parameter functional reporting definition
	6.3.5.6.2 Remove parameter report definitions from a parameter functional reporting definition
	6.3.5.6.3 Modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition

	6.3.5.7 Subservice observables

	6.4 ST[04] parameter statistics reporting
	6.4.1 Scope
	6.4.1.1 General
	6.4.1.2 Parameter statistics reporting subservice

	6.4.2 Service layout
	6.4.2.1 Subservice
	6.4.2.1.1 Parameter statistics reporting subservice

	6.4.2.2 Application process

	6.4.3 Parameter statistics definition
	6.4.3.1 General
	6.4.3.2 Statistic types
	6.4.3.3 Sampling interval

	6.4.4 Reset the parameter statistics
	6.4.5 On-request parameter statistics reporting
	6.4.5.1 Capability
	6.4.5.2 Report the parameter statistics
	6.4.5.3 Parameter statistics report

	6.4.6 Periodic parameter statistics reporting
	6.4.6.1 General
	6.4.6.2 Enable the periodic parameter statistics reporting
	6.4.6.3 Disable the periodic parameter statistics reporting

	6.4.7 Maintaining the list of evaluated parameters
	6.4.7.1 Add or update parameter statistics definitions
	6.4.7.2 Delete parameter statistics definitions
	6.4.7.3 Report the parameter statistics definitions

	6.4.8 Subservice observables

	6.5 ST[05] event reporting
	6.5.1 Scope
	6.5.1.1 General
	6.5.1.2 Event reporting subservice

	6.5.2 Service layout
	6.5.2.1 Subservice
	6.5.2.1.1 Event reporting subservice

	6.5.2.2 Application process

	6.5.3 Event definitions
	6.5.4 Event reporting
	6.5.5 Controlling the generation of event reports
	6.5.5.1 Event report generation status
	6.5.5.2 Enable the report generation of event definitions
	6.5.5.3 Disable the report generation of event definitions
	6.5.5.4 Report the list of disabled event definitions

	6.5.6 Subservice observables

	6.6 ST[06] memory management
	6.6.1 Scope
	6.6.1.1 General
	6.6.1.2 Raw data memory management subservice
	6.6.1.3 Structured data memory management subservice
	6.6.1.4 Common memory management subservice
	6.6.1.5 Memory configuration subservice

	6.6.2 Service layout
	6.6.2.1 Subservice
	6.6.2.1.1 General
	6.6.2.1.2 Raw data memory management subservice
	6.6.2.1.3 Structured data memory management subservice
	6.6.2.1.4 Common memory management subservice
	6.6.2.1.5 Memory configuration subservice

	6.6.2.2 Application process

	6.6.3 Raw data memory management subservice
	6.6.3.1 Checksumming
	6.6.3.2 Memory accessibility
	6.6.3.3 Load raw memory
	6.6.3.3.1 Load raw memory data areas
	6.6.3.3.2 Load a raw memory atomic data area in a non-interruptible transaction

	6.6.3.4 Dump raw memory data
	6.6.3.5 Check raw memory data
	6.6.3.6 Load raw memory data areas by reference
	6.6.3.7 Dump raw memory data areas to file
	6.6.3.8 Subservice observables

	6.6.4 Structured data memory management subservice
	6.6.4.1 Checksumming
	6.6.4.2 Memory accessibility
	6.6.4.3 Base plus offset
	6.6.4.4 Load object memory data
	6.6.4.5 Dump object memory data
	6.6.4.6 Check object memory data
	6.6.4.7 Check an object memory object
	6.6.4.8 Load object memory data areas by reference
	6.6.4.9 Dump object memory data areas to file
	6.6.4.10 Subservice observables

	6.6.5 Common memory management subservice
	6.6.5.1 Abort all memory dumps
	6.6.5.2 Subservice observables

	6.6.6 Memory configuration subservice
	6.6.6.1 Scrubbing memory
	6.6.6.1.1 Capability
	6.6.6.1.2 Memory accessibility
	6.6.6.1.3 Status
	6.6.6.1.4 Enable the scrubbing of a memory
	6.6.6.1.5 Disable the scrubbing of a memory

	6.6.6.2 Write protecting memory
	6.6.6.2.1 Capability
	6.6.6.2.2 Memory accessibility
	6.6.6.2.3 Status
	6.6.6.2.4 Enable the write protection of a memory
	6.6.6.2.5 Disable the write protection of a memory

	6.6.6.3 Subservice observables

	6.7 ST[07] (reserved)
	6.8 ST[08] function management
	6.8.1 Scope
	6.8.1.1 General
	6.8.1.2 Function management subservice

	6.8.2 Service layout
	6.8.2.1 Subservice
	6.8.2.1.1 Function management subservice

	6.8.2.2 Application process

	6.8.3 Accessibility
	6.8.3.1 Function

	6.8.4 Perform a function
	6.8.5 Subservice observables

	6.9 ST[09] time management
	6.9.1 Scope
	6.9.1.1 General
	6.9.1.2 Time reporting subservice
	6.9.1.3 Time reporting control subservice

	6.9.2 Service layout
	6.9.2.1 Service
	6.9.2.2 Subservice
	6.9.2.2.1 Time reporting subservice
	6.9.2.2.2 Time reporting control subservice

	6.9.2.3 Application process

	6.9.3 Spacecraft time reference
	6.9.4 Time reporting subservice
	6.9.4.1 Capability
	6.9.4.2 Time reporting in CUC format
	6.9.4.3 Time reporting in CDS format
	6.9.4.4 Time report generation process
	6.9.4.5 Subservice observables

	6.9.5 Time reporting control subservice
	6.9.5.1 Controlling the time reporting rate
	6.9.5.1.1 Set the time report generation rate

	6.9.5.2 Subservice observables

	6.10 ST[10] (reserved)
	6.11 ST[11] time-based scheduling
	6.11.1 Scope
	6.11.1.1 General
	6.11.1.2 Time-based scheduling subservice

	6.11.2 Service layout
	6.11.2.1 Subservice
	6.11.2.1.1 Time-based scheduling subservice

	6.11.2.2 Application process

	6.11.3 Accessibility
	6.11.3.1 Application process

	6.11.4 Managing the time-based schedule
	6.11.4.1 Capability
	6.11.4.2 General
	6.11.4.3 Controlling the time-based schedule execution function
	6.11.4.3.1 Status
	6.11.4.3.2 Enable the time-based schedule execution function
	6.11.4.3.3 Disable the time-based schedule execution function

	6.11.4.4 Reset the time-based schedule
	6.11.4.5 Insert activities into the time-based schedule
	6.11.4.6 Schedule execution logic

	6.11.5 Managing time-based sub-schedules
	6.11.5.1 Time-based sub-schedules
	6.11.5.2 Enabling and disabling time-based sub-schedules
	6.11.5.2.1 Enable time-based sub-schedules
	6.11.5.2.2 Disable time-based sub-schedules
	6.11.5.2.3 Report the status of each time-based sub-schedule

	6.11.6 Managing time-based scheduling groups
	6.11.6.1 Time-based scheduling groups
	6.11.6.2 Creating and deleting time-based scheduling groups
	6.11.6.2.1 Create time-based scheduling groups
	6.11.6.2.2 Delete time-based scheduling groups

	6.11.6.3 Enabling and disabling time-based scheduling groups
	6.11.6.3.1 Enable time-based scheduling groups
	6.11.6.3.2 Disable time-based scheduling groups
	6.11.6.3.3 Report the status of each time-based scheduling group

	6.11.7 Reports of time-based scheduled activities
	6.11.7.1 Time-based schedule summary report
	6.11.7.2 Time-based schedule detail report

	6.11.8 Managing all time-based scheduled activities
	6.11.8.1 Time-shift all scheduled activities
	6.11.8.2 Summary-report all time-based scheduled activities
	6.11.8.3 Detail-report all time-based scheduled activities

	6.11.9 Managing time-based scheduled activities identified by request identifier
	6.11.9.1 General
	6.11.9.2 Delete time-based scheduled activities identified by request identifier
	6.11.9.3 Time-shift scheduled activities identified by request identifier
	6.11.9.4 Summary-report time-based scheduled activities identified by request identifier
	6.11.9.5 Detail-report time-based scheduled activities identified by request identifier

	6.11.10 Managing the time-based scheduled activities identified by a filter
	6.11.10.1 General
	6.11.10.2 Time-window filtering function
	6.11.10.2.1 Overview
	6.11.10.2.2 Time window filtering
	6.11.10.2.3 Sub-schedule filtering
	6.11.10.2.4 Group filtering
	6.11.10.2.5 Overall filtering

	6.11.10.3 Delete the time-based scheduled activities identified by a filter
	6.11.10.4 Time-shift the scheduled activities identified by a filter
	6.11.10.5 Summary-report the time-based scheduled activities identified by a filter
	6.11.10.6 Detail-report the time-based scheduled activities identified by a filter

	6.11.11 Subservice observables

	6.12 ST[12] on-board monitoring
	6.12.1 Scope
	6.12.1.1 General
	6.12.1.2 Parameter monitoring subservice
	6.12.1.3 Functional monitoring subservice

	6.12.2 Service layout
	6.12.2.1 Subservice
	6.12.2.1.1 Parameter monitoring subservice
	6.12.2.1.2 Functional monitoring subservice

	6.12.2.2 Application process
	6.12.2.3 Accessibility
	6.12.2.3.1 Service

	6.12.3 Parameter monitoring subservice
	6.12.3.1 Parameter accessibility
	6.12.3.2 Check types
	6.12.3.2.1 Minimum capability
	6.12.3.2.2 Additional capability

	6.12.3.3 Parameter monitoring definition
	6.12.3.4 Statuses
	6.12.3.5 Controlling the parameter monitoring function
	6.12.3.5.1 Enable the parameter monitoring function
	6.12.3.5.2 Disable the parameter monitoring function

	6.12.3.6 Controlling the parameter monitoring definitions
	6.12.3.6.1 Enable parameter monitoring definitions
	6.12.3.6.2 Disable parameter monitoring definitions
	6.12.3.6.3 Parameter monitoring process

	6.12.3.7 Reporting the check transitions
	6.12.3.8 Change the maximum transition reporting delay
	6.12.3.9 Managing parameter monitoring definitions
	6.12.3.9.1 Add parameter monitoring definitions
	6.12.3.9.2 Delete all parameter monitoring definitions
	6.12.3.9.3 Delete parameter monitoring definitions
	6.12.3.9.4 Modify parameter monitoring definitions

	6.12.3.10 Report parameter monitoring definitions
	6.12.3.11 Report the status of each parameter monitoring definition
	6.12.3.12 Report the out-of-limits
	6.12.3.13 Subservice observables

	6.12.4 Functional monitoring subservice
	6.12.4.1 Accessibility
	6.12.4.1.1 Parameter monitoring definition

	6.12.4.2 Functional monitoring definition
	6.12.4.2.1 General

	6.12.4.3 Statuses
	6.12.4.4 Controlling the functional monitoring function
	6.12.4.4.1 Enable the functional monitoring function
	6.12.4.4.2 Disable the functional monitoring function

	6.12.4.5 Controlling the functional monitoring definitions
	6.12.4.5.1 Monitoring transitions
	6.12.4.5.2 Enable functional monitoring definitions
	6.12.4.5.3 Disable functional monitoring definitions

	6.12.4.6 Protecting functional monitoring definitions
	6.12.4.6.1 Protect functional monitoring definitions
	6.12.4.6.2 Unprotect functional monitoring definitions

	6.12.4.7 Modifying functional monitoring definitions
	6.12.4.7.1 Add functional monitoring definitions
	6.12.4.7.2 Delete functional monitoring definitions

	6.12.4.8 Report functional monitoring definitions
	6.12.4.9 Report the status of each functional monitoring definition
	6.12.4.10 Subservice observables

	6.13 ST[13] large packet transfer
	6.13.1 Scope
	6.13.1.1 General
	6.13.1.2 Large packet downlink subservice
	6.13.1.3 Large packet uplink subservice

	6.13.2 Service layout
	6.13.2.1 Subservice
	6.13.2.1.1 General
	6.13.2.1.2 Large packet downlink subservice
	6.13.2.1.3 Large packet uplink subservice

	6.13.2.2 Application process

	6.13.3 Large packet downlink subservice
	6.13.3.1 Configuration
	6.13.3.2 Resources
	6.13.3.3 Downlink process
	6.13.3.3.1 Generating downlink part reports
	6.13.3.3.2 Accepting part reports and reconstructing large packets

	6.13.3.4 Subservice Observables

	6.13.4 Large packet uplink subservice
	6.13.4.1 Configuration
	6.13.4.2 Resources
	6.13.4.3 Uplink process
	6.13.4.3.1 Generating uplink part requests
	6.13.4.3.2 Accepting uplink part requests and reconstructing large packets
	6.13.4.3.3 Large packet uplink abortion report

	6.13.4.4 Subservice Observables

	6.14 ST[14] real-time forwarding control
	6.14.1 Scope
	6.14.1.1 General
	6.14.1.2 Real-time forwarding control subservice

	6.14.2 Service layout
	6.14.2.1 Subservice
	6.14.2.1.1 Real-time forwarding control subservice

	6.14.2.2 Application process

	6.14.3 Real-time forwarding control subservice
	6.14.3.1 Accessibility
	6.14.3.1.1 Application process

	6.14.3.2 Forward-control definitions
	6.14.3.2.1 Capability
	6.14.3.2.2 Application process forward-control configuration
	6.14.3.2.3 Housekeeping parameter report forward-control configuration
	6.14.3.2.4 Diagnostic parameter report forward-control configuration
	6.14.3.2.5 Event report blocking forward-control configuration

	6.14.3.3 Forwarding control processing logic
	6.14.3.4 Managing the application process forward-control configuration
	6.14.3.4.1 Add report types to the application process forward-control configuration
	6.14.3.4.2 Delete report types from the application process forward-control configuration
	6.14.3.4.3 Report the content of the application process forward-control configuration

	6.14.3.5 Managing the housekeeping parameter report forward-control configuration
	6.14.3.5.1 Add structure identifiers to the housekeeping parameter report forward-control configuration
	6.14.3.5.2 Delete structure identifiers from the housekeeping parameter report forward-control configuration
	6.14.3.5.3 Report the content of the housekeeping parameter report forward-control configuration

	6.14.3.6 Managing the diagnostic parameter report forward-control configuration
	6.14.3.6.1 Add structure identifiers to the diagnostic parameter report forward-control configuration
	6.14.3.6.2 Delete structure identifiers from the diagnostic parameter report forward-control configuration
	6.14.3.6.3 Report the content of the diagnostic parameter report forward-control configuration

	6.14.3.7 Managing the event report blocking forward-control configuration
	6.14.3.7.1 Delete event definition identifiers from the event report blocking forward-control configuration
	6.14.3.7.2 Add event definition identifiers to the event report blocking forward-control configuration
	6.14.3.7.3 Report the content of the event report blocking forward-control configuration

	6.14.4 Subservice observables

	6.15 ST[15] on-board storage and retrieval
	6.15.1 Scope
	6.15.1.1 General
	6.15.1.2 Storage and retrieval subservice
	6.15.1.3 Packet selection subservice

	6.15.2 Service layout
	6.15.2.1 Subservice
	6.15.2.1.1 Storage and retrieval subservice
	6.15.2.1.2 Packet selection subservice

	6.15.2.2 Application process
	6.15.2.2.1 Storage and retrieval subservice
	6.15.2.2.2 Packet selection subservice

	6.15.3 Storage and retrieval subservice
	6.15.3.1 Packet store
	6.15.3.2 Time-stamping
	6.15.3.3 Controlling the packet store storage function
	6.15.3.3.1 Storage process
	6.15.3.3.2 Enable the storage function of packet stores
	6.15.3.3.3 Disable the storage function of packet stores

	6.15.3.4 Controlling the open retrieval function
	6.15.3.4.1 Open retrieval process
	6.15.3.4.2 Change the open retrieval start time tag of packet stores
	6.15.3.4.3 Resume the open retrieval of packet stores
	6.15.3.4.4 Suspend the open retrieval of packet stores

	6.15.3.5 Controlling the by-time-range retrieval function
	6.15.3.5.1 By-time-range retrieval process
	6.15.3.5.2 Start the by-time-range retrieval of packet stores
	6.15.3.5.3 Abort the by-time-range retrieval of packet stores

	6.15.3.6 Report the status of each packet store
	6.15.3.7 Deleting the packet store contents
	6.15.3.7.1 Delete the content of packet stores up to the specified time

	6.15.3.8 Managing the packet stores
	6.15.3.8.1 Create packet stores
	6.15.3.8.2 Delete packet stores
	6.15.3.8.3 Report the configuration of each packet store
	6.15.3.8.4 Copy the packets contained in a packet store selected by time window

	6.15.3.9 Changing packet store properties
	6.15.3.9.1 Resize packet stores
	6.15.3.9.2 Change a packet store type to circular
	6.15.3.9.3 Change a packet store type to bounded
	6.15.3.9.4 Change the virtual channel used by a packet store

	6.15.3.10 Reporting the content of the packet stores
	6.15.3.10.1 Summary-report the content of packet stores

	6.15.3.11 Subservice observables

	6.15.4 Packet selection subservice
	6.15.4.1 Accessibility
	6.15.4.1.1 Application process
	6.15.4.1.2 Packet store

	6.15.4.2 Storage-control definitions
	6.15.4.2.1 Capability
	6.15.4.2.2 Application process storage-control configuration
	6.15.4.2.3 Housekeeping parameter report storage-control configuration
	6.15.4.2.4 Diagnostic parameter report storage-control configuration
	6.15.4.2.5 Event report blocking storage-control configuration

	6.15.4.3 Storage control processing logic
	6.15.4.4 Managing the application process storage-control configuration
	6.15.4.4.1 Add report types to the application process storage-control configuration
	6.15.4.4.2 Delete report types from the application process storage-control configuration
	6.15.4.4.3 Report the content of the application process storage-control configuration

	6.15.4.5 Managing the housekeeping parameter report storage-control configuration
	6.15.4.5.1 Add structure identifiers to the housekeeping parameter report storage-control configuration
	6.15.4.5.2 Delete structure identifiers from the housekeeping parameter report storage-control configuration
	6.15.4.5.3 Report the content of the housekeeping parameter report storage-control configuration

	6.15.4.6 Managing the diagnostic parameter report storage-control configuration
	6.15.4.6.1 Add structure identifiers to the diagnostic parameter report storage-control configuration
	6.15.4.6.2 Delete structure identifiers from the diagnostic parameter report storage-control configuration
	6.15.4.6.3 Report the content of the diagnostic parameter report storage-control configuration

	6.15.4.7 Managing the event report blocking storage-control configuration
	6.15.4.7.1 Add event definition identifiers to the event report blocking storage-control configuration
	6.15.4.7.2 Delete event definition identifiers from the event report blocking storage-control configuration
	6.15.4.7.3 Report the content of the event report blocking storage-control configuration

	6.15.4.8 Subservice observables

	6.16 ST[16] (reserved)
	6.17 ST[17] test
	6.17.1 Scope
	6.17.1.1 General
	6.17.1.2 Test subservice

	6.17.2 Service layout
	6.17.2.1 Subservice
	6.17.2.1.1 Test subservice

	6.17.2.2 Application process

	6.17.3 Perform an are-you-alive connection test
	6.17.4 End-to-end is-application-process-alive connection testing
	6.17.4.1 Application process accessibility
	6.17.4.2 Perform an on-board connection test

	6.17.5 Subservice observables

	6.18 ST[18] on-board control procedure
	6.18.1 Scope
	6.18.1.1 General
	6.18.1.2 OBCP management subservice
	6.18.1.3 OBCP engine management subservice

	6.18.2 Service layout
	6.18.2.1 Subservice
	6.18.2.1.1 OBCP management subservice
	6.18.2.1.2 OBCP engine management subservice

	6.18.2.2 Application process
	6.18.2.3 OBCP engine

	6.18.3 Accessibility
	6.18.3.1 Application process
	6.18.3.2 Parameter

	6.18.4 OBCP management subservice
	6.18.4.1 OBCP definition
	6.18.4.1.1 Resources
	6.18.4.1.2 OBCP checksum
	6.18.4.1.3 OBCP identifier

	6.18.4.2 OBCP execution observability level
	6.18.4.2.1 General
	6.18.4.2.2 Accessibility

	6.18.4.3 Execution status
	6.18.4.4 Loading, activating and deleting
	6.18.4.4.1 Capability
	6.18.4.4.2 Direct-load an OBCP
	6.18.4.4.3 Load an OBCP by reference
	6.18.4.4.4 Unload an OBCP
	6.18.4.4.5 Activate an OBCP
	6.18.4.4.6 Load by reference and activate an OBCP
	6.18.4.4.7 Stop an OBCP
	6.18.4.4.8 Stop and unload an OBCP
	6.18.4.4.9 Abort an OBCP
	6.18.4.4.10 Abort all OBCPs and report

	6.18.4.5 Execution status reporting
	6.18.4.5.1 Report the execution status of each OBCP

	6.18.4.6 Suspending and resuming
	6.18.4.6.1 Suspend an OBCP
	6.18.4.6.2 Resume an OBCP
	6.18.4.6.3 Activate and execute one OBCP step
	6.18.4.6.4 Resume and execute one OBCP step

	6.18.4.7 Communicating parameters
	6.18.4.7.1 Communicate parameters to an OBCP

	6.18.4.8 Tracing
	6.18.4.8.1 Set the observability level of OBCPs

	6.18.4.9 Subservice observables

	6.18.5 OBCP engine management subservice
	6.18.5.1 Controlling the OBCP engine
	6.18.5.1.1 Start the OBCP engine
	6.18.5.1.2 Stop the OBCP engine

	6.18.5.2 Subservice observables

	6.19 ST[19] event-action
	6.19.1 Scope
	6.19.1.1 General
	6.19.1.2 Event-action subservice

	6.19.2 Service layout
	6.19.2.1 Subservice
	6.19.2.1.1 Event-action subservice

	6.19.2.2 Application process

	6.19.3 Accessibility
	6.19.3.1 Event reporting
	6.19.3.2 Application process

	6.19.4 Event-action definition
	6.19.5 Processing logic
	6.19.5.1 Statuses
	6.19.5.2 Action initiation

	6.19.6 Controlling the event-action function
	6.19.6.1 Enable the event-action function
	6.19.6.2 Disable the event-action function

	6.19.7 Controlling the event-action definitions
	6.19.7.1 Enable event-action definitions
	6.19.7.2 Disable event-action definitions

	6.19.8 Maintaining event-action definitions
	6.19.8.1 Add event-action definitions
	6.19.8.2 Capability
	6.19.8.3 Delete event-action definitions
	6.19.8.4 Delete all event-action definitions
	6.19.8.5 Report the status of each event-action definition
	6.19.8.6 Report event-action definitions

	6.19.9 Subservice observables

	6.20 ST[20] parameter management
	6.20.1 Scope
	6.20.1.1 General
	6.20.1.2 Parameter management subservice

	6.20.2 Service layout
	6.20.2.1 Subservice
	6.20.2.1.1 Parameter management subservice

	6.20.2.2 Application process

	6.20.3 Parameter definition
	6.20.4 Managing parameter values
	6.20.4.1 Report parameter values
	6.20.4.2 Set parameter values

	6.20.5 Managing parameter definitions
	6.20.5.1 Accessibility
	6.20.5.2 Change raw memory parameter definitions
	6.20.5.3 Change object memory parameter definitions
	6.20.5.4 Report parameter definitions

	6.20.6 Subservice observables

	6.21 ST[21] request sequencing
	6.21.1 Scope
	6.21.1.1 General
	6.21.1.2 Request sequencing subservice

	6.21.2 Service layout
	6.21.2.1 Subservice
	6.21.2.1.1 Request sequencing subservice

	6.21.2.2 Application process

	6.21.3 Accessibility
	6.21.3.1 Application process

	6.21.4 Request sequence
	6.21.5 Loading, activating and unloading a request sequence
	6.21.5.1 Capability
	6.21.5.2 Direct-load a request sequence
	6.21.5.3 Load a request sequence by reference
	6.21.5.4 Unload a request sequence
	6.21.5.5 Activate a request sequence
	6.21.5.6 Load by reference and activate a request sequence
	6.21.5.7 Abort a request sequence
	6.21.5.8 Abort all request sequences and report

	6.21.6 Report the execution status of each request sequence
	6.21.7 Checksum a request sequence
	6.21.8 Report the content of a request sequence
	6.21.9 Subservice observables

	6.22 ST[22] position-based scheduling
	6.22.1 Scope
	6.22.1.1 General
	6.22.1.2 Position-based scheduling subservice

	6.22.2 Service layout
	6.22.2.1 Subservice
	6.22.2.1.1 Position-based scheduling subservice

	6.22.2.2 Application process

	6.22.3 Accessibility
	6.22.3.1 Application process

	6.22.4 Determining orbit positions
	6.22.5 Persistent scheduling
	6.22.6 Managing the position-based schedule
	6.22.6.1 Capability
	6.22.6.2 General
	6.22.6.3 Controlling the position-based schedule execution function
	6.22.6.3.1 Status
	6.22.6.3.2 Enable the position-based schedule execution function
	6.22.6.3.3 Disable the position-based schedule execution function

	6.22.6.4 Set the orbit number
	6.22.6.5 Reset the position-based schedule
	6.22.6.6 Insert activities into the position-based schedule
	6.22.6.7 Schedule execution logic

	6.22.7 Managing position-based sub-schedules
	6.22.7.1 Position-based sub-schedules
	6.22.7.2 Enabling and disabling position-based sub-schedules
	6.22.7.2.1 Enable position-based sub-schedules
	6.22.7.2.2 Disable position-based sub-schedules
	6.22.7.2.3 Report the status of each position-based sub-schedule

	6.22.8 Managing position-based scheduling groups
	6.22.8.1 Position-based scheduling groups
	6.22.8.2 Creating and deleting position-based scheduling groups
	6.22.8.2.1 Create position-based scheduling groups
	6.22.8.2.2 Delete position-based scheduling groups

	6.22.8.3 Enabling and disabling position-based scheduling groups
	6.22.8.3.1 Enable position-based scheduling groups
	6.22.8.3.2 Disable position-based scheduling groups
	6.22.8.3.3 Report the status of each position-based scheduling group

	6.22.9 Reports of position-based scheduled activities
	6.22.9.1 Position-based schedule summary report
	6.22.9.2 Position-based schedule detail report

	6.22.10 Managing all position-based scheduled activities
	6.22.10.1 General
	6.22.10.2 Position-shift all scheduled activities
	6.22.10.3 Summary-report all position-based scheduled activities
	6.22.10.4 Detail-report all position-based scheduled activities

	6.22.11 Managing position-based scheduled activities identified by request identifier
	6.22.11.1 General
	6.22.11.2 Delete position-based scheduled activities identified by request identifier
	6.22.11.3 Position-shift scheduled activities identified by request identifier
	6.22.11.4 Summary-report position-based scheduled activities identified by request identifier
	6.22.11.5 Detail-report position-based scheduled activities identified by request identifier

	6.22.12 Managing the position-based scheduled activities identified by a filter
	6.22.12.1 General
	6.22.12.2 Position-window filtering function
	6.22.12.2.1 Overview
	6.22.12.2.2 Position window filtering
	6.22.12.2.3 Sub-schedule filtering
	6.22.12.2.4 Group filtering
	6.22.12.2.5 Overall filtering

	6.22.12.3 Delete the position-based scheduled activities identified by a filter
	6.22.12.4 Position-shift the scheduled activities identified by a filter
	6.22.12.5 Summary-report the position-based scheduled activities identified by a filter
	6.22.12.6 Detail-report the position-based scheduled activities identified by a filter

	6.22.13 Subservice observables

	6.23 ST[23] file management
	6.23.1 Scope
	6.23.1.1 General
	6.23.1.2 File handling subservice
	6.23.1.3 File copy subservice

	6.23.2 Service layout
	6.23.2.1 Subservice
	6.23.2.1.1 File handling subservice
	6.23.2.1.2 File copy subservice

	6.23.2.2 Application process

	6.23.3 file systems
	6.23.3.1 Overview
	6.23.3.2 Accessibility
	6.23.3.2.1 File systems

	6.23.3.3 Wildcard characters in an object path
	6.23.3.4 On-board file attributes
	6.23.3.4.1 General
	6.23.3.4.2 Minimum capability
	6.23.3.4.3 Additional capability

	6.23.4 File handling subservice
	6.23.4.1 Creating and deleting files
	6.23.4.1.1 Create a file
	6.23.4.1.2 Delete a file

	6.23.4.2 Report the attributes of a file
	6.23.4.3 File access protection
	6.23.4.3.1 Lock a file
	6.23.4.3.2 Unlock a file

	6.23.4.4 Find files
	6.23.4.5 Managing directories
	6.23.4.5.1 Create a directory
	6.23.4.5.2 Delete a directory
	6.23.4.5.3 Rename a directory

	6.23.4.6 Summary-report the content of a repository
	6.23.4.7 Subservice observables

	6.23.5 File copy subservice
	6.23.5.1 File systems
	6.23.5.2 File copy operations
	6.23.5.2.1 General
	6.23.5.2.2 Copy a file
	6.23.5.2.3 Move a file

	6.23.5.3 Suspending and resuming the file copy operations
	6.23.5.3.1 Suspend file copy operations
	6.23.5.3.2 Resume file copy operations
	6.23.5.3.3 Suspend all file copy operations involving a repository path
	6.23.5.3.4 Resume all file copy operations involving a repository path

	6.23.5.4 Abort the file copy operations
	6.23.5.4.1 Abort file copy operations
	6.23.5.4.2 Abort all file copy operations involving a repository path

	6.23.5.5 Periodic file copy status reporting
	6.23.5.5.1 General
	6.23.5.5.2 Enable the periodic reporting of the file copy status
	6.23.5.5.3 Disable the periodic reporting of the file copy status
	6.23.5.5.4 File copy status report

	6.23.5.6 Subservice observables

	7 Space to ground interface requirements
	7.1 Introduction
	7.1.1 Packets
	7.1.2 Packet transport
	7.1.2.1 Introduction
	7.1.2.2 Telemetry link
	7.1.2.3 Telecommand link

	7.2 Convention
	7.2.1 Structure diagram
	7.2.2 Bit-field numbering

	7.3 Packet field type code
	7.3.1 General
	7.3.2 Boolean
	7.3.3 Enumerated
	7.3.4 Unsigned integer
	7.3.5 Signed integer
	7.3.6 Real
	7.3.7 Bitstring
	7.3.8 Octetstring
	7.3.9 Characterstring
	7.3.10 Absolute time
	7.3.11 Relative time
	7.3.12 Deduced
	7.3.13 Packet

	7.4 The CCSDS Space Packet
	7.4.1 Overview
	7.4.2 General
	7.4.3 Telemetry packet data field
	7.4.3.1 Telemetry packet secondary header
	7.4.3.2 Telemetry user data field

	7.4.4 Telecommand packet data field
	7.4.4.1 Telecommand packet secondary header
	7.4.4.2 Telecommand user data field

	8 Service type interface requirements
	8.1 ST[01] request verification
	8.1.1 General
	8.1.2 Request and reports
	8.1.2.1 TM[1,1] successful acceptance verification report
	8.1.2.2 TM[1,2] failed acceptance verification report
	8.1.2.3 TM[1,3] successful start of execution verification report
	8.1.2.4 TM[1,4] failed start of execution verification report
	8.1.2.5 TM[1,5] successful progress of execution verification report
	8.1.2.6 TM[1,6] failed progress of execution verification report
	8.1.2.7 TM[1,7] successful completion of execution verification report
	8.1.2.8 TM[1,8] failed completion of execution verification report
	8.1.2.9 TM[1,10] failed routing verification report

	8.2 ST[02] device access
	8.2.1 General
	8.2.2 Requests and reports
	8.2.2.1 TC[2,1] distribute on/off device commands
	8.2.2.2 TC[2,2] distribute register load commands
	8.2.2.3 TC[2,4] distribute CPDU commands
	8.2.2.4 TC[2,5] distribute register dump commands
	8.2.2.5 TM[2,6] register dump report
	8.2.2.6 TC[2,7] distribute physical device commands
	8.2.2.7 TC[2,8] acquire data from physical devices
	8.2.2.8 TM[2,9] physical device data report
	8.2.2.9 TC[2,10] distribute logical device commands
	8.2.2.10 TC[2,11] acquire data from logical devices
	8.2.2.11 TM[2,12] logical device data report

	8.3 ST[03] housekeeping
	8.3.1 General
	8.3.2 Requests and reports
	8.3.2.1 TC[3,1] create a housekeeping parameter report structure
	8.3.2.2 TC[3,2] create a diagnostic parameter report structure
	8.3.2.3 TC[3,3] delete housekeeping parameter report structures
	8.3.2.4 TC[3,4] delete diagnostic parameter report structures
	8.3.2.5 TC[3,5] enable the periodic generation of housekeeping parameter reports
	8.3.2.6 TC[3,6] disable the periodic generation of housekeeping parameter reports
	8.3.2.7 TC[3,7] enable the periodic generation of diagnostic parameter reports
	8.3.2.8 TC[3,8] disable the periodic generation of diagnostic parameter reports
	8.3.2.9 TC[3,9] report housekeeping parameter report structures
	8.3.2.10 TM[3,10] housekeeping parameter report structure report
	8.3.2.11 TC[3,11] report diagnostic parameter report structures
	8.3.2.12 TM[3,12] diagnostic parameter report structure report
	8.3.2.13 TM[3,25] housekeeping parameter report
	8.3.2.14 TM[3,26] diagnostic parameter report
	8.3.2.15 TC[3,27] generate a one shot report for housekeeping parameter report structures
	8.3.2.16 TC[3,28] generate a one shot report for diagnostic parameter report structures
	8.3.2.17 TC[3,29] append parameters to a housekeeping parameter report structure
	8.3.2.18 TC[3,30] append parameters to a diagnostic parameter report structure
	8.3.2.19 TC[3,31] modify the collection interval of housekeeping parameter report structures
	8.3.2.20 TC[3,32] modify the collection interval of diagnostic parameter report structures
	8.3.2.21 TC[3,33] report the periodic generation properties of housekeeping parameter report structures
	8.3.2.22 TC[3,34] report the periodic generation properties of diagnostic parameter report structures
	8.3.2.23 TM[3,35] housekeeping parameter report periodic generation properties report
	8.3.2.24 TM[3,36] diagnostic parameter report periodic generation properties report
	8.3.2.25 TC[3,37] apply parameter functional reporting configurations
	8.3.2.26 TC[3,38] create a parameter functional reporting definition
	8.3.2.27 TC[3,39] delete parameter functional reporting definitions
	8.3.2.28 TC[3,40] report parameter functional reporting definitions
	8.3.2.29 TM[3,41] parameter functional reporting definition report
	8.3.2.30 TC[3,42] add parameter report definitions to a parameter functional reporting definition
	8.3.2.31 TC[3,43] remove parameter report definitions from a parameter functional reporting definition
	8.3.2.32 TC[3,44] modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition

	8.3.3 Enumeration

	8.4 ST[04] parameter statistics reporting
	8.4.1 General
	8.4.2 Requests and reports
	8.4.2.1 TC[4,1] report the parameter statistics
	8.4.2.2 TM[4,2] parameter statistics report
	8.4.2.3 TC[4,3] reset the parameter statistics
	8.4.2.4 TC[4,4] enable the periodic parameter statistics reporting
	8.4.2.5 TC[4,5] disable the periodic parameter statistics reporting
	8.4.2.6 TC[4,6] add or update parameter statistics definitions
	8.4.2.7 TC[4,7] delete parameter statistics definitions
	8.4.2.8 TC[4,8] report the parameter statistics definitions
	8.4.2.9 TM[4,9] parameter statistics definition report

	8.5 ST[05] event reporting
	8.5.1 General
	8.5.2 Requests and reports
	8.5.2.1 TM[5,1] informative event report
	8.5.2.2 TM[5,2] low severity anomaly report
	8.5.2.3 TM[5,3] medium severity anomaly report
	8.5.2.4 TM[5,4] High severity anomaly report
	8.5.2.5 TC[5,5] enable the report generation of event definitions
	8.5.2.6 TC[5,6] disable the report generation of event definitions
	8.5.2.7 TC[5,7] report the list of disabled event definitions
	8.5.2.8 TM[5,8] disabled event definitions list report

	8.6 ST[06] memory management
	8.6.1 General
	8.6.2 Requests and reports
	8.6.2.1 TC[6,1] load object memory data
	8.6.2.2 TC[6,2] load raw memory data areas
	8.6.2.3 TC[6,3] dump object memory data
	8.6.2.4 TM[6,4] dumped object memory data report
	8.6.2.5 TC[6,5] dump raw memory data
	8.6.2.6 TM[6,6] dumped raw memory data report
	8.6.2.7 TC[6,7] check object memory data
	8.6.2.8 TM[6,8] checked object memory data report
	8.6.2.9 TC[6,9] check raw memory data
	8.6.2.10 TM[6,10] checked raw memory data report
	8.6.2.11 TC[6,11] load a raw memory atomic data area in a non-interruptible transaction
	8.6.2.12 TC[6,12] abort all memory dumps
	8.6.2.13 TC[6,13] enable the scrubbing of a memory
	8.6.2.14 TC[6,14] disable the scrubbing of a memory
	8.6.2.15 TC[6,15] enable the write protection of a memory
	8.6.2.16 TC[6,16] disable the write protection of a memory
	8.6.2.17 TC[6,17] check an object memory object
	8.6.2.18 TM[6,18] checked object memory object report
	8.6.2.19 TC[6,19] load raw memory data areas by reference
	8.6.2.20 TC[6,20] dump raw memory data areas to file
	8.6.2.21 TC[6,21] load object memory data areas by reference
	8.6.2.22 TC[6,22] dump object memory data areas to file

	8.7 ST[07] (reserved)
	8.8 ST[08] function management
	8.8.1 General
	8.8.2 Requests and reports
	8.8.2.1 TC[8,1] perform a function

	8.9 ST[09] time management
	8.9.1 General
	8.9.2 Requests and reports
	8.9.2.1 TC[9,1] set the time report generation rate
	8.9.2.2 TM[9,2] CUC time report
	8.9.2.3 TM[9,3] CDS time report

	8.10 ST[10] (reserved)
	8.11 ST[11] time-based scheduling
	8.11.1 General
	8.11.2 Requests and reports
	8.11.2.1 TC[11,1] enable the time-based schedule execution function
	8.11.2.2 TC[11,2] disable the time-based schedule execution function
	8.11.2.3 TC[11,3] reset the time-based schedule
	8.11.2.4 TC[11,4] insert activities into the time-based schedule
	8.11.2.5 TC[11,5] delete time-based scheduled activities identified by request identifier
	8.11.2.6 TC[11,6] delete the time-based scheduled activities identified by a filter
	8.11.2.7 TC[11,7] time-shift scheduled activities identified by request identifier
	8.11.2.8 TC[11,8] time-shift the scheduled activities identified by a filter
	8.11.2.9 TC[11,9] detail-report time-based scheduled activities identified by request identifier
	8.11.2.10 TM[11,10] time-based schedule detail report
	8.11.2.11 TC[11,11] detail-report the time-based scheduled activities identified by a filter
	8.11.2.12 TC[11,12] summary-report time-based scheduled activities identified by request identifier
	8.11.2.13 TM[11,13] time-based schedule summary report
	8.11.2.14 TC[11,14] summary-report the time-based scheduled activities identified by a filter
	8.11.2.15 TC[11,15] time-shift all scheduled activities
	8.11.2.16 TC[11,16] detail-report all time-based scheduled activities
	8.11.2.17 TC[11,17] summary-report all time-based scheduled activities
	8.11.2.18 TC[11,18] report the status of each time-based sub-schedule
	8.11.2.19 TM[11,19] time-based sub-schedule status report
	8.11.2.20 TC[11,20] enable time-based sub-schedules
	8.11.2.21 TC[11,21] disable time-based sub-schedules
	8.11.2.22 TC[11,22] create time-based scheduling groups
	8.11.2.23 TC[11,23] delete time-based scheduling groups
	8.11.2.24 TC[11,24] enable time-based scheduling groups
	8.11.2.25 TC[11,25] disable time-based scheduling groups
	8.11.2.26 TC[11,26] report the status of each time-based scheduling group
	8.11.2.27 TM[11,27] time-based scheduling group status report

	8.11.3 Enumeration

	8.12 ST[12] on-board monitoring
	8.12.1 General
	8.12.2 Requests and reports
	8.12.2.1 TC[12,1] enable parameter monitoring definitions
	8.12.2.2 TC[12,2] disable parameter monitoring definitions
	8.12.2.3 TC[12,3] change the maximum transition reporting delay
	8.12.2.4 TC[12,4] delete all parameter monitoring definitions
	8.12.2.5 TC[12,5] add parameter monitoring definitions
	8.12.2.6 TC[12,6] delete parameter monitoring definitions
	8.12.2.7 TC[12,7] modify parameter monitoring definitions
	8.12.2.8 TC[12,8] report parameter monitoring definitions
	8.12.2.9 TM[12,9] parameter monitoring definition report
	8.12.2.10 TC[12,10] report the out-of-limits
	8.12.2.11 TM[12,11] out-of-limits report
	8.12.2.12 TM[12,12] check transition report
	8.12.2.13 TC[12,13] report the status of each parameter monitoring definition
	8.12.2.14 TM[12,14] parameter monitoring definition status report
	8.12.2.15 TC[12,15] enable the parameter monitoring function
	8.12.2.16 TC[12,16] disable the parameter monitoring function
	8.12.2.17 TC[12,17] enable the functional monitoring function
	8.12.2.18 TC[12,18] disable the functional monitoring function
	8.12.2.19 TC[12,19] enable functional monitoring definitions
	8.12.2.20 TC[12,20] disable functional monitoring definitions
	8.12.2.21 TC[12,21] protect functional monitoring definitions
	8.12.2.22 TC[12,22] unprotect functional monitoring definitions
	8.12.2.23 TC[12,23] add functional monitoring definitions
	8.12.2.24 TC[12,24] delete functional monitoring definitions
	8.12.2.25 TC[12,25] report functional monitoring definitions
	8.12.2.26 TM[12,26] functional monitoring definition report
	8.12.2.27 TC[12,27] report the status of each functional monitoring definition
	8.12.2.28 TM[12,28] functional monitoring definition status report

	8.12.3 Enumeration
	8.12.3.1 Parameter monitoring
	8.12.3.2 Functional monitoring

	8.13 ST[13] large packet transfer
	8.13.1 General
	8.13.2 Requests and reports
	8.13.2.1 TM[13,1] first downlink part report
	8.13.2.2 TM[13,2] intermediate downlink part report
	8.13.2.3 TM[13,3] last downlink part report
	8.13.2.4 TC[13,9] uplink the first part
	8.13.2.5 TC[13,10] uplink an intermediate part
	8.13.2.6 TC[13,11] uplink the last part
	8.13.2.7 TM[13,16] large packet uplink abortion report

	8.14 ST[14] real-time forwarding control
	8.14.1 General
	8.14.2 Requests and reports
	8.14.2.1 TC[14,1] add report types to the application process forward-control configuration
	8.14.2.2 TC[14,2] delete report types from the application process forward-control configuration
	8.14.2.3 TC[14,3] report the content of the application process forward-control configuration
	8.14.2.4 TM[14,4] application process forward-control configuration content report
	8.14.2.5 TC[14,5] add structure identifiers to the housekeeping parameter report forward-control configuration
	8.14.2.6 TC[14,6] delete structure identifiers from the housekeeping parameter report forward-control configuration
	8.14.2.7 TC[14,7] report the content of the housekeeping parameter report forward-control configuration
	8.14.2.8 TM[14,8] housekeeping parameter report forward-control configuration content report
	8.14.2.9 TC[14,9] add structure identifiers to the diagnostic parameter report forward-control configuration
	8.14.2.10 TC[14,10] delete structure identifiers from the diagnostic parameter report forward-control configuration
	8.14.2.11 TC[14,11] report the content of the diagnostic parameter report forward-control configuration
	8.14.2.12 TM[14,12] diagnostic parameter report forward-control configuration content report
	8.14.2.13 TC[14,13] delete event definition identifiers from the event report blocking forward-control configuration
	8.14.2.14 TC[14,14] add event definition identifiers to the event report blocking forward-control configuration
	8.14.2.15 TC[14,15] report the content of the event report blocking forward-control configuration
	8.14.2.16 TM[14,16] event report blocking forward-control configuration content report

	8.15 ST[15] on-board storage and retrieval
	8.15.1 General
	8.15.2 Requests and reports
	8.15.2.1 TC[15,1] enable the storage function of packet stores
	8.15.2.2 TC[15,2] disable the storage function of packet stores
	8.15.2.3 TC[15,3] add report types to the application process storage-control configuration
	8.15.2.4 TC[15,4] delete report types from the application process storage-control configuration
	8.15.2.5 TC[15,5] report the content of the application process storage-control configuration
	8.15.2.6 TM[15,6] application process storage-control configuration content report
	8.15.2.7 TC[15,9] start the by-time-range retrieval of packet stores
	8.15.2.8 TC[15,11] delete the content of packet stores up to the specified time
	8.15.2.9 TC[15,12] summary-report the content of packet stores
	8.15.2.10 TM[15,13] packet store content summary report
	8.15.2.11 TC[15,14] change the open retrieval start time tag of packet stores
	8.15.2.12 TC[15,15] resume the open retrieval of packet stores
	8.15.2.13 TC[15,16] suspend the open retrieval of packet stores
	8.15.2.14 TC[15,17] abort the by-time-range retrieval of packet stores
	8.15.2.15 TC[15,18] report the status of each packet store
	8.15.2.16 TM[15,19] packet store status report
	8.15.2.17 TC[15,20] create packet stores
	8.15.2.18 TC[15,21] delete packet stores
	8.15.2.19 TC[15,22] report the configuration of each packet store
	8.15.2.20 TM[15,23] packet store configuration report
	8.15.2.21 TC[15,24] copy the packets contained in a packet store selected by time window
	8.15.2.22 TC[15,25] resize packet stores
	8.15.2.23 TC[15,26] change a packet store type to circular
	8.15.2.24 TC[15,27] change a packet store type to bounded
	8.15.2.25 TC[15,28] change the virtual channel used by a packet store
	8.15.2.26 TC[15,29] add structure identifiers to the housekeeping parameter report storage-control configuration
	8.15.2.27 TC[15,30] delete structure identifiers from the housekeeping parameter report storage-control configuration
	8.15.2.28 TC[15,31] add structure identifiers to the diagnostic parameter report storage-control configuration
	8.15.2.29 TC[15,32] delete structure identifiers from the diagnostic parameter report storage-control configuration
	8.15.2.30 TC[15,33] delete event definition identifiers from the event report blocking storage-control configuration
	8.15.2.31 TC[15,34] add event definition identifiers to the event report blocking storage-control configuration
	8.15.2.32 TC[15,35] report the content of the housekeeping parameter report storage-control configuration
	8.15.2.33 TM[15,36] housekeeping parameter report storage-control configuration content report
	8.15.2.34 TC[15,37] report the content of the diagnostic parameter report storage-control configuration
	8.15.2.35 TM[15,38] diagnostic parameter report storage-control configuration content report
	8.15.2.36 TC[15,39] report the content of the event report blocking storage-control configuration
	8.15.2.37 TM[15,40] event report blocking storage-control configuration content report

	8.15.3 Enumeration

	8.16 ST[16] (reserved)
	8.17 ST[17] test
	8.17.1 General
	8.17.2 Requests and reports
	8.17.2.1 TC[17,1] perform an are-you-alive connection test
	8.17.2.2 TM[17,2] are-you-alive connection test report
	8.17.2.3 TC[17,3] perform an on-board connection test
	8.17.2.4 TM[17,4] on-board connection test report

	8.18 ST[18] on-board control procedure
	8.18.1 General
	8.18.2 Requests and reports
	8.18.2.1 TC[18,1] direct-load an OBCP
	8.18.2.2 TC[18,2] unload an OBCP
	8.18.2.3 TC[18,3] activate an OBCP
	8.18.2.4 TC[18,4] stop an OBCP
	8.18.2.5 TC[18,5] suspend an OBCP
	8.18.2.6 TC[18,6] resume an OBCP
	8.18.2.7 TC[18,7] communicate parameters to an OBCP
	8.18.2.8 TC[18,8] report the execution status of each OBCP
	8.18.2.9 TM[18,9] OBCP execution status report
	8.18.2.10 TC[18,12] abort an OBCP
	8.18.2.11 TC[18,13] load an OBCP by reference
	8.18.2.12 TC[18,14] activate and execute one OBCP step
	8.18.2.13 TC[18,15] resume and execute one OBCP step
	8.18.2.14 TC[18,16] set the observability level of OBCPs
	8.18.2.15 TC[18,17] abort all OBCPs and report
	8.18.2.16 TM[18,18] aborted OBCP report
	8.18.2.17 TC[18,19] load by reference and activate an OBCP
	8.18.2.18 TC[18,20] stop and unload an OBCP
	8.18.2.19 TC[18,21] start the OBCP engine
	8.18.2.20 TC[18,22] stop the OBCP engine

	8.18.3 Enumeration
	8.18.3.1 OBCP management

	8.19 ST[19] eventaction
	8.19.1 General
	8.19.2 Requests and reports
	8.19.2.1 TC[19,1] add event-action definitions
	8.19.2.2 TC[19,2] delete event-action definitions
	8.19.2.3 TC[19,3] delete all event-action definitions
	8.19.2.4 TC[19,4] enable event-action definitions
	8.19.2.5 TC[19,5] disable event-action definitions
	8.19.2.6 TC[19,6] report the status of each event-action definition
	8.19.2.7 TM[19,7] event-action status report
	8.19.2.8 TC[19,8] enable the event-action function
	8.19.2.9 TC[19,9] disable the event-action function
	8.19.2.10 TC[19,10] report event-action definitions
	8.19.2.11 TM[19,11] event-action definition report

	8.19.3 Enumeration

	8.20 ST[20] on-board parameter management
	8.20.1 General
	8.20.2 Requests and reports
	8.20.2.1 TC[20,1] report parameter values
	8.20.2.2 TM[20,2] parameter value report
	8.20.2.3 TC[20,3] set parameter values
	8.20.2.4 TC[20,4] change raw memory parameter definitions
	8.20.2.5 TC[20,5] change object memory parameter definitions
	8.20.2.6 TC[20,6] report parameter definitions
	8.20.2.7 TM[20,7] parameter definition report

	8.20.3 Enumeration

	8.21 ST[21] request sequencing
	8.21.1 General
	8.21.2 Requests and reports
	8.21.2.1 TC[21,1] direct-load a request sequence
	8.21.2.2 TC[21,2] load a request sequence by reference
	8.21.2.3 TC[21,3] unload a request sequence
	8.21.2.4 TC[21,4] activate a request sequence
	8.21.2.5 TC[21,5] abort a request sequence
	8.21.2.6 TC[21,6] report the execution status of each request sequence
	8.21.2.7 TM[21,7] request sequence execution status report
	8.21.2.8 TC[21,8] load by reference and activate a request sequence
	8.21.2.9 TC[21,9] checksum a request sequence
	8.21.2.10 TM[21,10] request sequence checksum report
	8.21.2.11 TC[21,11] report the content of a request sequence
	8.21.2.12 TM[21,12] request sequence content report
	8.21.2.13 TC[21,13] abort all request sequences and report
	8.21.2.14 TM[21,14] aborted request sequence report

	8.21.3 Enumeration

	8.22 ST[22] position-based scheduling
	8.22.1 General
	8.22.2 Requests and reports
	8.22.2.1 TC[22,1] enable the position-based schedule execution function
	8.22.2.2 TC[22,2] disable the position-based schedule execution function
	8.22.2.3 TC[22,3] reset the position-based schedule
	8.22.2.4 TC[22,4] insert activities into the position-based schedule
	8.22.2.5 TC[22,5] delete position-based scheduled activities identified by request identifier
	8.22.2.6 TC[22,6] delete the position-based scheduled activities identified by a filter
	8.22.2.7 TC[22,7] position-shift scheduled activities identified by request identifier
	8.22.2.8 TC[22,8] position-shift the scheduled activities identified by a filter
	8.22.2.9 TC[22,9] detail-report position-based scheduled activities identified by request identifier
	8.22.2.10 TM[22,10] position-based schedule detail report
	8.22.2.11 TC[22,11] detail-report the position-based scheduled activities identified by a filter
	8.22.2.12 TC[22,12] summary-report position-based scheduled activities identified by request identifier
	8.22.2.13 TM[22,13] position-based schedule summary report
	8.22.2.14 TC[22,14] summary-report the position-based scheduled activities identified by a filter
	8.22.2.15 TC[22,15] position-shift all scheduled activities
	8.22.2.16 TC[22,16] detail-report all position-based scheduled activities
	8.22.2.17 TC[22,17] summary-report all position-based scheduled activities
	8.22.2.18 TC[22,18] report the status of each position-based sub-schedule
	8.22.2.19 TM[22,19] position-based sub-schedule status report
	8.22.2.20 TC[22,20] enable position-based sub-schedules
	8.22.2.21 TC[22,21] disable position-based sub-schedules
	8.22.2.22 TC[22,22] create position-based scheduling groups
	8.22.2.23 TC[22,23] delete position-based scheduling groups
	8.22.2.24 TC[22,24] enable position-based scheduling groups
	8.22.2.25 TC[22,25] disable position-based scheduling groups
	8.22.2.26 TC[22,26] report the status of each position-based scheduling group
	8.22.2.27 TM[22,27] position-based scheduling group status report
	8.22.2.28 TC[22,28] set the orbit number

	8.22.3 Enumeration

	8.23 ST[23] file management
	8.23.1 General
	8.23.2 Requests and reports
	8.23.2.1 TC[23,1] create a file
	8.23.2.2 TC[23,2] delete a file
	8.23.2.3 TC[23,3] report the attributes of a file
	8.23.2.4 TM[23,4] file attribute report
	8.23.2.5 TC[23,5] lock a file
	8.23.2.6 TC[23,6] unlock a file
	8.23.2.7 TC[23,7] find files
	8.23.2.8 TM[23,8] found files report
	8.23.2.9 TC[23,9] create a directory
	8.23.2.10 TC[23,10] delete a directory
	8.23.2.11 TC[23,11] rename a directory
	8.23.2.12 TC[23,12] summary-report the content of a repository
	8.23.2.13 TM[23,13] repository content summary report
	8.23.2.14 TC[23,14] copy a file
	8.23.2.15 TC[23,15] move a file
	8.23.2.16 TC[23,16] suspend file copy operations
	8.23.2.17 TC[23,17] resume file copy operations
	8.23.2.18 TC[23,18] abort file copy operations
	8.23.2.19 TC[23,19] suspend all file copy operations involving a repository path
	8.23.2.20 TC[23,20] resume all file copy operations involving a repository path
	8.23.2.21 TC[23,21] abort all file copy operations involving a repository path
	8.23.2.22 TC[23,22] enable the periodic reporting of the file copy status
	8.23.2.23 TM[23,23] file copy status report
	8.23.2.24 TC[23,24] disable the periodic reporting of the file copy status

	8.23.3 Enumeration

	9 Command Pulse Distribution Unit
	9.1 Scope
	9.2 System requirements
	9.2.1 CPDU
	9.2.2 Accessibility
	9.2.3 CPDU request

	9.3 Interface requirements
	9.3.1 CPDU request

	Figure A-1 Single-precision real encoded value structure
	Table A-1 Single-precision real parameter encoded values
	Figure A-2 Double-precision real parameter encoded value structure
	Table A-2 Double-precision real parameter encoded values
	Figure A-3 Single-precision floating-point data structure
	Table A-3 Some examples of 32-bit floating-point numbers
	Figure A-4 extended floating-point data structure
	Table A-4 Some examples of 48-bit extended floating-point numbers
	Table B-1 CRC symbols and conventions
	Table B-2 Verification of CRC compliance
	Table B-3 ISO symbols and conventions
	Table B-4 Verification of ISO compliance
	Table C-1 Acceptance and reporting message types
	Table C-2 Execution reporting message types
	Table C-3 Routing and reporting message types
	Table C-4 Device access message types
	Table C-5 Housekeeping reporting message types
	Table C-6 Diagnostic reporting message types
	Table C-7 Parameter functional reporting configuration message types
	Table C-8 Parameter statistics reporting message types
	Table C-9 Event reporting message types
	Table C-10 Raw data memory management message types
	Table C-11 Structured data memory management message types
	Table C-12 Common memory management message types
	Table C-13 Memory configuration message types
	Table C-14 Function management message types
	Table C-15 Time reporting message types
	Table C-16 Time reporting control message types
	Table C-17 Time-based scheduling message types
	Table C-18 Parameter monitoring message types
	Table C-19 Functional monitoring message types
	Table C-20 Large packet downlink message types
	Table C-21 Large packet uplink message types
	Table C-22 Real-time forwarding control message types
	Table C-23 Storage and retrieval message types
	Table C-24 Packet selection message types
	Table C-25 Test message types
	Table C-26 OBCP management message types
	Table C-27 OBCP engine management message types
	Table C-28 Event-action message types
	Table C-29 Parameter management message types
	Table C-30 Request sequencing message types
	Table C-31 Position-based scheduling message types
	Table C-32 File handling message types
	Table C-33 File copy message types

